2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

饱和约束测量扩张状态滤波与无拖曳卫星位姿自抗扰控制

杨飞 谈树萍 薛文超 郭金 赵延龙

杨飞, 谈树萍, 薛文超, 郭金, 赵延龙. 饱和约束测量扩张状态滤波与无拖曳卫星位姿自抗扰控制. 自动化学报, 2020, 46(11): 2337−2349 doi: 10.16383/j.aas.c190515
引用本文: 杨飞, 谈树萍, 薛文超, 郭金, 赵延龙. 饱和约束测量扩张状态滤波与无拖曳卫星位姿自抗扰控制. 自动化学报, 2020, 46(11): 2337−2349 doi: 10.16383/j.aas.c190515
Yang Fei, Tan Shu-Ping, Xue Wen-Chao, Guo Jin, Zhao Yan-Long. Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites. Acta Automatica Sinica, 2020, 46(11): 2337−2349 doi: 10.16383/j.aas.c190515
Citation: Yang Fei, Tan Shu-Ping, Xue Wen-Chao, Guo Jin, Zhao Yan-Long. Extended state filtering with saturation-constrainted observations and active disturbance rejection control of position and attitude for drag-free satellites. Acta Automatica Sinica, 2020, 46(11): 2337−2349 doi: 10.16383/j.aas.c190515

饱和约束测量扩张状态滤波与无拖曳卫星位姿自抗扰控制

doi: 10.16383/j.aas.c190515
基金项目: 国家重点研发计划(2018YFA0703800), 国家自然科学基金(61773054, 61633003-3)资助
详细信息
    作者简介:

    杨飞:北京科技大学硕士研究生. 主要研究方向为自抗扰控制理论及应用.E-mail: changeandbebetter@163. com

    谈树萍:北京控制工程研究所高级工程师. 主要研究方向为航天器控制理论与控制工程.E-mail: sptan@amss.ac.cn

    薛文超:中国科学院数学与系统科学研究院副研究员. 主要研究方向为非线性不确定系统控制与滤波, 自抗扰控制.E-mail: wenchaoxue@amss.ac.cn

    郭金:北京科技大学自动化学院教授. 主要研究方向为集值系统、信息物理系统的辨识与控制. 本文通信作者.E-mail: guojin@ustb.edu.cn

    赵延龙:中国科学院数学与系统科学研究院研究员. 主要研究方向为系统建模与辨识, 集值系统辨识与控制, 金融系统建模与分析.E-mail: ylzhao@amss.ac.cn

Extended State Filtering With Saturation-constrainted Observations and Active Disturbance Rejection Control of Position and Attitude for Drag-free Satellites

Funds: Supported by National Key R&D Program of China (2018YFA0703800) and National Natural Science Foundation of China (61773054, 61633003-3)
  • 摘要: 无拖曳卫星的本体姿态、卫星本体与测试质量间的相对位移及相对姿态的联合控制受到外部扰动、输入噪声、测量噪声及饱和约束、输入耦合以及状态耦合等因素的影响, 控制器的设计面临挑战. 本文采用基于扩张状态的卡尔曼滤波对系统状态和系统扰动进行实时估计, 引入自抗扰控制策略进行了控制器设计. 针对无拖曳控制子系统设计了测量饱和受限下的扩张状态估计算法, 并进行了信息融合. 在设计控制律时不仅考虑了对外部扰动的补偿, 还将系统状态间的耦合关系看成内部扰动进行补偿, 使得被控系统等价为“积分串联型系统”, 在此基础上实现了无拖曳卫星的联合控制. 数值仿真验证了方法的有效性和合理性.
  • 图  1  无拖曳卫星控制系统图

    Fig.  1  Diagram of drag-free satellite control system

    图  2  自抗扰控制器框图

    Fig.  2  Structure of active disturbance rejection controller

    图  3  饱和约束测量

    Fig.  3  Saturation-constrainted observations

    图  4  融合算法示意图

    Fig.  4  Diagram of the fusion algorithm

    图  5  算法2对扰动估计效果

    Fig.  5  Disturbance estimation performance of Algorithm 2

    图  6  位移/速度的估计效果: 算法1 vs. 算法2

    Fig.  6  Estimation of displacement/speed: Algorithm 1 vs. Algorithm 2

    图  7  扰动估计效果: 算法1 vs.算法2

    Fig.  7  Estimation of disturbance: Algorithm 1 vs. Algorithm 2

    图  8  扰动估计效果: 融合算法3 vs. 算法1

    Fig.  8  Estimation of disturbance: Algorithm 3 (fusion algorithm) vs. Algorithm 1

    图  9  X方向上控制效果对比

    Fig.  9  Comparison of control performance on X direction

    图  10  系统稳定运行时控制效果

    Fig.  10  Control performance when the system is running steadily

    图  11  姿态调整效果

    Fig.  11  Results of attitude adjustment

    图  12  测试质量残余加速度功率谱密度

    Fig.  12  Power spectral density of the test mass's residual acceleration

    表  1  ${ {\Upsilon}}$矩阵

    Table  1  The matrix of ${ {\Upsilon}}$

    X 方向 Y 方向 Z 方向
    $\left[ \; 1\;\;0\;\;0 \; \right]$ $\left[\; 0\;\;1\;\;0 \;\right]$ $\left[ \; 0\;\;0\;\;1 \;\right]$
    下载: 导出CSV

    表  2  系统仿真参数

    Table  2  System parameters in the simulation

    变量数值
    ${m_{{\rm{tm}}}}$1 kg
    ${m_{{\rm{sc}}}}$1 050 kg
    ${I_{{\rm{tm}}}}$$0.2667 \times {10^{ - 3} }{{I}_3}({\rm{kg} } \cdot { {\rm{m} }^{\rm{2} } })$
    ${I_{{\rm{sc}}}}$$\left[ {\begin{aligned}\;&{200}\;\;\;\;\;\;\;\;1\;\;\;\;\;\;\;\;\;2\\\;&\;\;1\;\;\;\;\;\;{2\;700}\;\;\;\;\;\;1\\ \;&\;\;2\;\;\;\;\;\;\;\;\; 1\;\;\; \;\;\;\;{2\;650} \end{aligned} } \right]({\rm{kg} } \cdot { {\rm{m} }^{\rm{2} } })$
    ${K_{{\rm{trans}}}}$$\left[ {\begin{aligned}\; & \;\;\;1\;\;\;\;\;\;\; {0.039}\;\;\;\;\;\; {0.039}\\\; &{0.039}\;\;\;\;\;\; \;1\;\;\;\;\;\;\;\;\; {0.039}\\\;&{0.039}\;\;\;\; {0.039}\;\;\;\; \;\;\;\;\;1 \end{aligned} } \right] \times {10^{ - 6} }{{\;({\rm{N}}/{\rm{m}})} }$
    ${D_{{\rm{trans}}}}$$1.4 \times {10^{ - 11} }{ {I}_3}\;({\rm{N} } \cdot {\rm{m} } \cdot {\rm{s/rad} })$
    ${K_{{\rm{rot}}}}$$\left[ {\begin{aligned} \;&\;1\;\;\;\;{10}\;\;{10}\\ \;&{10}\;\;\;\;1\;\;\;{10}\\\;&{10}\;\;\;{10}\;\;\;1 \end{aligned} } \right] \times {10^{ - 9} }\;({\rm{N} } \cdot {\rm{m/rad} })$
    ${D_{{\rm{rot}}}}$$1.4 \times {10^{ - 11} }{I_3}\;({\rm{N} } \cdot {\rm{m} } \cdot {\rm{s/rad} })$
    ${{{T}}_{Dsc}}$$\left[ {\begin{aligned} { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{t} })}\\ { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{ + } }\dfrac{ {2{\text{π} } } }{3})}\\ { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{ + } }\dfrac{ {4{\text{π} } } }{3})} \end{aligned} } \right]({\rm{mN} } \cdot {\rm{m} })$
    ${{{F}}_{Dsc}}$$\left[ {\begin{aligned} { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{t} })}\\ { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{ + } }\dfrac{ {2{\text{π} } } }{3})}\\ { - {\rm{12} }.{\rm{8 + 7} }.{\rm{7sin} }({\omega _d}{\rm{ + } }\dfrac{ {4{\text{π} } } }{3})} \end{aligned} } \right]({\rm{mN} })$
    ${{{T}}_{Dtm}}$0
    $\omega_d$$1.2 \times {10^{ - 3}}\;{\rm{Hz}}$
    下载: 导出CSV
  • [1] 罗子人, 钟敏, 边星, 董鹏, 董玉辉, 高伟, 等. 地球重力场空间探测: 回顾与展望. 力学进展, 2014, 44(1): 291−337

    Luo Zi-Ren, Zhong Min, Bian Xing, Dong Peng, Dong Yu-Hui, Gao Wei, et al. Mapping Earth's gravity in space: Review and future perspective. Advances in Mechanies, 2014, 44(1): 291−337
    [2] Lange B. The Control and Use of Drag-Free Satellites [Ph. D. dissertation], Stanford University, 1964
    [3] Dittus H, Lammerzahl C, Turyshev S. Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space. Berlin: Springer, 2008
    [4] Haines R. Development of a drag-free control system. In: Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites. Utah, USA: 2000
    [5] Chapman P, Zentgraf, P, Jafry, Y. Drag-free control design including attitude transition for the STEP mission. In: Proceedings of the 5th ESA International Conference on Spacecraft Guidance, Navigation and Control Systems. 2003: 551−557
    [6] Canuto E, Massotti L. All-propulsion design of the drag-free and attitude control of the European satellite GOCE. Acta Astronautica, 2009, 64(2): 325−344
    [7] Prieto D, Bona B. Orbit and attitude control for the European satellite GOCE. In: Proceedings of the 2005 IEEE Networking, Sensing and Control. IEEE, 2005: 728−733
    [8] Wu S F, Fertin D. Spacecraft drag-free attitude control system design with Quantitative Feedback Theory. Acta Astronautica, 2008, 62(12): 668−682 doi: 10.1016/j.actaastro.2008.01.038
    [9] Prieto D, Ahmad Z. A drag free control based on model predictive techniques. In: Proceedings of the 2005 American Control Conference. Portland, USA: IEEE, 2005. 6: 1527−1532
    [10] Fan H J, Zhang Y F, Zhao X. Finite-time control for LEO drag-free satellite with stochastic disturbance. In: Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC). Qingdao, China: 2015. 2091−2095
    [11] Fleck M E, Starin S R. Evaluation of a drag-free control concept for missions in low earth orbit. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Austin, Texas: 11−14 August 2003
    [12] 高志强. 自抗扰控制思想探究. 控制理论与应用, 2013, 30(12): 1498−1510 doi: 10.7641/CTA.2013.31087

    Gao Zhi-Qiang. On the foundation of active disturbance rejection control. Control Theory & Applications, 2013, 30(12): 1498−1510 doi: 10.7641/CTA.2013.31087
    [13] 韩京清. 从PID技术到“自抗扰控制技术”. 控制工程, 2002, 9(3): 13−18 doi: 10.3969/j.issn.1671-7848.2002.03.003

    Han Jing-Qing. From PID technique to active disturbances rejection control technique. Control Engineering of China, 2002, 9(3): 13−18 doi: 10.3969/j.issn.1671-7848.2002.03.003
    [14] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术. 北京: 国防工业出版社, 2008

    Han Jing-Qing. Active Disturbance Rejection Control Technique: the Technique for Estimating and Compensating the Uncertainties. Beijing: National Defense Industry Press, 2008
    [15] 李向阳, 哀薇, 田森平. 惯性串联系统的自抗扰控制. 自动化学报, 2018, 44(3): 562−568

    Li Xiang-Yang, Ai Wei, Tian Sen-Ping. Active disturbance rejection control of cascade inertia systems. Acta Automatica Sinica, 2018, 44(3): 562−568
    [16] 金辉宇, 刘丽丽, 兰维瑶. 二阶系统线性自抗扰控制的稳定性条件. 自动化学报, 2018, 44(9): 1725−1728

    Jin Hui-Yu, Liu Li-Li, Lan Wei-Yao. On stability condition of linear active disturbance rejection control for second-order systems. Acta Automatica Sinica, 2018, 44(9): 1725−1728
    [17] 刘昊, 魏承, 谭春林, 刘永健, 赵阳. 空间充气展开绳网系统捕获目标自抗扰控制研究. 自动化学报, 2019, 45(9): 1691−1700

    Liu Hao, Wei Cheng, Tan Chun-Lin, Liu Yong-Jian, Zhao Yang. Research on capturing target of space inflatable net capture system based on active disturbance rejection control. Acta Automatica Sinica, 2019, 45(9): 1691−1700
    [18] 刘智勇, 何英姿. 相对位置和姿态动力学耦合航天器的自抗扰控制器设计. 航天控制, 2010, 28(2): 17−22

    Liu Zhi-Yong, He Ying-Zi. An active disturbance rejection controller design for spacecraft with coupled relative position and attitude dynamics. Aerospace Control, 2010, 28(2): 17−22
    [19] 吴忠, 黄丽雅, 魏孔明, 郭雷. 航天器姿态稳定自抗扰控制. 第三十二届中国控制会议. IEEE, 2013: 1031−1034

    Wu Zhong, Huang Li-Ya, Wei Kong-Ming, Guo Lei. Active disturbance rejection control for spacecraft attitude. In: Proceedings of the 32nd Chinese Control Conference. IEEE, 2013: 1031−1034
    [20] 吴忠, 黄丽雅, 魏孔明, 郭雷. 航天器姿态自抗扰控制. 控制理论与应用, 2013, 30(12): 1617−1622 doi: 10.7641/CTA.2013.31034

    Wu Zhong, Huang Li-Ya, Wei Kong-Ming, Guo Lei. Active disturbance rejection control of attitude for spacecraft. Control Theory & Applications, 2013, 30(12): 1617−1622 doi: 10.7641/CTA.2013.31034
    [21] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the American control conference. 2006, 6: 4989−4996
    [22] Xue W C, Bai W Y, Yang S, Song K, Huang Y, Xie H. ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines. IEEE Transactions on Industrial Electronics, 2015, 62(9): 1−10
    [23] Bai W Y, Xue W C, Huang Y, Fang H T. On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems. Science China Information Sciences, 2018, 61(4): 042201: 1−042201: 16
    [24] Bai W Y, Xue W C, Huang Y, Fang H T. Extended state filter design for general nonlinear uncertain systems. In: Proceedings of the 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2015: 712−717
    [25] Zhang X C, Xue W C, Fang H T, He X K. On extended state based Kalman-Bucy filter. In: Proceedings of the 7th Data Driven Control and Learning Systems Conference (DDCLS). IEEE, 2018: 1158−1163
    [26] He X K, Zhang X C, Xue W C, Fang H T. Distributed Kalman filter for a class of nonlinear uncertain systems: An extended state method. In: Proceedings of the 21st International Conference on Information Fusion (FUSION). IEEE, 2018: 78−83
    [27] Duan Z, Jilkov V P, Li X R. State estimation with quantized measurements: Approximate MMSE approach. In: Proceedings of International Conference on Information Fusion. IEEE, 2008: 1−6
    [28] Guo J, Zhao Y L, Sun C Y. State estimation with quantized innovations and communication channels. IET Control Theory & Applications, 2015, 9(17): 2606−2612
    [29] Wang Y S. Research on control algorithm for the drag-free satellite [Ph. D. dissertation], Harbin Institute of Technology, 2011
    [30] 谢永春, 雷拥军, 郭建新. 航天器动力学与控制. 北京: 北京理工大学出版社. 2018

    Xie Yong-Chun, Lei Yong-Jun, Guo Jian-Xin. Spacecraft Dynamics and Control. Beijing: Beijing Institute of Technology Press. 2018
    [31] Simon D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, John Wiley & Sons. 2006
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  3547
  • HTML全文浏览量:  897
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-05
  • 录用日期:  2019-12-08
  • 网络出版日期:  2020-01-17
  • 刊出日期:  2020-11-24

目录

    /

    返回文章
    返回