2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云控制系统不确定性分析与控制器设计方法

关守平 王梁

赵志甲, 任志刚. 针对执行器非光滑反向间隙 − 饱和的柔性立管边界控制. 自动化学报, 2019, 45(11): 2050−2057 doi: 10.16383/j.aas.c190126
引用本文: 关守平, 王梁. 云控制系统不确定性分析与控制器设计方法. 自动化学报, 2022, 48(11): 2677−2687 doi: 10.16383/j.aas.c190529
Zhao Zhi-Jia, Ren Zhi-Gang. Boundary control of a flexible marine riser subject to nonsmooth actuator backlash-saturation constraints. Acta Automatica Sinica, 2019, 45(11): 2050−2057 doi: 10.16383/j.aas.c190126
Citation: Guan Shou-Ping, Wang Liang. Uncertainty analysis of cloud control system with its controller design. Acta Automatica Sinica, 2022, 48(11): 2677−2687 doi: 10.16383/j.aas.c190529

云控制系统不确定性分析与控制器设计方法

doi: 10.16383/j.aas.c190529
基金项目: 国家自然科学基金(62173072) 资助
详细信息
    作者简介:

    关守平:东北大学信息科学与工程学院教授. 1995年获得东北大学工业自动化系博士学位. 主要研究方向为复杂工业过程建模, 优化与控制, 网络与云控制, 智能控制. E-mail: guanshouping@ise.neu.edu.cn

    王梁:北京航空航天大学自动化科学与电气工程学院博士研究生. 2019年获得东北大学信息科学与工程学院自动化系学士学位. 主要研究方向为飞行器控制, 网络与云控制. 本文通信作者.E-mail: wang_liang@buaa.edu.cn

Uncertainty Analysis of Cloud Control System With Its Controller Design

Funds: Supported by National Natural Science Foundation of China (62173072)
More Information
    Author Bio:

    GUAN Shou-Ping Professor at the College of Information Science and Engineering, Northeastern University. He received his Ph.D. degree from the Department of Industrial Automation, Northeastern University in 1995. His research interest covers industrial process modeling, optimization and control, networked and clouded control, and intelligent control

    WANG Liang Ph.D. candidate at the School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics. He received his bachelor degree from the College of Information Science and Engineering, Northeastern University in 2019. His research interest covers aircraft control, networked and clouded control. Corresponding author of this paper

  • 摘要: 云控制系统(Cloud control system, CCS)是云计算与物理系统的融合, 由于云计算中资源是动态的, 因此云计算的加入使得云控制系统具有很大的不确定性. 本文给出一种典型的云控制系统结构, 通过将不确定性划分为云端不确定性和网络端不确定性, 有效简化了云控制系统不确定特性分析和建模. 针对典型的时延不确定性问题, 将云控制系统时延划分为云端时延和网络端时延, 进行了MapReduce模型下多计算节点云端时延分析, 同时进行了云控制结构下网络端时延分析, 两者结合实现了云控制系统的前向通道和反馈通道的时延建模. 基于所建立的云控制系统时延模型, 应用极点配置方法设计了云控制器算法, 包括观测器的设计和控制律的设计, 从而保证了闭环系统的稳定性. 对本文设计的云控制器算法进行了仿真验证, 结果表明考虑时延特性的控制器设计明显提升了云控制系统的控制性能.
  • 在深海勘探开发生产中, 海洋柔性立管作为连接海面作业平台与海床井口的关键构件[1].在风、浪、洋流等外部载荷作用下, 海洋立管会产生振动现象, 而长期的振动则是造成柔性立管疲劳破损的主因[2-4].因此, 开展先进的海洋柔性立管振动主动控制系统研究, 对延长立管使用寿命、提高生产效率和保证海洋油气生产安全具有重要的理论和实际意义.

    从数学的观点看, 具有振动的海洋柔性立管系统可认为是典型的无限维分布参数系统[5-11].其动力学往往建模为耦合的偏微分–常微分方程, 这使得现有许多对传统刚性系统成熟的方法不能直接应用.对海洋柔性立管振动控制的研究主要包括模态控制和边界控制.模态控制是基于提取的有限维受控子系统进行控制设计, 而忽略掉的高频模态可能导致系统产生控制溢出效应.边界控制能克服上述方法的缺点, 且容易由系统机械能相关的Lyapunov函数得出, 因此边界控制与其他控制技术如PID控制、鲁棒控制、自适应控制、反步控制、输出反馈控制等相结合的方法广泛应用于柔性立管系统的振动控制领域[12-16].上述研究仅仅局限于柔性立管系统的振动控制, 而这些方法将不适用于具有输入非线性特性的柔性立管系统.

    在实际的海洋油气生产环境中, 柔性立管系统除了受到风浪扰动和海洋洋流分布式扰动影响外, 其面临的情况可能会比之前研究的问题更加复杂.如系统固有的物理约束和执行器的约束将使得系统产生死区、饱和、磁滞、反向间隙等不光滑的非线性特性[17-20].而这些不光滑的非线性特性将会限制系统的瞬态性能, 更为甚者, 将会致使系统不稳定.因此, 需要将这些不光滑的非线性约束特性考虑在控制设计中.为了解决海洋柔性立管系统的输入非线性约束问题, 一些学者基于立管原始无限维模型探索了不同的边界控制方法[13, 21-24].文献[13]面向具有系统不确定性、输出约束和输入饱和的海洋立管系统, 基于反推技术研发了障碍边界控制策略以抑制振动、补偿系统不确定性以及处理系统的输入输出限制.文献[21]针对具有执行器输入饱和非线性约束和外部海洋扰动的海洋柔性立管系统, 在顶端构建边界控制器以稳定其在平衡位置的小邻域并利用辅助系统补偿执行器饱和的影响.文献[22]设计了鲁棒自适应控制器用以稳定具有参数不确定性和输入受限的海洋柔性立管系统.文献[23]采用光滑的双曲正切函数、Nussbaum函数和辅助系统设计边界控制器以抑制立管振动并限制控制输入在给定范围内, 该方法解决了文献[2122]中应用符号函数限制控制输入所带来的震颤问题.文献[24]引入辅助函数和变量设计边界控制器来实现立管的振动减弱并消除混合的死区−饱和非线性约束影响.然而, 这些成果仅仅解决了柔性立管系统执行器输入饱和或输入饱和−死区非线性约束问题, 而对于具有输入反向间隙−饱和非线性约束的柔性立管系统, 上述方法将不能适用.

    本文针对执行器非光滑反向间隙−饱和约束特性的深海柔性立管系统(如图 1所示), 首先将反向间隙−饱和约束转换成虚拟的输入饱和约束, 其后引入辅助系统并采用Lyapunov理论, 构建边界控制以抑制柔性立管的振动并消除饱和非线性约束的影响.随后, 证明了闭环系统在Lyapunov意义下的一致有界稳定性.最后, 通过数值仿真, 验证了本文所提出控制能处理非光滑反向间隙−饱和约束非线性影响, 也能有效抑制立管系统振动.

    图 1  柔性立管系统
    Fig. 1  Flexible riser system

    注1.本文作如下简写: $ (\cdot)(x, t) = (\cdot) $, $ (\cdot)' = \dfrac{\partial(\cdot)}{\partial{x}} $, $ \dot{(\cdot)} $ = $ \dfrac{\partial(\cdot)}{\partial{t}} $.

    深海柔性立管系统如图 1所示, 其中$ l $为立管的长度, $ y(z, t) $为立管在位置$ z $时刻$ t $的偏移量, $ f(z, t) $为海洋洋流分布式扰动, $ d(t) $为外部环境扰动, $ u(t) $为边界控制输入.

    本研究所考虑立管系统动力学描述如下[1]:

    $\begin{split} \rho\ddot{y}(z,&t)-\left\{T[z, y'(z,t)]+\right.\\ & \left.3\psi(z)y'^2(z,t)\right\}y''(z,t)-\\ & \ T'[z, y'(z,t), y''(z,t)]y'(z,t)+c\dot{y}(z,t)-\\ & \ \psi'(z)y'^3(z,t)+ EIy''''(z,t)-\\ & \ f(z,t) = 0,\ \ \ 0<z<l \end{split} \hspace{33pt} $

    (1)

    $ \begin{align} y(0,t) = y'(0,t) = y''(l,t) = 0 \end{align} \hspace{78pt} $

    (2)

    $ \begin{split} m\ddot{y}(l,t)+& T[l, y'(l,t)]y'(l,t)+\psi(l)y'^3(l,t)-u(t)+\\ & d_a\dot{y}(l,t) = EIy'''(l,t)+d(t) \end{split} \hspace{5pt}$

    (3)

    其中, $ \rho $, $ c $和$ EI $分别为立管的单位长度质量、阻尼系数和弯曲刚度, $ d_a $和$ m $为船的质量和阻尼系数, $ T[z, y'(z, t)] $为立管的时空变化张力, 表示为

    $ \begin{align} T[z, y'(z,t)] = T_0(z)+\psi(z)y'^2(z,t) \end{align} $

    (4)

    其中, $ T_0(z) > 0 $为初始张力, $ \psi(z)\ge 0 $为非线性弹性模量.

    执行器输入饱和非线性描述为[25]

    $ \begin{align} \varphi(t) = sat(\varrho(t)) = \begin{cases} a , \qquad\quad\ \varrho(t)\ge a \\[2mm] \varrho(t) , \qquad -a < \varrho(t) < a \\[2mm] -a, \qquad\ \ \, \varrho(t)\ -a \end{cases} \end{align} $

    (5)

    其中, $ a > 0 $为饱和界限.

    执行器输入反向间隙非线性描述为[24]

    $\begin{array}{l} u(t) = D(\varphi (t)) = \\ \qquad\;\;\;\left\{ {\begin{aligned} &{\varphi (t) - b,\;\qquad \dot \varphi }{ > 0\;\text{且}\;u(t) = \varphi (t) - b}\\ &{\varphi (t) + b,\;\qquad \dot \varphi }{ < 0\;\text{且}\;u(t) = \varphi (t) + b}\\ &{u(t\_), \qquad\quad\;\; \text{其他}}&{} \end{aligned}} \right. \end{array}$

    (6)

    其中, $ b > 0 $为反向间隙参数.

    由输入饱和与反向间隙的表达式(5)和式(6)可知, 系统的非线性特征是相当复杂的, 因此很难直接对其处理.根据文献[25], 可知输入饱和与反向间隙可转换并表示为一个虚拟的输入饱和.因此, 为解决虚拟的输入非线性问题, 我们引入$ D $的右逆$ D^+ $为

    $ \begin{align} \varrho(t) = D^+(\tau(t)) = \left\{ \begin{aligned} & \tau(t)+b, \; \; \dot{\tau}(t)>0 \\ & \tau(t)-b, \; \; \dot{\tau}(t)<0 \\ & \varrho(t\_), \; \;\;\;\;\; \dot{\tau}(t) = 0 \end{aligned} \right. \end{align} $

    (7)

    根据上面的分析和文献[25], 我们可得混合的输入饱和−反向间隙非线性特性可描述为

    $ \begin{split} u(t) = & D(sat(D^+(\tau(t)))) = \\ &\left\{ \begin{aligned} & \,a-b, \qquad\;\;\, \tau(t)\ge a-b \\ & \, \tau(t), \qquad\quad\; |\tau(t)|<a-b \\ & -a+b, \quad\;\;\tau(t)\le-a+b \end{aligned} \right. \end{split} $

    (8)

    由式(8)可知, 我们可将系统的输入饱和−反向间隙非线性视为一个输入饱和来处理.

    引理1[26].设$ \chi_1(z, t) $, $ \chi_2(z, t)\in {\bf{R}} $, $ \varphi > 0 $, 其中$ (z, t)\in$ $[0, l]\times[0, +\infty) $, 则

    $ \begin{align} \chi_1(z,t)\chi_2(z,t)\le \frac{1}{\varphi}\chi^2_1(z,t)+\varphi\chi^2_2(z,t) \end{align} $

    (9)

    引理2[26].设$ \chi(z, t)\in {\bf{R}} $为定义在$ (z, t)\in[0, l]\times $ $[0, +\infty) $的函数, 且满足$ \chi(0, t) = 0, \forall t\in[0, +\infty) $, 则

    $ \begin{align} \chi^2(z,t) \le l\int^l_0\chi^{{\prime}2}(z,t){\rm{d}}z \end{align} $

    (10)

    假设1.假定存在常数$ {F} $, $ {D}\in {\bf{R}}^+ $, 使得$\mid f(z, t)\mid \leq $ $ {F, } $ $ \forall{(z, t)}\in{[0, l]\times[0, +\infty), } $ $\mid d(t)\mid \leq {D, } $ $ \forall{t}\in[0, +\infty). $这个假设是合理的, 由于$ f(z, t) $和$ d(t) $是有限能量的, 因此是有界的[21-24].

    假设2.假定存在正常数$ \underline{T}_0 $, $ \overline{T}_0 $, $ \underline{\psi}_0 $, $ \overline{\psi}_0 $, 使得$ \underline{T}_0\le T_0(z) \le \overline{T}_0 $, $ \underline{\psi}_0\le \psi(z)\leq \overline{\psi}_0 $.

    假设3.对于新的输入饱和表达式(8), 假定存在一个正常数$ \varpi $使得$ |\triangle u|\le \varpi $, 其中, $ \triangle u = u(t)-$ $\tau(t) $.

    本节将引入辅助函数和辅助系统用于构建边界控制器以抑制立管振动并消除输入非线性影响.

    首先, 设计辅助系统为

    $ \begin{split}\! \dot{\nu}(t) =&\ \frac{1}{m}\left(-k_1\nu(t)-\triangle u+T[l, y'(l,t)]y'(l,t)+ \right. \\ & \left. \psi(l)y'^3(l,t)+d_a\dot{y}(l,t)-EIy'''(l, t)\right) \end{split} $

    (11)

    其中, $ \nu(t) $为辅助系统的状态变量, $ k_1 $为正常数.

    为便于分析闭环立管系统的稳定性, 定义如下辅助变量

    $\begin{split} \mu(t) =\;& \dot{y}(l,t)-k_2y'''(l, t)+y'(l,t)+\\ &k_3y'^3(l,t)+\nu(t) \end{split}$

    (12)

    其中, $ k_2, k_3 $为正常数.

    对式(12)求导, 代入式(3)和式(11), 可得

    $ \begin{aligned} \dot{\mu}(t) =\;& \frac{1}{m}(\tau(t)+d(t)-mk_2\dot{y}'''(l, t)+m\dot{y}'(l,t)+\\ & 3mk_3y'^2(l,t)\dot{y}'(l,t)-k_1\nu(t)) \end{aligned} $

    (13)

    根据上述分析, 提出控制律$ \tau(t) $为

    $ \begin{aligned} \tau(t) = & -k_4\mu(t)+k_1\nu(t)+mk_2\dot{y}'''(l, t)-m\dot{y}'(l,t) -\\ & \ 3mk_3y'^2(l,t)\dot{y}'(l,t)-{\rm{sgn}}(\mu(t)){D} \end{aligned} $

    (14)

    其中, $ k_4 $为正常数.

    注2.所设计的控制器(14)是由可获得的边界信号组成的, 其中$ y'''(l, t) $、$ y'(l, t) $和$ y(l, t) $分别可由剪切力传感器、倾角计和位移传感器获得.此外, 控制器中这些信号的一阶时间微分信号$ \dot{y}'''(l, t), $ $ \dot{y}'(l, t) $和$ \dot{y}(l, t) $分别可对已获得信号进行后向差分算法得到[21-24].

    选取如下Lyapunov函数为

    $ Y(t) = {{Y}_{e}}(t)+{{Y}_{f}}(t)+{{Y}_{g}}(t) $

    (15)

    其中,

    $ \begin{align} {{Y}_{e}}(t) = \frac{\varsigma}{2}\rho\int_{0}^{l}{{{{\dot{y}}}^{2}}(z,t){\rm{d}}z} +\frac{\varsigma}{2}\int_{0}^{l}T_0(z){{{ {y}^{\prime2}\left( z,t\right) }}{\rm{d}}z}+\\ \frac{\varsigma}{2}\int_{0}^{l}\psi(z){{{ {y}^{\prime4}\left( z,t\right) }}{\rm{d}}z}+\frac{\varsigma}{2}EI\int_{0}^{l}y^{\prime\prime 2}(z,t){\rm{d}}z \end{align} $

    (16)

    $ \begin{align} {{Y}_{g}}(t) = \frac{\varsigma m}{2}\nu^2(t)+\frac{\varsigma m}{2}\mu^2(t) \end{align} \hspace{78pt}$

    (17)

    $ \begin{align} {{Y}_{f}}(t) = \lambda\rho\int_{0}^{l} z \phi(z){\dot{y} (z,t){y}'(z,t){\rm{d}}z} \end{align} $

    (18)

    其中, $ \varsigma, \lambda > 0 $.

    引理3.选取的Lyapunov函数(16)是一个正定的函数:

    $ \begin{split} 0\le\; & \delta_1[Y_e(t)+Y_f(t)]\le Y(t)\le \\ &\delta_2[Y_e(t)+Y_f(t)] \end{split} $

    (19)

    其中, $ \delta_1 > 0, \; \delta_2 > 1 $.

    证明.根据引理1, 式(18)可放缩为

    $ \begin{split} \mid Y_g(t)\mid\ \le\ & \frac{\lambda\rho \overline{\phi}l}{2}\int^l_0[\dot{y}^2(z,t)+\\ &\ y^{{\prime}2}(z,t)]{\rm{d}}z \le \delta_0{Y_e(t)} \end{split} $

    (20)

    其中

    $ \begin{align} \delta_0 = \frac{\lambda \rho \overline{\phi}l}{\min\left({\varsigma}\rho, {\varsigma}\underline{T_0}\right)} \end{align} $

    (21)

    通过恰当地选取$ \varsigma $和$ \beta $得出

    $ \begin{align} \delta_1 = 1-\delta_0>0, \;\delta_2 = 1+\beta_0>1 \end{align} $

    (22)

    式(22)表明$ 0 < \delta < 1 $, 应用式(21)可得

    $ \begin{align} {\varsigma}>\frac{\lambda \rho \overline{\phi}l}{\min\left(\rho, \underline{T_0}\right)} \end{align} $

    (23)

    重排式(20), 有

    $ \begin{align} -{\delta}Y_e(t)\le Y_g(t)\le {\delta}Y_e(t) \end{align} $

    (24)

    将式(22)代入式(24)得出

    $ \begin{align} 0\le \delta_1 Y_e(t)\le Y_e(t)+Y_g(t)\leq \delta_2 Y_e(t) \end{align} $

    (25)

    结合式(15), 有

    $ \begin{aligned} 0\le\;& \delta_1[Y_e(t)+Y_f(t)]\le Y(t)\leq\\ &\delta_2[Y_e(t)+Y_f(t)] \end{aligned} $

    (26)

    其中, $ \delta_1 > 0, \; \delta_2 > 1 $.

    引理4.选取Lyapunov函数(16)的导数是有上界的:

    $ \begin{align} \dot{Y}(t)\le -\delta Y(t)+\alpha \end{align} $

    (27)

    其中, $ \delta, \alpha > 0 $.

    证明.对式(16)求导, 可得:

    $ \begin{align} \dot{Y}(t) = \dot{Y}_e(t)+\dot{Y}_f(t)+\dot{Y}_g(t) \end{align} $

    (28)

    将式(16)求导, 代入式(1)并应用引理1, 可得

    $ \begin{aligned} \dot{Y}_e(t)\leq \; &\frac{\varsigma T_0(l)}{2}\mu^2(t)-\frac{\varsigma T_0(l)}{2}\nu^2(t)-\frac{\varsigma T_0(l)}{2}\dot{y}^2(l,t)-\\& \frac{\varsigma T_0(l)k^2_2}{2}y'''^2(l,t)-\frac{\varsigma T_0(l)}{2}y'^2(l,t)-\\ & \frac{\varsigma T_0(l)k^2_3}{2}y'^6(l,t)+{\varsigma T_0(l)}{k_2}\nu(t){y}'''(l,t)-\\ & ({\varsigma EI}-{\varsigma T_0(l)}{k_2})y'''(l,t)\dot{y}(l,t)-\\ & \varsigma k_3T_0(l)y'^4(l,t)-{\varsigma}(c-{\sigma_1})\int^l_0\dot{y}^2(z, t){\rm{d}}z+\\ & (2\varsigma\psi(l)-{\varsigma k_3T_0(l)})y'^3(l,t)\dot{y}(l,t)+\\ &{\varsigma k_2k_3T_0(l)}{y}'''(l,t)y'^3(l,t)-{\varsigma T_0(l)}\nu(t)\dot{y}(l,t)+\\ &{\varsigma k_2T_0(l)}y'''(l,t){y}'(l,t)-{\varsigma k_3T_0(l)}y'^3(l,t)\nu(t)-\\ &{\varsigma T_0(l)}\nu(t){y}'(l,t)+\frac{\varsigma}{\sigma_1} \int^l_0f^2(z,t){\rm{d}}z \end{aligned} $

    (29)

    其中, $ \delta_1 > 0 $.

    对$ Y_f(t) $求导, 代入式(11)和式(14), 应用引理1, 可得

    $ \begin{split} \dot{Y}_g(t)\le& -\varsigma k_4\mu^2(t)-\varsigma \nu(t)\triangle u-\varsigma k_1\nu^2(t)+\\& \varsigma T_0(l)\nu(t)y'(l,t)-\varsigma EI \nu(t)y'''(l, t)+\\& 2\varsigma \psi(l)\nu(t)y'^3(l,t)+\varsigma d_a \nu(t)\dot{y}(l,t) \end{split} $

    (30)

    对$ Y_g(t) $求微分, 代入式(4)并利用引理1, 有

    $ \begin{aligned} \dot{Y}_f(t)\le & -l\lambda EI\phi(l) y'''(l,t){y}'(l,t)+\frac{\lambda \rho l\phi(l)}{2}\dot{y}^2(l,t)-\\ &\frac{3\lambda EI}{2}\int^l_0(\phi(z)+z\phi'(z)){y}^{{\prime\prime}2}(z, t){\rm{d}}z-\\ &\left[\frac{\lambda \rho}{2}(\phi(z)+z\phi'(z))-\frac{l\lambda c}{\sigma_2}\right]\int^l_0\dot{y}^2(z, t){\rm{d}}z-\\ &\bigg[\frac{\lambda }{2}(\phi(z)T_0(z)+z\phi'(z)T_0(z)-z\phi(z)T_0'(z))-\\ & {\lambda\sigma_2cl\phi^2(z)}-{\lambda\sigma_3l\phi^2(z)}\bigg]\int^l_0{y}^{{\prime}2}(z, t){\rm{d}}z-\\ & \frac{\lambda }{2}\int^l_0[3\phi(z)\psi'(z)+3z\phi'(z)\psi(z)-\\ &z\phi(z)\psi'(z)]{y}^{{\prime}4}(z, t){\rm{d}}z+\frac{3\lambda \phi(l)\psi(l)l}{2}y'^4(l,t)+\\ & \frac{l\lambda}{\sigma_3} \int^l_0f^2(x,t){\rm{d}}x+\frac{\lambda \phi(l)T_0(l) l}{2}y'^2(l,t) \end{aligned} $

    (31)

    其中, $ \sigma_2, \sigma_3 > 0 $.

    将式(29)和式(30)代入式(28), 应用引理1, 可得

    $ \begin{aligned} \dot{Y}(t)\le\;& -\varsigma\left( k_1+\frac{ T_0(l)}{2}-\frac{1}{\sigma_4}-\frac{|T_0(l)k_2-EI|}{2\sigma_5}-\right.\\ &\left.\frac{|T_0(l)-d_a|}{2\sigma_6}-\frac{| k_3T_0(l)-2 \psi(l)|\sigma_9}{2}\right)\nu^2(t)-\\ & \frac{3\lambda EI}{2}\int^l_0(\phi(z)+z\phi'(z)){y}^{{\prime\prime}2}(z, t){\rm{d}}z +\\ &{\varsigma}{\sigma_4}\triangle u^2-\varsigma\left( k_4-\frac{ T_0(l)}{2}\right)\mu^2(t)-\left(\frac{\varsigma T_0(l)}{2}-\right.\\ &\left.\frac{{|\varsigma T_0(l)k_2-l\lambda{EI}\phi(l)|}{\sigma_8}}{2}-\frac{\lambda \phi(l)T_0(l) l}{2}\right)\times\\ &y'^2(l,t)-\left(\varsigma k_3T_0(l)-\frac{3\lambda \phi(l)\psi(l)l}{2}\right)y'^4(l,t)-\\ &\left(\frac{\varsigma T_0(l)}{2}-\right.\frac{{\varsigma|T_0(l)-d_a|}{\sigma_6}}{2}-\\ &\left.\frac{{\varsigma|T_0(l)k_2-EI|}{\sigma_7}}{2}-\frac{{\varsigma|k_3T_0(l)-2\psi(l)|}{\sigma_{10}}}{2}-\right.\\ &\left.\frac{\lambda \rho l\phi(l)}{2}\right)\dot{y}^2(l,t)-\varsigma\left(\frac{ T_0(l)k^2_3}{2}-\right.\\ &\left.\frac{| k_3T_0(l)-2 \psi(l)|}{2\sigma_9}-\frac{ k_2k_3T_0(l)}{2\sigma_{11}}-\right.\\ &\left.\frac{|k_3T_0(l)-2\psi(l)|}{2\sigma_{10}}\right)y'^6(l,t)-\left(\frac{\varsigma T_0(l)}{2}-\right.\\ &\left.\frac{{\varsigma|T_0(l)k_2-EI|}{\sigma_5}}{2}-\frac{{\varsigma|T_0(l)k_2-EI|}}{2{\sigma_7}}-\right.\\ &\left.\frac{{|\varsigma T_0(l)k_2-l\lambda{EI}\phi(l)|}}{2{\sigma_8}}-\frac{\varsigma k_2k_3T_0(l)\sigma_{11}}{2}\right)\times\\ &\left.y'''^2(l,t)-\left[\frac{\lambda }{2}(\phi(z)T_0(z)+z\phi'(z)T_0(z)-\right.\right.\\ &\left.z\phi(z)T_0'(z))-\right.{\lambda\sigma_2cl\phi^2(z)}-{\lambda\sigma_3l\phi^2(z)}\bigg]\\ &\left.\int^l_0{y}^{{\prime}2}(z, t){\rm{d}}z+\left(\frac{\varsigma}{\sigma_1}+\frac{l\lambda}{\sigma_3}\right)\int^l_0f^2(z,t){\rm{d}}z-\right.\\ &\left.\bigg({\varsigma}c-{\varsigma}{\sigma_1}+\frac{\lambda \rho}{2}(\phi(z)+z\phi'(z))-\frac{l\lambda c}{\sigma_2}\right)\times\\ &\int^l_0\dot{y}^2(z, t){\rm{d}}z-\frac{\lambda }{2}\int^l_0[3\phi(z)\psi'(z)+\\ &3z\phi'(z)\psi(z)-z\phi(z)\psi'(z)]{y}^{{\prime}4}(z, t){\rm{d}}z \end{aligned} $

    (32)

    其中, $ \sigma_4\sim\sigma_{11} > 0, $选择恰当的参数值$ \varsigma, $ $ \lambda, $ $ k_i, $ $ i = 1, $ $\cdots, 4, \delta_j, j = 1, \cdots, 11, $满足下列条件:

    $ \begin{split} \frac{\varsigma T_0(l)}{2}-\;&\frac{{|\varsigma T_0(l)k_2-l\lambda{EI}\phi(l)|}{\sigma_8}}{2}-\\ &\frac{\lambda \phi(l)T_0(l) l}{2}\ge 0 \end{split} \hspace{51pt}$

    (33)

    $ \begin{split} \frac{\varsigma T_0(l)}{2}-\;&\frac{{\varsigma|T_0(l)-d_a|}{\sigma_6}}{2}-\frac{{\varsigma|T_0(l)k_2-EI|}{\sigma_7}}{2}-\\ &\frac{{\varsigma|k_3T_0(l)-2\psi(l)|}{\sigma_{10}}}{2}-\frac{\lambda \rho l\phi(l)}{2}\ge 0 \end{split} \hspace{20pt}$

    (34)

    $ \begin{split} \frac{\varsigma T_0(l)}{2}-\;&\frac{{\varsigma|T_0(l)k_2-EI|}{\sigma_5}}{2}-\frac{{\varsigma|T_0(l)k_2-EI|}}{2{\sigma_7}}-\\ &\frac{{|\varsigma T_0(l)k_2-l\lambda{EI}\phi(l)|}}{2{\sigma_8}}-\frac{\varsigma k_2k_3T_0(l)\sigma_{11}}{2}\ge 0 \end{split} $

    (35)

    $ \begin{split} \frac{ T_0(l)k^2_3}{2}-\;&\frac{| k_3T_0(l)-2 \psi(l)|}{2\sigma_9}-\\ &\frac{|k_3T_0(l)-2\psi(l)|}{2\sigma_{10}}-\frac{ k_2k_3T_0(l)}{2\sigma_{11}}\ge 0 \end{split} \hspace{11pt}$

    (36)

    $ \begin{align} \varsigma k_3T_0(l)-\frac{3\lambda \phi(l)\psi(l)l}{2}\ge 0 \end{align} \hspace{86pt}$

    (37)

    $ \begin{split} \omega_1 =& \min\{ {\varsigma}c-{\varsigma}{\sigma_1}-\frac{l\lambda c}{\sigma_2}+ \\& \frac{\lambda \rho}{2}(\phi(z)+z\phi'(z))\}>0 \end{split} \hspace{78pt}$

    (38)

    $ \begin{aligned} \omega_2 = &\min\bigg\{\frac{\lambda}{2}(\phi(z)T_0(z)+z\phi'(z)T_0(z)-\\& z\phi(z)T_0'(z))-\lambda\sigma_2cl\phi^2(z)-\lambda\sigma_3l\phi^2(z) \bigg\}>0 \end{aligned} $

    (39)

    $ \begin{split} \omega_3 = &\min\{3\phi(z)\psi'(z)+3z\phi'(z)\psi(z)-\\ &z\phi(z)\psi'(z)\} >0 \end{split} \hspace{32pt}$

    (40)

    $ \begin{align} \omega_4 = \min\{\phi(z)+z\phi'(z)\} >0 \end{align}\hspace{67pt} $

    (41)

    $ \begin{split} \omega_5 =\;& k_1+\frac{ T_0(l)}{2}-\frac{1}{\sigma_4}-\frac{| k_3T_0(l)-2 \psi(l)|\sigma_9}{2}-\\ &\frac{|T_0(l)k_2-EI|}{2\sigma_5}-\frac{|T_0(l)-d_a|}{2\sigma_6}>0 \end{split} $

    (42)

    $ \begin{align} \omega_6 = k_4-\frac{ T_0(l)}{2} >0 \end{align} \hspace{105pt}$

    (43)

    $ \begin{align} \alpha = \left(\frac{\varsigma}{\sigma_1}+\frac{l\lambda}{\sigma_3}\right)lF^2+{\varsigma}{\sigma_4}\varpi^2<+\infty \end{align} \hspace{33pt}$

    (44)

    结合式(33) ~(44), 可得

    $ \begin{aligned} \dot{Y}(t) \le & \ \alpha-\omega_1\int^l_0\dot{y}^2(z, t){\rm{d}}z-\omega_2\int^l_0{y}^{{\prime}2}(z, t){\rm{d}}z-\\ & \frac{\lambda }{2}\omega_3\int^l_0{y}^{{\prime}4}(z, t){\rm{d}}z-\frac{3\lambda EI}{2}\omega_4\int^l_0{y}^{{\prime\prime}2}(z, t){\rm{d}}z-\\& \ \varsigma\omega_5\nu^2(t)-\varsigma\omega_6\mu^2(t)\le\\ & \ \delta_3[Y_e(t)+Y_f(t)]+\alpha \end{aligned} $

    (45)

    其中, $ \delta_3 = {\min}\left(\dfrac{2\omega_1}{{\varsigma}\rho}, \dfrac{2\omega_2}{{\varsigma}\overline{T}_0}, \dfrac{\lambda\omega_3}{\varsigma\overline{\psi}}, \dfrac{3\lambda\pi_4}{\varsigma}, \dfrac{2\pi_5}{m}, \dfrac{2\pi_6}{m}\right) $.

    根据式(26)和式(45), 有

    $ \begin{align} \dot{Y}(t)\le -\delta{Y}(t)+\alpha \end{align} $

    (46)

    其中, $ \delta = \delta_3/\delta_2 $.

    定理1.针对执行器非光滑反向间隙−饱和约束特性的深海柔性立管系统, 如果系统初始条件是有界的且所选取参数满足约束条件式(33) ~(44), 在设计控制器(14)、假设1和假设2作用下, 闭环系统是一致有界稳定的.

    证明.将式(27)乘以$ {\rm{e}}^{{\vartheta}t} $, 得出:

    $ \begin{align} \frac{\partial}{\partial t}\left({Y}(t){\rm{e}}^{\delta t}\right)\le \alpha {\rm{e}}^{\delta t} \end{align} $

    (47)

    积分上式并变换, 有:

    $ \begin{align} {Y}(t)\le Y(0){\rm{e}}^{-\delta t}+\frac{\alpha}{\delta}\left(1-{\rm{e}}^{-\delta t}\right)\le Y(0){\rm{e}}^{-\delta t}+\frac{\alpha}{\delta} \end{align} $

    (48)

    求助于$ Y_{e}(t) $, 式(19)和引理2, 可得

    $ \begin{split} \frac{{\varsigma}\underline{T}_0}{2l}y^2(z,t)\le &\frac{{\varsigma}}{2}\int^l_0T_0(z){y}^{{\prime}2}(z,t){\rm{d}}z\le\\ &{Y_e(t)}\le\frac{1}{\delta_1}Y(t) \end{split} $

    (49)

    将式(48)代入式(49), 产生

    $ \begin{split} \mid y(z,t)\mid \le \sqrt{\frac{2l}{{\varsigma}\delta_1\underline{T}_0}\left[Y(0){\rm{e}}^{-\delta t} +\frac{\alpha}{\delta}\right]}, \\ \forall (z,t) \in[0,l]\times[0,+\infty) \end{split} $

    (50)

    进一步得出

    $ \begin{split} \underset{t\to\infty}{\mathop{\lim }} \,\left| y(z,t) \right| \le\sqrt{\frac{2l\alpha}{\varsigma{\underline{T}_0}{\delta}_{1}\delta}}, \ \ \ \forall z\in[0,l] \end{split} $

    (51)

    为验证所设计控制器的性能, 本节在MATLAB软件中采用有限差分法[27-30]来近似闭环系统的数值解.柔性立管系统的参数为$ l = 1\; 000\, \rm{m}, $ $ \rho = 500\, \rm{kg/m}, $ $ c = 1.0\, \rm{Ns/m^2}, $ $ T_0(z) = 4.5\times10^5\times(1\; 000+z)\, \rm{N}, $ $\psi(z)=$ $ 1\times10^3 (1\; 000+z), $ $ EI $ = $ 1.5\times10^7\, {\rm N m^2}, ~{m}$ $=9.6\times10^6\, \rm{kg}, $ $ d_a = 1\; 000\, \rm{Ns/m}. $系统的初始条件描述为: $ y(z, 0) =$ $ \dfrac{12z}{l}, ~ \dot{y}(z, 0) = 0 $.

    外部环境扰动$ d(t) $为

    $ \begin{split} d(t) =\;& [3+0.8\sin(0.7t)+0.8\sin(0.5t)+\\& 0.8\sin(0.9t)]\times10^5 \end{split} $

    (52)

    柔性立管系统在自由振动时, 即$ u(t) = 0 $, 图 2给出了其时空的表示.在所示设计控制器(14)作用下, 选取控制设计参数$ k_1 $ = $ 1\times10^7 $, $ k_2 = {1}/{60}, $ $ k_3= {1}/{225}, $ $ k_4 $ = $ 5\times10^8, $ $ a $ = $ 1\times10^6 $, $ b = 5~\times $ $10^6 $, 立管三维响应显示在图 3中. 图 4则给出了立管中部顶端$ (x = 1\; 000\; {\rm{m}}) $的二维偏移图, 图 5图 6分别描绘了所设计的控制命令和反向间隙−饱和控制输入.

    图 2  未受控的立管偏移量
    Fig. 2  Displacement of the uncontrolled riser
    图 3  受控的立管偏移量
    Fig. 3  Displacement of the controlled riser
    图 4  立管的端点偏移量
    Fig. 4  Endpoint displacement of the riser
    图 5  设计的控制命令
    Fig. 5  Designed control command
    图 6  非线性的控制输入
    Fig. 6  Control input with nonlinearities

    仿真图 2图 3表明, 在外部扰动和执行器非光滑反向间隙−饱和约束条件下, 所设计控制器(14)能有效抑制立管振动; 由仿真图 4可得, 立管端点的偏移量稳定在平衡位置附近的小邻域; 仿真图 5图 6得出, 控制器的输入是非线性的, 执行器非光滑反向间隙−饱和约束特性也相当地明显.根据上述分析, 可得如下结论:由于混合的输入非线性影响, 立管的振动偏移量需要相对长的收敛时间; 本文所构建的控制策略能较好地处理执行器非光滑反向间隙−饱和约束并能有效地抑制立管振动.

    本文解决了具有执行器非光滑反向间隙−饱和约束特性的深海柔性立管边界控制问题.首先, 基于Lyapunov理论和边界控制技术, 采用辅助系统和函数在立管顶端构建了边界控制器以实现立管系统的振动抑制和输入非线性的补偿.其后, 应用严格的分析且没有离散化或简化系统的偏微分方程动力学, 证明了受控系统的一致有界性.最后所呈现的仿真结果验证了提出控制能较好地稳定立管系统并有效消除执行器非光滑反向间隙−饱和约束影响.下一步值得探索的研究方向可以为海洋柔性立管系统的有限时间稳定[31]以及基于不确定性和干扰估计[32]的控制设计.

  • 图  1  常规控制系统结构

    Fig.  1  The structure of conventional control system

    图  2  云控制系统结构

    Fig.  2  The structure of CCS

    图  3  云控制系统实现结构

    Fig.  3  The realization structure of CCS

    图  4  云控制系统理论结构模型

    Fig.  4  The theoretical structural model of CCS

    图  5  云控制系统不确定性分解图

    Fig.  5  The uncertainty division diagrgam of CCS

    图  6  MapReduce任务执行架构

    Fig.  6  The task execution architecture under MapReduce

    图  7  云端基于MapReduce任务执行模型

    Fig.  7  The task execution model under MapReduce in the cloud-end

    图  8  一般网络传输时延组成图

    Fig.  8  The delay composition graph of general network transmission

    图  9  云控制系统网络端传输时延组成图

    Fig.  9  The delay composition graph of the network-end in the CCS

    图  10  云控制系统时延模型结构

    Fig.  10  The structure of CCS time-delay model

    图  11  带有控制器的云控制系统结构

    Fig.  11  The structure of CCS with controller

    图  12  云特性影响控制效果对比图

    Fig.  12  The contrast graph of cloud characteristics influencing control effect

    图  13  短时延云特性控制器控制效果对比图

    Fig.  13  Contrast graph of control effect of short time-delay cloud characteristic controller

    图  14  长时延云特性控制器控制效果对比图

    Fig.  14  Contrast graph of control effect of long time-delay cloud characteristic controller

    表  1  愿意节点列表

    Table  1  The list of willing modes

    节点 IP 地址 优先级 排序
    $C_{1}$ $Add_{1}$ $S_{1}$ 1
    $C_{2}$ $Add_{2}$ $S_{1}$ 2
    $\vdots $ $\vdots $ $\vdots $ $\vdots $
    $C_{g}$ $Add_{g}$ $S_{g}$ $g$
    $\vdots $ $\vdots $ $\vdots $ $\vdots $
    $C_{M}$ $Add_{M}$ $S_{M}$ $M$
    下载: 导出CSV
  • [1] 游科友, 谢立华. 网络控制系统的最新研究综述. 自动化学报, 2013, 39(2): 101-118

    You Ke-you, Xie Li-hua. Survey of Recent Progress in Networked Control Systems. Acta Automatica Sinica, 2013, 39(2): 101-118
    [2] Xia Y. From networked control systems to cloud control systems. In: Proceedings of the 2012 Control Conference. Beijing, China: IEEE, 2012. 5878−5883
    [3] Schlechtendahl J, Kretschmer F, Sang Z, et al. Extended study of network capability for cloud based control systems. Robotics & Computer Integrated Manufacturing, 2017, 43: 89-95
    [4] Chinacloud: The concept and connotation of cloud computing [Online], available: http://www.chinacloud.cn/show.aspxid=14668&cid=17, March 3, 2019
    [5] 李伯虎, 柴旭东, 张霖, 林廷宇. 智慧云制造: 工业云的智造模式和手段. 中国工业评论, 2016(2): 58-66

    Li Bo-hu, Chai Xu-dong, Zhang Lin, Lin Ting-yu. Smart cloud manufacturing: intelligent manufacturing model and means of industrial cloud. China Industry Review, 2016(Z1): 56-66
    [6] 罗军舟, 金嘉晖, 宋爱波, 东方. 计算: 体系架构与关键技术. 通信学报, 2011 37(2): 3-21

    Luo Jun-zhou, Jin Jia-hui, Song Ai-bo, Dong Fang. Cloud computing: architecture and key technologies. Journal on Communications, 2011 37(2): 3-21
    [7] Hayes B. Cloud computing. Communications of the ACM, 2008 51(7): 9-11 doi: 10.1145/1364782.1364786
    [8] 夏元清. 云控制系统及其面临的挑战. 自动化学报, 2016, 42(1): 1-12

    Xia Yuan-qing. Cloud Control Systems and Their Challenges. Acta Automatica Sinica, 2016, 42(1): 1-12
    [9] Xia Y, Qin Y, Zhai D H, et al. Further results on cloud control systems. Science China Information Sciences, 2016 59(7): 232-236
    [10] 夏元清, 闫策, 王笑京, 宋向辉. 智能交通信息物理融合云控制系统. 自动化学报, 2019, 45(01): 132-142

    Xia Yuan-qing, Yan Ce, Wang Xiao-jing, Song Xiang-hui. Intelligent Transportation Cyber-physical Cloud Control Systems. Acta Automatica Sinica, 2019, 45(01): 132-142
    [11] Wu Hai-yan, Lou Lei, Chih-Chung Chen, Sandra Hirche, and Kolja Kühnlenz. Cloud-based networked visual servo control. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60(2): 554-566 doi: 10.1109/TIE.2012.2186775
    [12] Jan Schlechtendahl, Felix Kretschmer, Zhiqian Sang, Armin Lechler, Xun Xu. Extended study of network capability for cloud based control systems. Robotics and Computer-Integrated Manufacturing, 2017, 43: 89-95 doi: 10.1016/j.rcim.2015.10.012
    [13] Ding Qing, Cao Si-tan. A Cloud-Based Learning Tool for Graduate Software Engineering Practice Courses With Remote Tutor Support. IEEE Access, 2017, 5: 2262-2271 doi: 10.1109/ACCESS.2017.2664070
    [14] Le Xu, Huang Di-jiang. Cloud-Based Virtual Laboratory for Network Security Education. IEEE TRANSACTIONS ON EDUCATION, 2014, 57(3): 145-150 doi: 10.1109/TE.2013.2282285
    [15] Ma L, Xia Y Q, Ali Y, Zhan Y F. Engineering problems in initial phase of cloud control system. In: Proceedings of the 36th Chinese Control Conference. Dalian, China: IEEE, 2017. 7892−7896
    [16] 王飞跃, 王成红. 基于网络控制的若干基本问题的思考和分析. 自动化学报, 2002, 28(Z): 171-176

    Wang Fei-yue, Wang Cheng-hong. On Some Basic Issues in Network-Based Direct Control Systems. Acta Automatica Sinica, 2002, 28(Z): 171-176
    [17] 王剑平, 张云生, 张果, 张晶. 并行分布控制网络的实时信号时序流图分析. 控制与决策, 2010, 25(11): 1727-1731

    Wang Jian-ping, Zhang Yun-sheng, Zhang Guo, Zhang Jing. Analysis of signal timing sequence flow chart on parallel and distribute control network. Control and Decision, 2010, 25(11): 1727-1731
    [18] 唐晓铭, 邓梨, 虞继敏, 屈洪春. 基于区间二型T-S模糊模型的网络控制系统的输出反馈预测控制. 自动化学报, 2019, 45(3): 604-616

    Tang Xiao-ming, Deng Li, Yu Ji-min, Qu Hong-chun. Output feedback model predictive control for interval type-2 T-S fuzzy networked control systems. Acta Automatica Sinica, 2019, 45(3): 604-616
    [19] Cloosterman M B G, Wouw N V D, Heemels W P M H, et al. Stability of Networked Control Systems With Uncertain Time-Varying Delays. IEEE Transactions on Automatic Control, 2009, 54(7): 1575-1580 doi: 10.1109/TAC.2009.2015543
    [20] 王彩璐, 陶跃钢, 杨鹏, 刘作军, 周颖. 云控制系统并行任务分配优化算法与并联控制. 自动化学报,2017, 43(11): 1973-1983

    Wang Cai-lu, Tao Yue-gang, Yang Peng, Liu Zuo-jun, Zhou Ying. Parallel Task Assignment Optimization Algorithm and Parallel Control for Cloud Control Systems. Acta Automatica Sinica, 2017, 43(11): 1973-1983
    [21] M Malekimajd, D Ardagna, M Ciavotta, E Gianniti, M Passacantando, A M Rizzi. An optimization framework for the capacity allocation and admission control of MapReduce jobs in cloud systems. The Journal of Supercomputing, 2018, 74(10): 5314-5348 doi: 10.1007/s11227-018-2426-2
    [22] 李建江, 崔健, 王聃, 严林, 黄义双. MapReduce并行编程模型研究综述. 电子学报, 2011, 39(11): 2635-2642

    Li Jian-jiang, Cui Jian, Wang Dan, Yan Lin,Huang Yi-shuang. Survey of MapReduce Parallel Programming Model. Acta Automatica Sinica, 2011, 39(11): 2635-2642
    [23] Xia Yuan-qing. Cloud Control Systems. Acta Automatica Sinica, 2015, 2(02): 134-142 Acta Automatica Sinica doi: 10.1109/JAS.2015.7081652
    [24] 关守平, 周玮, 尤富强. 网络控制系统与应用. 北京: 电子工业出版社, 2008. 15−18

    Guan Shou-Ping, Zhou Wei, You Fu-Qiang. Networked Control Systems and Applications. Beijing: Publishing House of Electronics Industry, 2008. 15−18
  • 期刊类型引用(18)

    1. 翟漪璇,宋丽梅,贺瑾胜,朱新军. 低重叠率人体点云拼接方法研究. 应用激光. 2024(03): 204-213 . 百度学术
    2. 毕淳锴,张远辉,付铎. 基于多视角热像图序列的物体表面温度场重建. 计量学报. 2024(07): 997-1006 . 百度学术
    3. 王耀南,谢核,邓晶丹,毛建旭,李文龙,张辉. 智能制造测量机器人关键技术研究综述. 机械工程学报. 2024(16): 1-18 . 百度学术
    4. 梁循,李志莹,蒋洪迅. 基于图的点云研究综述. 计算机研究与发展. 2024(11): 2870-2896 . 百度学术
    5. 冯站银. 三维点云语义分割方法综述. 电视技术. 2023(03): 140-143+148 . 百度学术
    6. 李颀,郭梦媛. 基于深度学习的休眠期苹果树点云语义分割. 江苏农业学报. 2023(05): 1189-1198 . 百度学术
    7. 黄淞宣,李新春,刘玉珍. 邻域多维度特征点结合相关熵的点云配准. 激光与红外. 2023(08): 1163-1170 . 百度学术
    8. 单铉洋,孙战里,曾志刚. RFNet:用于三维点云分类的卷积神经网络. 自动化学报. 2023(11): 2350-2359 . 本站查看
    9. 马洁莹,田暄,翟庆,王丞. 基于点到面度量的多视角点云配准方法. 西安交通大学学报. 2022(06): 120-132 . 百度学术
    10. 杨宜林,李积英,王燕,俞永乾. 基于NDT和特征点检测的点云配准算法研究. 激光与光电子学进展. 2022(08): 198-204 . 百度学术
    11. 鲁斌,范晓明. 基于改进自适应k均值聚类的三维点云骨架提取的研究. 自动化学报. 2022(08): 1994-2006 . 本站查看
    12. 陈亚超,樊彦国,樊博文,禹定峰. 基于相对几何不变性的点云粗配准算法研究. 计算机工程与应用. 2022(24): 233-238 . 百度学术
    13. 庄仁诚,陈鹏,傅瑶,黄运华. 列车车轮三维结构光检测中的点云处理研究. 中国测试. 2021(02): 19-25 . 百度学术
    14. 沈小军,于忻乐,王远东,程林,王东升,陈佳. 变电站电力设备红外热像测温数据三维可视化方案. 高电压技术. 2021(02): 387-395 . 百度学术
    15. 杨贵强,李瑞,刘玉君,汪骥,周玉松. 最大相关熵的船体分段扫描数据配准算法. 中国造船. 2021(01): 183-191 . 百度学术
    16. 元沐南,李晓风,李皙茹,许金林. 基于压缩感知的三维足型重建平台. 电子测量技术. 2020(09): 94-98 . 百度学术
    17. 林伟,孙殿柱,李延瑞,沈江华. 复杂型面约束的点云配准序列确定方法. 小型微型计算机系统. 2020(09): 2012-2016 . 百度学术
    18. 黄思捷,梁正友,孙宇,李轩昂. 单Kinect+圆盒的多视角三维点云配准方法研究. 现代计算机. 2020(31): 38-45 . 百度学术

    其他类型引用(17)

  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  838
  • HTML全文浏览量:  221
  • PDF下载量:  281
  • 被引次数: 35
出版历程
  • 收稿日期:  2019-07-15
  • 录用日期:  2019-10-11
  • 网络出版日期:  2022-08-08
  • 刊出日期:  2022-11-22

目录

/

返回文章
返回