2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于事件相机的定位与建图算法: 综述

马艳阳 叶梓豪 刘坤华 陈龙

马艳阳,  叶梓豪,  刘坤华,  陈龙.  基于事件相机的定位与建图算法: 综述.  自动化学报,  2021,  47(7): 1484−1494 doi: 10.16383/j.aas.c190550
引用本文: 马艳阳,  叶梓豪,  刘坤华,  陈龙.  基于事件相机的定位与建图算法: 综述.  自动化学报,  2021,  47(7): 1484−1494 doi: 10.16383/j.aas.c190550
Ma Yan-Yang,  Ye Zi-Hao,  Liu Kun-Hua,  Chen Long.  Event-based visual localization and mapping algorithms: a survey.  Acta Automatica Sinica,  2021,  47(7): 1484−1494 doi: 10.16383/j.aas.c190550
Citation: Ma Yan-Yang,  Ye Zi-Hao,  Liu Kun-Hua,  Chen Long.  Event-based visual localization and mapping algorithms: a survey.  Acta Automatica Sinica,  2021,  47(7): 1484−1494 doi: 10.16383/j.aas.c190550

基于事件相机的定位与建图算法: 综述

doi: 10.16383/j.aas.c190550
基金项目: 国家重点研发计划(2018YFB1305002), 国家自然科学基金(61773414)资助
详细信息
    作者简介:

    马艳阳:2020年获得中山大学硕士学位. 2018年获得中山大学计算机科学与技术学士学位. 主要研究方向为机器人定位与建图技术. E-mail: mayany3@mail2.sysu.edu.cn

    叶梓豪:中山大学计算机学院硕士研究生. 2020年获得中山大学软件工程学士学位. 主要研究方向为多传感器融合的即时同步定位与建图技术. E-mail: yezh9@mail2.sysu.edu.cn

    刘坤华:中山大学数据科学与计算机学院博士后. 2019年获得山东科技大学机电工程学院博士学位. 主要研究方向为自动驾驶环境感知. E-mail: lkhzyf@163.com

    陈龙:中山大学数据科学与计算机学院副教授. 于2007年、2013年获得武汉大学学士、博士学位. 主要研究方向为自动驾驶, 机器人, 人工智能. 本文通信作者. E-mail: chenl46@mail.sysu.edu.cn

Event-based Visual Localization and Mapping Algorithms: A Survey

Funds: Supported by National Key Research and Development Program of China (2018YFB1305002), National Natural Science Foundation of China (61773414)
More Information
    Author Bio:

    MA Yan-Yang He received his master degree from the School of Computer Science and Engineering, Sun Yat-Sen University in 2020. He received his bachelor degree from Sun Yat-Sen University in 2018. His research interest covers robot localization and mapping

    YE Zi-Hao Master student at the School of Computer Science and Engineering, Sun Yat-Sen University. He received his bachelor degree in software engineering from Sun Yat-Sen University in 2020. His research interest covers real-time synchronous localization and mapping technology of multi-sensor fusion

    LIU Kun-Hua Postdoctor at the School of Data and Computer Science, Sun Yat-sen University. She received her Ph.D. degree from the Mechanical and Electrical Engineering Institute, Shandong University of Science and Technology. Her research interest covers automatic driving environment perception

    CHEN Long Associate professor at the School of Data and Computer Science, Sun Yat-sen University. He received his bachelor degree and Ph.D. degree from Wuhan University in 2007 and 2013. His research interest covers autonomous driving, robotics and artificial intelligence. Corresponding author of this paper

  • 摘要:

    事件相机是一种新兴的视觉传感器, 通过检测单个像素点光照强度的变化来产生“事件”. 基于其工作原理, 事件相机拥有传统相机所不具备的低延迟、高动态范围等优良特性. 而如何应用事件相机来完成机器人的定位与建图则是目前视觉定位与建图领域新的研究方向. 本文从事件相机本身出发, 介绍事件相机的工作原理、现有的定位与建图算法以及事件相机相关的开源数据集. 其中, 本文着重对现有的、基于事件相机的定位与建图算法进行详细的介绍和优缺点分析.

  • 图  1  事件相机输出的地址−事件流[47]

    Fig.  1  Address-event stream output by event-based camera[47]

    图  2  DVS像素结构原理图[34]

    Fig.  2  Abstracted DVS pixel core schematic[34]

    图  3  DVS工作原理图[34]

    Fig.  3  Principle of DVS operation[34]

    图  4  Bryner算法工作流程[51]

    Fig.  4  The workflow of Bryner' s algorithm[51]

    表  1  文中叙述的部分基于事件相机的SLAM算法及应用

    Table  1  Event-based SLAM algorithms and applications

    相关文献所使用传感器维度算法类型是否需要输入地图发表时间 (年)
    [44]DVS2D定位2012
    [45]DVS2D定位与建图2013
    [47]DVS3D定位2014
    [48]DVS3D定位与建图2016
    [49]DVS3D定位与建图2016
    [51]DVS3D定位2019
    [52]DVS, 灰度相机3D定位2014
    [53]DVS, RGB-D相机3D定位与建图2014
    [55]DAVIS3D定位2016
    [56]DAVIS (内置IMU)3D定位2017
    [59]DAVIS (内置IMU)3D定位与建图2017
    [64]DAVIS (内置IMU), RGB相机3D定位与建图2018
    [65]DAVIS (内置IMU)3D定位2018
    下载: 导出CSV

    表  2  DVS公开数据集

    Table  2  Dataset provided by event cammera

    相关文献所使用传感器相机运动自由度数据采集场景载具是否提供真值发表时间(年)
    [53]eDVS相机, RGB-D相机6DOF室内手持2014
    [28]DAVIS (内置IMU)3DOF(纯旋转)室内, 仿真旋转基座2016
    [68]DAVIS, RGB-D相机4DOF室内, 仿真地面机器人和云台2016
    [69]DAVIS (内置IMU)6DOF室内 室外 仿真手持室内: 是 室外: 否 仿真: 是2016
    [70]DAVIS6DOF室外汽车2017
    [71] 2×DAVIS (内置IMU) 2×RGB相机 (内置IMU) 16线激光雷达 6DOF 室内 室外 室内
    到室外
    四轴飞行器 摩托车 汽车 手持 2018
    [72] 2×DAVIS (内置IMU) RGB-D相机3DOF 室内 3×地面机器人 2018
    [73]DAVIS6DOF室内手持2019
    [51]DAVIS, IMU6DOF室内, 仿真手持2019
    下载: 导出CSV
  • [1] Burri M, Oleynikova H, Achtelik M W, Siegwart R. Realtime visual-inertial mapping, re-localization and planning onboard MAVs in unknown environments. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015. 1872−1878
    [2] Chatila R, Laumond J P. Position referencing and consistent world modeling for mobile robots. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation. Louis, Missouri, USA: IEEE, 1985. Vol. 2: 138−145
    [3] Chatzopoulos D, Bermejo C, Huang Z, P Hui. Mobile augmented reality survey: From where we are to where we go. IEEE Access, 2017, 5: 6917−6950 doi: 10.1109/ACCESS.2017.2698164
    [4] Taketomi T, Uchiyama H, Ikeda S. Visual SLAM algorithms: a survey from 2010 to 2016. Transactions on Computer Vision and Applications, 2017, 9(1): 16 doi: 10.1186/s41074-017-0027-2
    [5] Strasdat H, Montiel J M M, Davison A J. Visual SLAM: Why filter? Image and Vision Computing, 2012, 30(2): 65−77 doi: 10.1016/j.imavis.2012.02.009
    [6] Younes G, Asmar D, Shammas E, J Zelek. Keyframe-based monocular SLAM: Design, survey, and future directions. Robotics and Autonomous Systems, 2017, 98: 67−88 doi: 10.1016/j.robot.2017.09.010
    [7] Olson C F, Matthies L H, Schoppers M, Maimore M W. Rover navigation using stereo ego-motion. Robotics and Autonomous Systems, 2003, 43(4): 215−229 doi: 10.1016/S0921-8890(03)00004-6
    [8] Zhang Z. Microsoft kinect sensor and its effect. IEEE Multimedia, 2012, 19(2): 4−10 doi: 10.1109/MMUL.2012.24
    [9] Huang A S, Bachrach A, Henry P, et al. Visual odometry and mapping for autonomous flight using an RGB-D camera. Robotics Research. Springer, Cham, 2017: 235−252
    [10] Jones E S, Soatto S. Visual-inertial navigation, mapping and localization: A scalable real-time causal approach. The International Journal of Robotics Research, 2011, 30(4): 407−430 doi: 10.1177/0278364910388963
    [11] Martinelli A. Vision and IMU data fusion: Closed-form solutions for attitude, speed, absolute scale, and bias determination. IEEE Transactions on Robotics, 2011, 28(1): 44−60
    [12] Klein G, Murray D. Parallel tracking and mapping for small AR workspaces. In: Proceedings of the 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. Nara, Japan: IEEE, 2007. 1−10
    [13] Mur-Artal R, Montiel J M M, Tardos J D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Transactions on Robotics, 2015, 31(5): 1147−1163 doi: 10.1109/TRO.2015.2463671
    [14] Mur-Artal R, Tardós J D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics, 2017, 33(5): 1255−1262 doi: 10.1109/TRO.2017.2705103
    [15] Forster C, PizzoliM, Scaramuzza D. SVO: Fast semi-direct monocular visual odometry. In: Proceedings of the 2014 IEEE international conference on robotics and automation (ICRA). Hong Kong, China: IEEE, 2014. 15−22
    [16] Engel J, Schops T, Cremers D. LSD-SLAM: Large-scale direct monocular SLAM. In: Proceedings of the 2014 European conference on computer vision. Zurich, Switzerland: Springer, 2014. 834−849
    [17] Engel J, Stückler J, Cremers D. Large-scale direct SLAM with stereo cameras. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015. 1935−1942
    [18] Li M, Mourikis A I. High-precision, consistent EKFbased visual-inertial odometry. The International Journal of Robotics Research, 2013, 32(6): 690−711 doi: 10.1177/0278364913481251
    [19] Leutenegger S, Lynen S, Bosse M, Siegwart R, Furgale P. Keyframe-based visual inertial odometry using nonlinear optimization. The International Journal of Robotics Research, 2015, 34(3): 314−334 doi: 10.1177/0278364914554813
    [20] Qin T, Li P, Shen S. Vins-mono: A robust and versatile monocular visual-inertial state estimator. IEEE Transactions on Robotics, 2018, 34(4): 1004−1020 doi: 10.1109/TRO.2018.2853729
    [21] Fossum E R. CMOS image sensors: Electronic camera-ona-chip. IEEE Transactions on Electron Devices, 1997, 44(10): 1689−1698 doi: 10.1109/16.628824
    [22] Delbruck T. Neuromorophic vision sensing and processing. In: Proceedings of the 46th European SolidState Device Research Conference (ESSDERC). Lansanne, Switzerland: IEEE, 2016. 7−14
    [23] Delbruck T, Lichtsteiner P. Fast sensory motor control based on event-based hybrid neuromorphic-procedural system. In: Proceedings of the IEEE International Symposium on Circuits and Systems. New Orleans, USA: IEEE, 2007. 845−848
    [24] Delbruck T, Lang M. Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor. Frontiers in Neuroscience, 2013, 7: 223
    [25] Glover A, Bartolozzi C. Event-driven ball detection and gaze fixation in clutter. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, Korea: IEEE, 2016. 2203−2208
    [26] Benosman R, Ieng S H, Clercq C, Bartolozzi C, Srinivasan M. Asynchronous frameless event-based optical flow. Neural Networks, 2012, 27: 32−37 doi: 10.1016/j.neunet.2011.11.001
    [27] Benosman R, Clercq C, Lagorce X, leng S H, Bartolozzi C. Event-based visual flow. IEEE Transactions on Neural Networks and Learning Systems, 2013, 25(2): 407−417
    [28] Rueckauer B, Delbruck T. Evaluation of event-based algorithms for optical flow with ground-truth from inertial measurement sensor. Frontiers in Neuroscience, 2016, 10: 176
    [29] Bardow P, Davison A J, Leutenegger S. Simultaneous optical flow and intensity estimation from an event camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. LAS VEGAS, USA: IEEE, 2016. 884−892
    [30] Reinbacher C, Graber G, Pock T. Real-time intensityimage reconstruction for event cameras using manifold regularisation. International Journal of Computer Vision, 2018, 126(12): 1381−1393 doi: 10.1007/s11263-018-1106-2
    [31] Mahowald M. VLSI analogs of neuronal visual processing: A synthesis of form and function. California Institute of Technology, 1992.
    [32] Posch C, Serrano-Gotarredona T, Linares-Barranco B, Delbruck T. Retinomorphic event-based vision sensors: Bioinspired cameras with spiking output. Proceedings of the IEEE, 2014, 102(10): 1470−1484 doi: 10.1109/JPROC.2014.2346153
    [33] Lichtsteiner P, Posch C, Delbruck T. A 128×128 120 db 30 mw asynchronous vision sensor that responds to relative intensity change. In: Proceedings of the 2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers. San Francisco, CA, USA: IEEE, 2006. 2060−2069
    [34] Lichtsteiner P, Posch C, Delbruck T. A 128×128 120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor. IEEE Journal of Solid-State Circuits, 2008, 43(2): 566−576 doi: 10.1109/JSSC.2007.914337
    [35] Son B, Suh Y, Kim S, et al. 4. 1 A 640×480 dynamic vision sensor with a 9 μm pixel and 300 Meps address-event representation. In: Proceedings of the 2017 IEEE International Solid-State Circuits Conference (ISSCC). San Francisco, CA, USA: IEEE, 2017. 66−67
    [36] Posch C, Matolin D, Wohlgenannt R. A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS. IEEE Journal of Solid-State Circuits, 2010, 46(1): 259−275
    [37] Posch C, Matolin D, Wohlgenannt R. A QVGA 143 dB dynamic range asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression. In: Proceedings of the 2010 IEEE International Solid-State Circuits Conference-(ISSCC). San Francisco, CA, USA: IEEE, 2010. 400−401
    [38] Berner R, Brandli C, Yang M, Liu S C, Delbruck T. A 240×180 120 db 10 mw 12 us-latency sparse output vision sensor for mobile applications. In: Proceedings of the International Image Sensors Workshop. Snowbird, Utah, USA: IEEE, 2013. 41−44
    [39] Brandli C, Berner R, Yang M, Liu S C, Delbruck T. A 240×180 130 db 3 μs latency global shutter spatiotemporal vision sensor. IEEE Journal of Solid-State Circuits, 2014, 49(10): 2333−2341 doi: 10.1109/JSSC.2014.2342715
    [40] Guo M, Huang J, Chen S. Live demonstration: A 768×640 pixels 200 Meps dynamic vision sensor. In: Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS). Baltimore, Maryland, USA: IEEE, 2017. 1−1
    [41] Li C, Brandli C, Berner R, et al. Design of an RGBW color VGA rolling and global shutter dynamic and active-pixel vision sensor. In: Proceedings of the 2015 IEEE International Symposium on Circuits and Systems (ISCAS). Liston, Portulgal: IEEE, 2015. 718−721
    [42] Moeys D P, Li C, Martel J N P, et al. Color temporal contrast sensitivity in dynamic vision sensors. In: Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS). Baltimore, Maryland, USA: IEEE, 2017. 1−4
    [43] Marcireau A, Ieng S H, Simon-Chane C, Benosman R B. Event-based color segmentation with a high dynamic range sensor. Frontiers in Neuroscience, 2018, 12: 135 doi: 10.3389/fnins.2018.00135
    [44] Weikersdorfer D, Conradt J. Event-based particle filtering for robot self-localization. In: Proceedings of the 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). Guangzhou, China: IEEE, 2012. 866−870
    [45] Weikersdorfer D, Hoffmann R, Conradt J. Simultaneous localization and mapping for event-based vision systems. In: Proceedings of the 2013 International Conference on Computer Vision Systems. St. Petersburg, Russia: Springer, 2013. 133−142
    [46] Hoffmann R, Weikersdorfer D, Conradt J. Autonomous indoor exploration with an event-based visual SLAM system. In: Proceedings of the 2013 European Conference on Mobile Robots. Barcelona, Catalonia, Spain: IEEE, 2013. 38−43
    [47] Mueggler E, Huber B, Scaramuzza D. Event-based, 6-DOF pose tracking for high-speed maneuvers. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Chicago, USA: IEEE, 2014. 2761−2768
    [48] Kim H, Leutenegger S, Davison A J. Real-time 3D reconstruction and 6-DoF tracking with an event camera. In: Proceedings of the 2016 European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. 349−364
    [49] Rebecq H, Horstschafer T, Gallego G, Scaramuzza D. EVO: A geometric approach to event-based 6-DOF parallel tracking and mapping in real time. IEEE Robotics and Automation Letters, 2016, 2(2): 593−600
    [50] Rebecq H, Gallego G, Scaramuzza D. EMVS: Event-based multi-view stereo. In: Proceedings of the 2016 British Machine Vision Conference (BMVC). York, UK: Springer, 2016(CONF).
    [51] Bryner S, Gallego G, Rebecq H, Scaramuzza D. Eventbased, direct camera tracking from a photometric 3D map using nonlinear optimization. In: the 2019 International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019. 2
    [52] Censi A, Scaramuzza D. Low-latency event-based visual odometry. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014. 703−710
    [53] Weikersdorfer D, Adrian D B, Cremers D, Conradt J. Eventbased 3D SLAM with a depth-augmented dynamic vision sensor. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China: IEEE, 2014. 359−364
    [54] Tedaldi D, Gallego G, Mueggler E, Scaramuzza D. Feature detection and tracking with the dynamic and active-pixel vision sensor (DAVIS). In: Proceedings of the 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP). Krakow, Poland: IEEE, 2016. 1−7
    [55] Kueng B, Mueggler E, Gallego G, Scaramuzza D. Lowlatency visual odometry using event-based feature tracks. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon, Korea: IEEE, 2016. 16−23
    [56] Zhu A Z, Atanasov N, Daniilidis K. Event-based visual inertial odometry. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, Hawaii, USA: IEEE, 2017. 5816−5824
    [57] Zhu A Z, Atanasov N, Daniilidis K. Event-based feature tracking with probabilistic data association. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA). Marina Bay, Singapore: IEEE, 2017. 4465−4470
    [58] Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation (ICRA). Roma, Italy: IEEE, 2007. 3565−3572
    [59] Rebecq H, Horstschaefer T, Scaramuzza D. Real-time Visual-Inertial Odometry for Event Cameras using Keyframe-based Nonlinear Optimization. In: Proceedings of the 2017 British Machine Vision Conference (BMVC). London, UK: Springer, 2017(CONF).
    [60] Gallego G, Scaramuzza D. Accurate angular velocity estimation with an event cameras. IEEE Robotics and Automation Letters, 2017, 2(2): 632−639 doi: 10.1109/LRA.2016.2647639
    [61] Rosten E, Drummond T. Machine learning for high-speed corner detection. In: Proceedings of the 2006 European Conference on Computer Vision. Graz, Austria: Springer, 2006. 430−443
    [62] Lucas B D, Kanade T. An Iterative Image Registration Technique with An Application to Stereo Vision. 1981. 121−130
    [63] Leutenegger S, Furgale P, Rabaud V, et al. Keyframe-based visual-inertial slam using nonlinear optimization. In: Proceedings of the 2013 Robotis Science and Systems (RSS). Berlin, German, 2013.
    [64] Vidal A R, Rebecq H, Horstschaefer T, Scaramuzza D. Ultimate SLAM? Combining events, images, and IMU for robust visual SLAM in HDR and high-speed scenarios. IEEE Robotics and Automation Letters, 2018, 3(2): 994−1001 doi: 10.1109/LRA.2018.2793357
    [65] Mueggler E, Gallego G, Rebecq H, Scaramuzza D. Continuous-time visual-inertial odometry for event cameras. IEEE Transactions on Robotics, 2018, 34(6): 1425−1440 doi: 10.1109/TRO.2018.2858287
    [66] Mueggler E, Gallego G, Scaramuzza D. Continuous-time trajectory estimation for event-based vision sensors. In: Proceedings of Robotics: Science and Systems XI (RSS). Rome, Italy: 2015. DOI: 10.15607/RSS.2015.XI.036
    [67] Patron-Perez A, Lovegrove S, Sibley G. A spline-based trajectory representation for sensor fusion and rolling shutter cameras. International Journal of Computer Vision, 2015, 113(3): 208−219 doi: 10.1007/s11263-015-0811-3
    [68] Barranco F, Fermuller C, Aloimonos Y, Delbruck T. A dataset for visual navigation with neuromorphic methods. Frontiers in Neuroscience, 2016, 10: 49
    [69] Mueggler E, Rebecq H, Gallego G, Delbruck T, Scaramuzza D. The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM. The International Journal of Robotics Research, 2017, 36(2): 142−149 doi: 10.1177/0278364917691115
    [70] Binas J, Neil D, Liu S C, Delbruck T. DDD17: End-to-end DAVIS driving dataset. arXiv: 1711. 01458, 2017
    [71] Zhu A Z, Thakur D, Ozaslan T, Pfrommer B, Kumar V, Daniilidis K. The multivehicle stereo event camera dataset: An event camera dataset for 3D perception. IEEE Robotics and Automation Letters, 2018, 3(3): 2032−2039 doi: 10.1109/LRA.2018.2800793
    [72] Leung S, Shamwell E J, Maxey C, Nothwang W D. Toward a large-scale multimodal event-based dataset for neuromorphic deep learning applications. In: Proceedings of the 2018 Micro-and Nanotechnology Sensors, Systems, and Applications X. International Society for Optics and Photonics. Orlando, Florida, USA: SPIE, 2018. 10639: 106391T
    [73] Mitrokhin A, Ye C, Fermuller C, Aloimonos Y, Delbruck T. EV-IMO: Motion segmentation dataset and learning pipeline for event cameras. arXiv: 1903. 07520, 2019
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  9532
  • HTML全文浏览量:  5538
  • PDF下载量:  944
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-25
  • 录用日期:  2019-12-15
  • 网络出版日期:  2020-01-03
  • 刊出日期:  2021-07-27

目录

    /

    返回文章
    返回