2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑车辆横向主动安全的智能驾驶员模型

隋振 梁硕 田彦涛

隋振,  梁硕,  田彦涛.  考虑车辆横向主动安全的智能驾驶员模型.  自动化学报,  2021,  47(8): 1899−1911 doi: 10.16383/j.aas.c190526
引用本文: 隋振,  梁硕,  田彦涛.  考虑车辆横向主动安全的智能驾驶员模型.  自动化学报,  2021,  47(8): 1899−1911 doi: 10.16383/j.aas.c190526
Sui Zhen,  Liang Shuo,  Tian Yan-Tao.  Intelligent driving model considering lateral active safety of vehicles.  Acta Automatica Sinica,  2021,  47(8): 1899−1911 doi: 10.16383/j.aas.c190526
Citation: Sui Zhen,  Liang Shuo,  Tian Yan-Tao.  Intelligent driving model considering lateral active safety of vehicles.  Acta Automatica Sinica,  2021,  47(8): 1899−1911 doi: 10.16383/j.aas.c190526

考虑车辆横向主动安全的智能驾驶员模型

doi: 10.16383/j.aas.c190526
基金项目: 国家自然科学基金联合基金 (U1664263), 国家重点研发计划项目(2016YFB0101102)资助
详细信息
    作者简介:

    隋振:吉林大学通信工程学院副教授, 博士. 主要研究方向为复杂系统建模优化与控制. 本文通信作者. E-mail: suizhen@jlu.edu.cn

    梁硕:2019年获得吉林大学通信工程学院硕士学位. 主要研究方向为电动汽车主动安全系统与智能辅助驾驶. E-mail: liangshuo0501@163.com

    田彦涛:吉林大学通信工程学院教授. 1993年吉林工业大学获得博士学位. 主要研究方向为复杂系统建模, 优化与控制, 电动汽车主动安全系统与智能辅助驾驶. E-mail: tianyt@jlu.edu.cn

Intelligent Driving Model Considering Lateral Active Safety of Vehicles

Funds: Supported by National Natural Science Foundation Joint Fund Program of China (U1664263), National Key Research and Development Program of China (2016YFB0101102)
More Information
    Author Bio:

    SUI Zhen  Ph.D., associate professor at the School of Communication Engineering, Jilin University. His research interest covers complex system modeling optimization and control. Corresponding author of this paper

    LIANG Shuo Received his master degree from Jilin University in 2019. His research interest covers electric vehicle active safety system and intelligent assisted driving

    TIAN Yan-Tao Professor at the School of Communication Engineering, Jilin University. He received his Ph.D. degree from Jilin University of Technology in 1993. His research interest covers modeling and optimized control of complex systems, active safety systems of the electric vehicles, and advanced driver assistance systems

  • 摘要:

    结合智能车面临的横向安全问题, 设计了一种具有横向安全性的智能驾驶员模型. 该系统由转向控制、速度控制和决策规划三个模块组成. 该系统的主要作用包括: 一是通过在转向控制中加入主要约束提高车辆在转向过程中的横向稳定性, 减小车辆发生侧滑、侧倾、侧偏等风险; 二是在换道场景下, 决策规划单元合理分析交通环境中的车间距并计算出驶入临近车道的速度和轨迹, 使智能车实现安全换道. CarSim/Simulink仿真结果表明, 该智能驾驶员系统提高了车辆行驶的横向安全性.

  • 图  1  驾驶员模型结构

    Fig.  1  The structure of the driver model

    图  2  简化3自由度车辆动力学模型

    Fig.  2  The model of the vehicle of 3DOF

    图  3  车辆侧倾动力学模型

    Fig.  3  The roll dynamic model of the vehicle

    图  4  换道前车辆分布情况

    Fig.  4  Distribution of the vehicles before lane change

    图  5  换道后车辆分布情况

    Fig.  5  Distribution of the vehicles after lane change

    图  6  轨迹规划原理

    Fig.  6  The principle of trajectory planing

    图  7  工况1条件下车辆行驶状态

    Fig.  7  The states of the vehicle on work Condition 1

    图  8  工况2条件下车辆行驶状态

    Fig.  8  The states of the vehicle on work Condition 2

    图  9  工况3条件下车辆行驶状态

    Fig.  9  The states of the vehicle on work Condition 3

    图  10  安全车距定义

    Fig.  10  The definition of the vehicles safety distance

    图  11  工况1换道轨迹

    Fig.  11  The trajectory of the vehicle on work Condition 1

    图  15  工况1智能车与目标车道后车间距

    Fig.  15  The distance between the intelligent vehicle with the follow vehicle of the target lane on work Condition 1

    图  12  工况1速度控制

    Fig.  12  The velocity of the vehicle on work Condition 1

    图  13  工况1智能车与原车道前车间距

    Fig.  13  The distance between the intelligent vehicle with the lead vehicle of the original lane on work Condition 1

    图  14  工况1智能车与目标车道前车间距

    Fig.  14  The distance between the intelligent vehicle with the lead vehicle of the target lane on work Condition 1

    图  16  工况2换道轨迹

    Fig.  16  The trajectory of the vehicle on work Condition 2

    图  20  工况2智能车与目标车道后车间距

    Fig.  20  The distance between the intelligent vehicle with the follow vehicle of the target lane on work Condition 2

    图  17  工况2速度控制

    Fig.  17  The velocity of the vehicle on work Condition 2

    图  18  工况2智能车与原车道前车间距

    Fig.  18  The distance between the intelligent vehicle with the lead vehicle of the original lane on work Condition 2

    图  19  工况2智能车与目标车道前车间距

    Fig.  19  The distance between the intelligent vehicle with the lead vehicle of the target lane on work Condition 2

    图  21  工况3换道轨迹

    Fig.  21  The Trajectory of the vehicle on work Condition 3

    图  25  工况3智能车与目标车道后车间距

    Fig.  25  The distance between the intelligent vehicle with the follow vehicle of the target lane on work Condition 3

    图  22  工况3速度控制

    Fig.  22  The velocity of the vehicle on work Condition 3

    图  23  工况3智能车与原车道前车间距

    Fig.  23  The distance between the intelligent vehicle with the lead vehicle of the original lane on work Condition 3

    图  24  工况3智能车与目标车道前车间距

    Fig.  24  The distance between the intelligent vehicle with the lead vehicle of the target lane on work Condition 3

    表  1  智能驾驶员系统参数设置

    Table  1  The definition of the intelligent driver system

    实验车M Car A Car B Car C
    最小安全间距${d_o}({\rm{m}})$ $ {d_o}(3) $ $ {d_o}(2) $ ${d_o}(1)$
    加速度幅度$({\rm{m/{s}}^2})$ 1.8 2.2 2.5
    加速度增量$({\rm{m/{s}}^2})$ 0.09 0.11 0.12
    反应时间$({\rm{s}})$ 0.4 0.7 0.9
    下载: 导出CSV
  • [1] 李力, 王飞跃, 郑南宁, 张毅. 驾驶行为智能分析的研究与发展. 自动化学报, 2007, 33(10): 1014-1022

    Li Li, Wang Fei-Yue, Zheng Nan-Ning, Zhang Yi. Research and developments of intelligent driving behavior analysis. Acta Automatica Sinica, 2007, 33(10): 1014-1022
    [2] Yoshida Y, Wang Q, Oya M, Okumura K. Adaptive longitudinal velocity and lane keeping control of four-wheel-steering vehicles. In: Proceedings of the 2007 SICE Annual Conference. Takamatsu, Japan: IEEE, 2007. 1305−1310
    [3] Qu T, Chen H, Ji Y, Guo H Y, Cao D P. Modeling driver steering control based on stochastic model predictive control. In: Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics. Manchester, UK: IEEE, 2013. 3704−3709
    [4] Qu T, Chen H, Cao D P, Guo H Y, Gao B Z. Switching-based stochastic model predictive control approach for modeling driver steering skill. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1): 365-375 doi: 10.1109/TITS.2014.2334623
    [5] Falcone P, Tufo M, Borrelli F, Asgari J, Tseng H E. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems. In: Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, USA: IEEE, 2007. 2980−2985
    [6] Du X X, Tan K K. Autonomous vehicle velocity and steering control through nonlinear model predictive control scheme. In: Proceedings of the 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). Busan, Korea (South): IEEE, 2016: 1−6
    [7] Amsalu S B, Homaifar A, Afghah F, Ramyar S, Kurt A. Driver behavior modeling near intersections using support vector machines based on statistical feature extraction. In: Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV). Seoul, Korea (South): IEEE, 2015. 1270−1275
    [8] 陈虹, 宫洵, 胡云峰, 刘奇芳, 高炳钊, 郭洪艳. 汽车控制的研究现状与展望. 自动化学报, 2013, 39(4): 322-346 doi: 10.1016/S1874-1029(13)60033-6

    Chen Hong, Gong Xun, Hu Yun-Feng, Liu Qi-Fang, Gao Bing-Zhao, Guo Hong-Yan. Automotive control: The state of the art and perspective. Acta Automatica Sinica, 2013, 39(4): 322-346 doi: 10.1016/S1874-1029(13)60033-6
    [9] Kehtarnavaz N, Groswold N, Miller K, Lascoe P. A transportable neural-network approach to autonomous vehicle following. IEEE Transactions on Vehicular Technology, 1998, 47(2): 694-702 doi: 10.1109/25.669106
    [10] 陈虹. 模型预测控制. 北京: 科学出版社, 2013.

    Chen Hong. Model Predictive Control. Beijing: Science Press, 2013.
    [11] 龚建伟, 姜岩, 徐威. 无人驾驶车辆模型预测控制. 北京: 北京理工大学出版社, 2014.

    Gong Jian-Wei, Jiang Yan, Xu Wei. Model Predictive Control for Self-Driving Vehicles. Beijing: Beijing Institute of Technology Press, 2014.
    [12] 赵曰贺. 驾驶员—汽车闭环系统侧翻稳定性分析及防侧翻控制 [硕士学位论文], 南京航空航天大学, 中国, 2016.

    Zhao Yue-He. Research on Rollover Stability and Anti-Roll Control for Driver-Vehicle Closed-Loop System [Master thesis], Nanjing University of Aeronautics and Astronautics, China, 2016.
    [13] 徐杨, 陆丽萍, 褚端峰, 黄子超. 无人车辆轨迹规划与跟踪控制的统一建模方法. 自动化学报, 2019, 45(4): 799-807

    Xu Yang, Lu Li-Ping, Chu Duan-Feng, Huang Zi-Chao. Unified modeling of trajectory planning and tracking for unmanned vehicle. Acta Automatica Sinica, 2019, 45(4): 799-807
    [14] 刘运通, 石建军, 熊辉. 交通系统仿真技术. 北京: 人民交通出版社, 2002.

    Liu Yun-Tong, Shi Jian-Jun, Xiong Hui. Traffic System Simulation Technology. Beijing: People's Communications Publishing House, 2002.
    [15] 袁清. 基于驾驶行为分析的自适应巡航控制算法研究 [硕士学位论文], 吉林大学, 中国, 2018.

    Yuan Qing. Adaptive Cruise Control Algorithm Based on Driving Behavior Analysis [Master thesis], Jilin University, China, 2018.
    [16] 祁智. 无人驾驶车辆换道与超车控制方法研究 [硕士学位论文], 燕山大学, 中国, 2017.

    Qi Zhi. Study on Lane-Changing and Overtaking Control Method of Autonomous Vehicle [Master thesis], Yanshan University, China, 2017.
    [17] 郭景华, 李克强, 罗禹贡. 智能车辆运动控制研究综述. 汽车安全与节能学报, 2016, 7(2): 151-159 doi: 10.3969/j.issn.1674-8484.2016.02.003

    Guo Jing-Hua, Li Ke-Qiang, Luo Yu-Gong. Review on the research of motion control for intelligent vehicles. Journal of Automotive Safety and Energy, 2016, 7(2): 151-159 doi: 10.3969/j.issn.1674-8484.2016.02.003
    [18] Lu J B, Filev D, Prakah-Asante K, Tseng F, Kolmanovsky I V. From vehicle stability control to intelligent personal minder: Real-time vehicle handling limit warning and driver style characterization. In: Proceedings of the 2009 IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems. Nashville, USA: IEEE, 2009. 43−50
  • 加载中
图(25) / 表(1)
计量
  • 文章访问数:  1298
  • HTML全文浏览量:  719
  • PDF下载量:  279
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-14
  • 录用日期:  2019-11-15
  • 网络出版日期:  2021-06-28
  • 刊出日期:  2021-08-20

目录

    /

    返回文章
    返回