2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多源数据的电网一次调频能力平行计算研究

张江丰 王飞跃 苏烨 陈波 汪自翔 孙坚栋 尹峰

张江丰, 王飞跃, 苏烨, 陈波, 汪自翔, 孙坚栋, 尹峰. 基于多源数据的电网一次调频能力平行计算研究. 自动化学报, 2022, 48(6): 1493−1503 doi: 10.16383/j.aas.c190512
引用本文: 张江丰, 王飞跃, 苏烨, 陈波, 汪自翔, 孙坚栋, 尹峰. 基于多源数据的电网一次调频能力平行计算研究. 自动化学报, 2022, 48(6): 1493−1503 doi: 10.16383/j.aas.c190512
Zhang Jiang-Feng, Wang Fei-Yue, Su Ye, Chen Bo, Wang Zi-Xiang, Sun Jian-Dong, Yin Feng. Research on power grid primary frequency control ability parallel computing based on multi-source data. Acta Automatica Sinica, 2022, 48(6): 1493−1503 doi: 10.16383/j.aas.c190512
Citation: Zhang Jiang-Feng, Wang Fei-Yue, Su Ye, Chen Bo, Wang Zi-Xiang, Sun Jian-Dong, Yin Feng. Research on power grid primary frequency control ability parallel computing based on multi-source data. Acta Automatica Sinica, 2022, 48(6): 1493−1503 doi: 10.16383/j.aas.c190512

基于多源数据的电网一次调频能力平行计算研究

doi: 10.16383/j.aas.c190512
详细信息
    作者简介:

    张江丰:国网浙江省电力有限公司电力科学研究院高级工程师. 2013年获浙江大学硕士学位. 主要研究方向为模式识别, 电力系统网源协调控制技术. 本文通信作者. E-mail: zhangjiangfeng0725@163.com

    王飞跃:中国科学院自动化研究所复杂系统管理与控制国家重点实验室研究员. 主要研究方向为智能系统和复杂系统的建模, 分析与控制. E-mail: feiyue.wang@ia.ac.cn

    苏烨:国网浙江省电力有限公司电力科学研究院高级工程师. 2005年获华北电力大学硕士学位. 主要研究方向为控制理论与控制工程. E-mail: suye79@163.com

    陈波:杭州意能电力技术有限公司高级工程师. 2005年获武汉大学硕士学位. 主要研究方向为控制理论与控制工程. E-mail: 13867423403@139.com

    汪自翔:国网浙江省电力有限公司电力科学研究院高级工程师. 2015年获浙江大学博士学位. 主要研究方向为信息融合, 非线性控制. E-mail: wangzixiang@zj.sgcc.com.cn

    孙坚栋:杭州意能电力技术有限公司高级工程师. 2012年获浙江大学博士学位. 主要研究方向为网络控制系统, 先进控制, 软测量技术. E-mail: dog@zju.edu.cn

    尹峰:国网浙江省电力有限公司电力科学研究院教授级高级工程师. 2016年获浙江大学博士学位. 主要研究方向为发电自动化, 网源协调控制, 控制系统故障诊断与信息安全. E-mail: yin_feng@zj.sgcc.com.cn

Research on Power Grid Primary Frequency Control Ability Parallel Computing Based on Multi-source Data

More Information
    Author Bio:

    ZHANG Jiang-Feng Senior engineer at the State Grid Zhejiang Electric Power Research Institute. He received his master degree from Zhejiang University in 2013. His research interest covers pattern recognition and power system grid source coordinated control technology. Corresponding author of this paper

    WANG Fei-Yue Professor at the State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences. His research interest covers modeling, analysis, and control of intelligent systems and complex systems

    SU Ye Senior engineer at the State Grid Zhejiang Electric Power Research Institute. He received his master degree from North China Electric Power University in 2005. His research interest covers control theory and control engineering

    CHEN Bo Senior engineer at Hanzhou E. Energy Electric Power Technology Co., Ltd.. He received his master degree from Wuhan University in 2005. His research interest covers control theory and control engineering

    WANG Zi-Xiang Senior engineer at the State Grid Zhejiang Electric Power Research Institute. He received his Ph.D. degree from Zhejiang University in 2015. His research interest covers information fusion and nonlinear control

    SUN Jian-Dong Senior engineer at Hanzhou E. Energy Electric Power Technology Co., Ltd.. He received his Ph.D. degree from Zhejiang University in 2012. His research interest covers networked control systems, advanced control, and soft sensor technology

    YIN Feng Professor-level senior engineer at the State Grid Zhejiang Electric Power Research Institute. He received his Ph.D. degree from Zhejiang University in 2016. His research interest covers power generation automation, grid source coordinated control, and fault diagnosis of control system and information security

  • 摘要: 为解决电网一次调频性能难以估计的问题, 本文提出了基于多源数据的电网一次调频性能平行计算平台. 通过采集整合OMS (Operations management system)、WAMS (Wide area measurement system)、SCADA (Supervisory control and data acquisition)等系统的各类型一次调频数据, 以极大似然估计、数值拟合等方法构建机组一次调频性能功频图谱. 采用均方差分析建立电网一次调频性能数学模型, 基于并网运行机组的一次调频性能功频图谱, 估算出当前电网的实际一次调频性能. 算例计算表明, 本文所提出的计算方法能够有效兼顾机组类型的静态特性和运行工况的动态特性, 并以平行执行方式完成人工估算系统与实际电力系统的滚动优化, 实现了电网一次调频性能的在线全面估计, 为电网频率管理与控制提供数据决策支持.
  • 图  1  平行系统运行的基本框架

    Fig.  1  Basic framework of parallel systems

    图  2  基于平行系统的计算平台整体框架

    Fig.  2  Overall framework of computing platform based on parallel systems

    图  3  发电机组一次调频数据采集体系

    Fig.  3  Primary frequency control data acquisition system of generator sets

    图  4  机组一次调频在线测试与评价功能结构图

    Fig.  4  Functional structure diagram of unit primary frequency control online test and evaluation

    图  5  机组一次调频在线测试系统图

    Fig.  5  System diagram of unit primary frequency control online test

    图  6  机组一次调频在线测试主站侧界面图

    Fig.  6  Interface diagram of main station side of unit primary frequency control online test

    图  7  浙江某厂#2机组一次调频在线测试动作曲线(75%负荷点 + 11 r/min转速偏差)

    Fig.  7  Action curves of primary frequency control online test of unit 2 of a power plant in Zhejiang (+11 r/min speed deviation at 75% load point)

    图  8  基于OMS的网源协调信息管理系统主界面

    Fig.  8  Main interface of grid power coordination information management system based on OMS

    图  9  网源协调信息管理系统的功能模块

    Fig.  9  Functional modules of grid power coordination information management system

    图  10  浙江某厂#1机组A修后一次调频试验台账

    Fig.  10  Ledger of primary frequency control test after class a maintenance of unit 1 of a power plant in Zhejiang

    图  11  电网一次调频能力估算技术路线图

    Fig.  11  Technical roadmap of grid primary frequency control capacity estimation

    图  12  M台同步发电机并列运行的电网调频能力模型图

    Fig.  12  Model diagram of power grid frequency regulation capacity of M synchronous generators operating in parallel

    图  13  发电机组一次调频动作历史数据库

    Fig.  13  Historical database of primary frequency control actions of generator sets

    图  14  发电机组一次调频性能功频图谱

    Fig.  14  Power frequency spectrum of primary frequency control performance of generator sets

    图  15  2018年10月22日浙江统调机组实际调频能力时刻图

    Fig.  15  Time map of actual primary frequency control performance of Zhejiang dispatching unit on October 22, 2018

    表  1  机组一次调频月动作统计

    Table  1  Monthly action statistics of unit primary frequency control

    月份强蛟厂 #3 机组 镇燃厂 #11 机组
    动作总次数正确动作数动作总次数正确动作数
    82 4912 389 408381
    94 0853 9481 4641 369
    104 9654 7602 9562 822
    下载: 导出CSV

    表  2  发电机组一次调频性能网格表

    Table  2  Grid table of primary frequency control performance of generator sets

    频率
    功率
    f1f2ΛfN−1fN
    P1K11K12KK1(N−1)K1N
    P2K21K22KK2(N−1)K2N
    ΛKΛ1KΛ2KΛΛKΛ(N−1)KΛN
    PN−1K(N−1)1K(N−1)1K(N−1)ΛK(N−1)(N−1)K(N−1)N
    PNKN1K(N−1)1KNΛKN(N−1)KNN
    下载: 导出CSV

    表  3  大频差时浙江电网一次调频数据分析

    Table  3  Data analysis of primary frequency control data of Zhejiang power grid in large frequency difference situations

    指标均值标准差95 % 置信区间
    最低频率 (Hz)49.8770.1022[49.841, 49.914]
    实际出力 (标幺值)11.92166.5165[9.5856, 14.2575]
    出力限值 (%Pe)3.940.90[3.61, 4.27]
    装机容量 (MW)36 633.715 509.92[34 658.58, 8 608.85]
    装机总数 (台数)6812[63, 72]
    下载: 导出CSV
  • [1] 李国栋, 皮俊波, 郑力, 陈龙翔, 董昱, 葛睿. ±500 kV林枫直流双极闭锁故障案例仿真分析. 电网技术, 2014, 38(4): 877-881

    Li Guo-Dong, Pi Jun-Bo, Zheng Li, Chen Long-Xiang, Dong Yu, Ge Rui. Simulation analysis on case of bipolar blocking in ±500kV EHVDC power transmission line from Tuanlin to Fengjing. Power System Technology, 2014, 38(4): 877-881
    [2] 宣晓华, 尹峰, 张永军, 张宝, 卢敏, 陈利跃. 特高压受端电网直流闭锁故障下机组一次调频性能分析. 中国电力, 2016, 49(11): 140-144 doi: 10.11930/j.issn.1004-9649.2016.11.140.05

    Xuan Xiao-Hua, Yin Feng, Zhang Yong-Jun, Zhang Bao, Lu Min, Chen Li-Yue. Analysis on primary frequency regulation performance of the units under DC blocking fault in UHV receiving end power grid. Electric Power, 2016, 49(11): 140-144 doi: 10.11930/j.issn.1004-9649.2016.11.140.05
    [3] Kundur P, Paserba J, Ajjarapu V, et al. Definition and classification of power system stability: IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 2004, 19(3): 1387-1401 doi: 10.1109/TPWRS.2004.825981
    [4] 赵婷, 戴义平, 高林. 多区域电网一次调频能力分布对电网安全稳定运行的影响. 中国电力, 2006, 39(5): 18-22 doi: 10.3969/j.issn.1004-9649.2006.05.004

    Zhao Ting, Dai Yi-Ping, Gao Lin. Influence of primary frequency control ability distribution on power system security and stability. Electric Power, 2006, 39(5): 18-22 doi: 10.3969/j.issn.1004-9649.2006.05.004
    [5] 陶骞, 贺颖, 潘杨, 孙建军. 电力系统频率分布特征及改进一次调频控制策略研究. 电力系统保护与控制, 2016, 44(17): 133-138 doi: 10.7667/PSPC151605

    Tao Qian, He Ying, Pan Yang, Sun Jian-Jun. Characteristics of power system frequency abnormal distribution and improved primary frequency modulation control strategy. Power System Protection and Control, 2016, 44(17): 133-138 doi: 10.7667/PSPC151605
    [6] 金娜, 刘文颖, 曹银利, 行舟, 崔岗. 大容量机组一次调频参数对电网频率特性的影响. 电力系统保护与控制, 2012, 40(1): 91-95, 100 doi: 10.3969/j.issn.1674-3415.2012.01.016

    Jin Na, Liu Wen-Ying, Cao Yin-Li, Xing Zhou, Cui Gang. Influence on the grid frequency characteristic by the parameters of primary frequency modulation of large capacity generator units. Power System Protection and Control, 2012, 40(1): 91-95, 100 doi: 10.3969/j.issn.1674-3415.2012.01.016
    [7] 郎澄宇, 史昱, 廖大鹏. 机组运行方式对一次调频的影响与对策. 电站系统工程, 2012, 28(2): 63-64, 66 doi: 10.3969/j.issn.1005-006X.2012.02.027

    Lang Cheng-Yu, Shi Yu, Liao Da-Peng. Influence and countermeasures for primary frequency caused by different unit operating mode. Power System Engineering, 2012, 28(2): 63-64, 66 doi: 10.3969/j.issn.1005-006X.2012.02.027
    [8] 于达仁, 郭钰锋. 电网一次调频能力的在线估计. 中国电机工程学报, 2004, 24(3): 72-76 doi: 10.3321/j.issn:0258-8013.2004.03.014

    Yu Da-Ren, Guo Yu-Feng. The online estimate of primary frequency control ability in electric power system. Proceedings of the CSEE, 2004, 24(3): 72-76 doi: 10.3321/j.issn:0258-8013.2004.03.014
    [9] 贺颖, 潘杨, 陶骞, 刘悦遐, 孙建军, 查晓明. 考虑调频死区的电网一次调频能力评价指标. 电力系统保护与控制, 2016, 44(19): 85-90 doi: 10.7667/PSPC151783

    He Ying, Pan Yang, Tao Qian, Liu Yue-Xia, Sun Jian-Jun, Zha Xiao-Ming. Evaluation index of power grid primary frequency modulation considering dead zone. Power System Protection and Control, 2016, 44(19): 85-90 doi: 10.7667/PSPC151783
    [10] 王飞跃. 平行系统方法与复杂系统的管理和控制. 控制与决策, 2004, 19(5): 485-489, 514 doi: 10.3321/j.issn:1001-0920.2004.05.002

    Wang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5): 485-489, 514 doi: 10.3321/j.issn:1001-0920.2004.05.002
    [11] 王飞跃, 杨坚, 韩双双, 杨柳青, 程翔. 基于平行系统理论的平行网络架构. 指挥与控制学报, 2016, 2(1): 71-77

    Wang Fei-Yue, Yang Jian, Han Shuang-Shuang, Yang Liu-Qing, Cheng Xiang. The framework of parallel network based on the parallel system theory. Journal of Command and Control, 2016, 2(1): 71-77
    [12] 王飞跃, 刘德荣, 熊刚, 程长建, 赵冬斌. 复杂系统的平行控制理论及应用. 复杂系统与复杂性科学, 2012, 9(3): 1-12 doi: 10.3969/j.issn.1672-3813.2012.03.001

    Wang Fei-Yue, Liu De-Rong, Xiong Gang, Cheng Chang-Jian, Zhao Dong-Bin. Parallel control theory of complex systems and applications. Complex Systems and Complexity Science, 2012, 9(3): 1-12 doi: 10.3969/j.issn.1672-3813.2012.03.001
    [13] 郑松, 吴晓林, 王飞跃, 林东东, 郑蓉, 柯伟林, 等. 平行系统方法在自动化集装箱码头中的应用研究. 自动化学报, 2019, 45(3): 490-504

    Zheng Song, Wu Xiao-Lin, Wang Fei-Yue, Lin Dong-Dong, Zheng Rong, Ke Wei-Lin, et al. Applying the parallel systems approach to automatic container terminal. Acta Automatica Sinica, 2019, 45(3): 490-504
    [14] 张会, 于泉, 刘金广, 荣建. 平行系统理论在交通工程中的应用浅探. 交通信息与安全, 2009, 27(S1): 32-35

    Zhang Hui, Yu Quan, Liu Jin-Guang, Rong Jian. Application of parallel systems theory in traffic engineering. Journal of Transport Information and Safety, 2009, 27(S1): 32-35
    [15] 王飞跃, 赵杰, 伦淑娴. 人工电力系统与复杂大电网的运营和管理. 南方电网技术, 2008, 2(3): 1-6 doi: 10.3969/j.issn.1674-0629.2008.03.001

    Wang Fei-Yue, Zhao Jie, Lun Shu-Xian. Artificial power systems for the operation and management of comolex power grids. Southern Power System technology, 2008, 2(3): 1-6 doi: 10.3969/j.issn.1674-0629.2008.03.001
    [16] 王飞跃. 平行控制: 数据驱动的计算控制方法. 自动化学报, 2013, 39(4): 293-302

    Wang Fei-Yue. Parallel control: A method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4): 293-302
    [17] 徐春雷, 徐瑞, 仇晨光, 张小白, 钱玉妹, 刘俊伟. 发电机组一次调频在线测试与AGC性能考核系统设计. 电力工程技术, 2017, 36(3): 1-6 doi: 10.3969/j.issn.1009-0665.2017.03.001

    Xu Chun-Lei, Xu Rui, Qiu Chen-Guang, Zhang Xiao-Bai, Qian Yu-Mei, Liu Jun-Wei. Evaluation system design of online test of primary frequency regulation and AGC performance for generator unit. Electric Power Engineering Technology, 2017, 36(3): 1-6 doi: 10.3969/j.issn.1009-0665.2017.03.001
    [18] 刘洋, 张道农, 孙铭泽, 于骏, 金元, 詹庆才, 等. 基于WAMS的发电机组一次调频在线监测与考核系统设计. 电力科学与技术学报, 2016, 31(3): 14-21 doi: 10.3969/j.issn.1673-9140.2016.03.005

    Liu Yang, Zhang Dao-Nong, Sun Ming-Ze, Yu Jun, Jin Yuan, Zhan Qing-Cai, et al. Design of on-line monitoring and assessment system for generator unit primary frequency regulation based on WAMS. Journal of Electric Power Science and Technology, 2016, 31(3): 14-21 doi: 10.3969/j.issn.1673-9140.2016.03.005
    [19] 郑涛, 高伏英. 基于PMU的机组一次调频特性参数在线监测. 电力系统自动化, 2009, 33(11): 57-61, 71 doi: 10.3321/j.issn:1000-1026.2009.11.012

    Zheng Tao, Gao Fu-Ying. On-line monitoring and computing of unit PFR characteristic parameter based on PMU. Automation of Electric Power Systems, 2009, 33(11): 57-61, 71 doi: 10.3321/j.issn:1000-1026.2009.11.012
    [20] 高林, 戴义平, 王江峰, 赵攀, 赵婷. 机组一次调频参数指标在线估计方法. 中国电机工程学报, 2012, 32(16): 62-69

    Gao Lin, Dai Yi-Ping, Wang Jiang-Feng, Zhao Pan, Zhao Ting. An online estimation method of primary frequency regulation parameters of generation units. Proceedings of the CSEE, 2012, 32(16): 62-69
    [21] 王茂海, 徐正山, 谢开, 吕少坤. 基于WAMS的系统自然频率特性系数确定方法. 电力系统自动化, 2007, 31(3): 15-18, 46 doi: 10.3321/j.issn:1000-1026.2007.03.004

    Wang Mao-Hai, Xu Zheng-Shan, Xie Kai, lü Shao-Kun. Calculation of frequency characteristic coefficients for an interconnected power system based on WAMS. Automation of Electric Power Systems, 2007, 31(3): 15-18, 46 doi: 10.3321/j.issn:1000-1026.2007.03.004
    [22] 刘克天, 王晓茹, 薄其滨. 基于广域量测的电力系统扰动后最低频率预测. 中国电机工程学报, 2014, 34(13): 2188-2195

    Liu Ke-Tian, Wang Xiao-Ru, Bo Qi-Bin. Minimum frequency prediction of power system after disturbance based on the WAMS data. Proceedings of the CSEE, 2014, 34(13): 2188-2195
    [23] 邵帅. 基于WAMS的电力系统频率动态时空分布特性分析 [硕士学位论文], 东北电力大学, 中国, 2016. 19−25

    Shao Shuai. Research on the Space-time Distribution Characteristics of Frequency Dynamics Based on the WAMS [Master thesis], Northeast Electric Power University, China, 2016. 19−25
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  740
  • HTML全文浏览量:  347
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 录用日期:  2019-09-02
  • 网络出版日期:  2022-04-19
  • 刊出日期:  2022-06-02

目录

    /

    返回文章
    返回