Extended State Filtering With Saturation-constrainted Observations and Active Disturbance Rejection Control of Position and Attitude for Drag-free Satellites
-
摘要: 无拖曳卫星的本体姿态、卫星本体与测试质量间的相对位移及相对姿态的联合控制受到外部扰动、输入噪声、测量噪声及饱和约束、输入耦合以及状态耦合等因素的影响, 控制器的设计面临挑战. 本文采用基于扩张状态的卡尔曼滤波对系统状态和系统扰动进行实时估计, 引入自抗扰控制策略进行了控制器设计. 针对无拖曳控制子系统设计了测量饱和受限下的扩张状态估计算法, 并进行了信息融合. 在设计控制律时不仅考虑了对外部扰动的补偿, 还将系统状态间的耦合关系看成内部扰动进行补偿, 使得被控系统等价为“积分串联型系统”, 在此基础上实现了无拖曳卫星的联合控制. 数值仿真验证了方法的有效性和合理性.Abstract: The joint control of the drag-free satellite's attitude, the relative displacement and the relative attitude between the satellite body and the test mass is full of challenges because of the external disturbance, the input noise, the observation noise and the saturation constraint, the input coupling and the state coupling, etc. This paper introduces the extended state Kalman filter to estimate the system state and the system disturbance, and employs the active disturbance rejection control (ADRC) strategy to design the controller. For the drag-free control subsystem, the extended state estimation algorithm with saturation-constrainted observations is proposed, and then the multi-sensor information fusion algorithm is presented. Via compensating the external disturbance and regarding the coupling relationship among the system states as the internal disturbance to be also compensated, the control system is transformed to the “integral series system” and the joint control of the drag-free satellite is achieved. Numerical simulation is included to verify the effectiveness of the method.
-
表 1
${ {\Upsilon}}$ 矩阵Table 1 The matrix of
${ {\Upsilon}}$ X 方向 Y 方向 Z 方向 $\left[ \; 1\;\;0\;\;0 \; \right]$ $\left[\; 0\;\;1\;\;0 \;\right]$ $\left[ \; 0\;\;0\;\;1 \;\right]$ 表 2 系统仿真参数
Table 2 System parameters in the simulation
变量 数值 ${m_{{\rm{tm}}}}$ 1 kg ${m_{{\rm{sc}}}}$ 1 050 kg ${I_{{\rm{tm}}}}$ $0.2667 \times {10^{ - 3} }{{I}_3}({\rm{kg} } \cdot { {\rm{m} }^{\rm{2} } })$ ${I_{{\rm{sc}}}}$ $\left[ {\begin{aligned}\;&{200}\;\;\;\;\;\;\;\;1\;\;\;\;\;\;\;\;\;2\\\;&\;\;1\;\;\;\;\;\;{2\;700}\;\;\;\;\;\;1\\ \;&\;\;2\;\;\;\;\;\;\;\;\; 1\;\;\; \;\;\;\;{2\;650} \end{aligned} } \right]({\rm{kg} } \cdot { {\rm{m} }^{\rm{2} } })$ ${K_{{\rm{trans}}}}$ $\left[ {\begin{aligned}\; & \;\;\;1\;\;\;\;\;\;\; {0.039}\;\;\;\;\;\; {0.039}\\\; &{0.039}\;\;\;\;\;\; \;1\;\;\;\;\;\;\;\;\; {0.039}\\\;&{0.039}\;\;\;\; {0.039}\;\;\;\; \;\;\;\;\;1 \end{aligned} } \right] \times {10^{ - 6} }{{\;({\rm{N}}/{\rm{m}})} }$ ${D_{{\rm{trans}}}}$ $1.4 \times {10^{ - 11} }{ {I}_3}\;({\rm{N} } \cdot {\rm{m} } \cdot {\rm{s/rad} })$ ${K_{{\rm{rot}}}}$ $\left[ {\begin{aligned} \;&\;1\;\;\;\;{10}\;\;{10}\\ \;&{10}\;\;\;\;1\;\;\;{10}\\\;&{10}\;\;\;{10}\;\;\;1 \end{aligned} } \right] \times {10^{ - 9} }\;({\rm{N} } \cdot {\rm{m/rad} })$ ${D_{{\rm{rot}}}}$ $1.4 \times {10^{ - 11} }{I_3}\;({\rm{N} } \cdot {\rm{m} } \cdot {\rm{s/rad} })$ ${{{T}}_{Dsc}}$ $\left[ {\begin{aligned} { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{t} })}\\ { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{ + } }\dfrac{ {2{\text{π} } } }{3})}\\ { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{ + } }\dfrac{ {4{\text{π} } } }{3})} \end{aligned} } \right]({\rm{mN} } \cdot {\rm{m} })$ ${{{F}}_{Dsc}}$ $\left[ {\begin{aligned} { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{t} })}\\ { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{ + } }\dfrac{ {2{\text{π} } } }{3})}\\ { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{ + } }\dfrac{ {4{\text{π} } } }{3})} \end{aligned} } \right]({\rm{mN} })$ ${{{T}}_{Dtm}}$ 0 $\omega_d$ $1.2 \times {10^{ - 3}}\;{\rm{Hz}}$ -
[1] 罗子人, 钟敏, 边星, 董鹏, 董玉辉, 高伟, 等. 地球重力场空间探测: 回顾与展望. 力学进展, 2014, 44(1): 291−337Luo Zi-Ren, Zhong Min, Bian Xing, Dong Peng, Dong Yu-Hui, Gao Wei, et al. Mapping Earth's gravity in space: Review and future perspective. Advances in Mechanies, 2014, 44(1): 291−337 [2] Lange B. The Control and Use of Drag-Free Satellites [Ph. D. dissertation], Stanford University, 1964 [3] Dittus H, Lammerzahl C, Turyshev S. Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space. Berlin: Springer, 2008 [4] Haines R. Development of a drag-free control system. In: Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites. Utah, USA: 2000 [5] Chapman P, Zentgraf, P, Jafry, Y. Drag-free control design including attitude transition for the STEP mission. In: Proceedings of the 5th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems. 2003: 551−557 [6] Canuto E, Massotti L. All-propulsion design of the drag-free and attitude control of the European satellite GOCE. Acta Astronautica, 2009, 64(2): 325−344 [7] Prieto D, Bona B. Orbit and attitude control for the European satellite GOCE. In: Proceedings of the 2005 IEEE Networking, Sensing and Control. IEEE, 2005: 728−733 [8] Wu S F, Fertin D. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory. Acta Astronautica, 2008, 62(12): 668−682 doi: 10.1016/j.actaastro.2008.01.038 [9] Prieto D, Ahmad Z. A drag free control based on model predictive techniques. In: Proceedings of the 2005 American Control Conference. Portland, USA: IEEE, 2005. 6: 1527−1532 [10] Fan H J, Zhang Y F, Zhao X. Finite-time control for LEO drag-free satellite with stochastic disturbance. In: Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC). Qingdao, China: 2015. 2091−2095 [11] Fleck M E, Starin S R. Evaluation of a drag-free control concept for missions in low earth orbit. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas: 11−14 August 2003 [12] 高志强. 自抗扰控制思想探究. 控制理论与应用, 2013, 30(12): 1498−1510 doi: 10.7641/CTA.2013.31087Gao Zhi-Qiang. On the foundation of active disturbance rejection control. Control Theory & Applications, 2013, 30(12): 1498−1510 doi: 10.7641/CTA.2013.31087 [13] 韩京清. 从PID技术到“自抗扰控制技术”. 控制工程, 2002, 9(3): 13−18 doi: 10.3969/j.issn.1671-7848.2002.03.003Han Jing-Qing. From PID technique to active disturbances rejection control technique. Control Engineering of China, 2002, 9(3): 13−18 doi: 10.3969/j.issn.1671-7848.2002.03.003 [14] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术. 北京: 国防工业出版社, 2008Han Jing-Qing. Active Disturbance Rejection Control Technique: the Technique for Estimating and Compensating the Uncertainties. Beijing: National Defense Industry Press, 2008 [15] 李向阳, 哀薇, 田森平. 惯性串联系统的自抗扰控制. 自动化学报, 2018, 44(3): 562−568Li Xiang-Yang, Ai Wei, Tian Sen-Ping. Active disturbance rejection control of cascade inertia systems. Acta Automatica Sinica, 2018, 44(3): 562−568 [16] 金辉宇, 刘丽丽, 兰维瑶. 二阶系统线性自抗扰控制的稳定性条件. 自动化学报, 2018, 44(9): 1725−1728Jin Hui-Yu, Liu Li-Li, Lan Wei-Yao. On stability condition of linear active disturbance rejection control for second-order systems. Acta Automatica Sinica, 2018, 44(9): 1725−1728 [17] 刘昊, 魏承, 谭春林, 刘永健, 赵阳. 空间充气展开绳网系统捕获目标自抗扰控制研究. 自动化学报, 2019, 45(9): 1691−1700Liu Hao, Wei Cheng, Tan Chun-Lin, Liu Yong-Jian, Zhao Yang. Research on capturing target of space inflatable net capture system based on active disturbance rejection control. Acta Automatica Sinica, 2019, 45(9): 1691−1700 [18] 刘智勇, 何英姿. 相对位置和姿态动力学耦合航天器的自抗扰控制器设计. 航天控制, 2010, 28(2): 17−22Liu Zhi-Yong, He Ying-Zi. An active disturbance rejection controller design for spacecraft with coupled relative position and attitude dynamics. Aerospace Control, 2010, 28(2): 17−22 [19] 吴忠, 黄丽雅, 魏孔明, 郭雷. 航天器姿态稳定自抗扰控制. 第三十二届中国控制会议. IEEE, 2013: 1031−1034Wu Zhong, Huang Li-Ya, Wei Kong-Ming, Guo Lei. Active disturbance rejection control for spacecraft attitude. In: Proceedings of the 32nd Chinese Control Conference. IEEE, 2013: 1031−1034 [20] 吴忠, 黄丽雅, 魏孔明, 郭雷. 航天器姿态自抗扰控制. 控制理论与应用, 2013, 30(12): 1617−1622 doi: 10.7641/CTA.2013.31034Wu Zhong, Huang Li-Ya, Wei Kong-Ming, Guo Lei. Active disturbance rejection control of attitude for spacecraft. Control Theory & Applications, 2013, 30(12): 1617−1622 doi: 10.7641/CTA.2013.31034 [21] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the American control conference. 2006, 6: 4989−4996 [22] Xue W C, Bai W Y, Yang S, Song K, Huang Y, Xie H. ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines. IEEE Transactions on Industrial Electronics, 2015, 62(9): 1−10 [23] Bai W Y, Xue W C, Huang Y, Fang H T. On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems. Science China Information Sciences, 2018, 61(4): 042201: 1−042201: 16 [24] Bai W Y, Xue W C, Huang Y, Fang H T. Extended state filter design for general nonlinear uncertain systems. In: Proceedings of the 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2015: 712−717 [25] Zhang X C, Xue W C, Fang H T, He X K. On extended state based Kalman-Bucy filter. In: Proceedings of the 7th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2018: 1158−1163 [26] He X K, Zhang X C, Xue W C, Fang H T. Distributed Kalman filter for a class of nonlinear uncertain systems: An extended state method. In: Proceedings of the 21st International Conference on Information Fusion (FUSION). IEEE, 2018: 78−83 [27] Duan Z, Jilkov V P, Li X R. State estimation with quantized measurements: Approximate MMSE approach. In: Proceedings of International Conference on Information Fusion. IEEE, 2008: 1−6 [28] Guo J, Zhao Y L, Sun C Y. State estimation with quantized innovations and communication channels. IET Control Theory & Applications, 2015, 9(17): 2606−2612 [29] Wang Y S. Research on control algorithm for the drag-free satellite [Ph. D. dissertation], Harbin Institute of Technology, 2011 [30] 谢永春, 雷拥军, 郭建新. 航天器动力学与控制. 北京: 北京理工大学出版社. 2018Xie Yong-Chun, Lei Yong-Jun, Guo Jian-Xin. Spacecraft Dynamics and Control. Beijing: Beijing Institute of Technology Press. 2018 [31] Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons. 2006