Research on Power Grid Primary Frequency Control Ability Parallel Computing Based on Multi-source Data
-
摘要: 为解决电网一次调频性能难以估计的问题, 本文提出了基于多源数据的电网一次调频性能平行计算平台. 通过采集整合OMS (Operations management system)、WAMS (Wide area measurement system)、SCADA (Supervisory control and data acquisition)等系统的各类型一次调频数据, 以极大似然估计、数值拟合等方法构建机组一次调频性能功频图谱. 采用均方差分析建立电网一次调频性能数学模型, 基于并网运行机组的一次调频性能功频图谱, 估算出当前电网的实际一次调频性能. 算例计算表明, 本文所提出的计算方法能够有效兼顾机组类型的静态特性和运行工况的动态特性, 并以平行执行方式完成人工估算系统与实际电力系统的滚动优化, 实现了电网一次调频性能的在线全面估计, 为电网频率管理与控制提供数据决策支持.Abstract: In order to solve the problem that the primary frequency control performance of the power grid is difficult to estimate, this paper proposes a parallel computing platform for primary frequency control performance of power grid based on multi-source data. By collecting and integrating the primary frequency data of various systems such as OMS (operations management system), WAMS (wide area measurement system), and SCADA (supervisory control and data acquisition), the power frequency spectrum of the primary frequency control performance of the unit is constructed by means of maximum likelihood estimation and numerical fitting. The mean square error analysis is used to establish the mathematical model of the primary frequency control performance of the grid. Based on the primary frequency performance spectrum of the grid-connected operation unit, the actual primary frequency performance of the current grid is estimated. The example calculation shows that the calculation method proposed in this paper can effectively consider the static characteristics of the unit type and the dynamic characteristics of the operating conditions, complete the rolling optimization of the manual estimation system and the actual power system in parallel execution mode, and realize the on-line comprehensive estimation of the primary frequency control performance of the power grid, which provides data decision support for grid frequency management and control.
-
表 1 机组一次调频月动作统计
Table 1 Monthly action statistics of unit primary frequency control
月份 强蛟厂 #3 机组 镇燃厂 #11 机组 动作总次数 正确动作数 动作总次数 正确动作数 8 2 491 2 389 408 381 9 4 085 3 948 1 464 1 369 10 4 965 4 760 2 956 2 822 表 2 发电机组一次调频性能网格表
Table 2 Grid table of primary frequency control performance of generator sets
频率
功率f1 f2 Λ fN−1 fN P1 K11 K12 K1Λ K1(N−1) K1N P2 K21 K22 K2Λ K2(N−1) K2N Λ KΛ1 KΛ2 KΛΛ KΛ(N−1) KΛN PN−1 K(N−1)1 K(N−1)1 K(N−1)Λ K(N−1)(N−1) K(N−1)N PN KN1 K(N−1)1 KNΛ KN(N−1) KNN 表 3 大频差时浙江电网一次调频数据分析
Table 3 Data analysis of primary frequency control data of Zhejiang power grid in large frequency difference situations
指标 均值 标准差 95 % 置信区间 最低频率 (Hz) 49.877 0.1022 [49.841, 49.914] 实际出力 (标幺值) 11.9216 6.5165 [9.5856, 14.2575] 出力限值 (%Pe) 3.94 0.90 [3.61, 4.27] 装机容量 (MW) 36 633.71 5 509.92 [34 658.58, 8 608.85] 装机总数 (台数) 68 12 [63, 72] -
[1] 李国栋, 皮俊波, 郑力, 陈龙翔, 董昱, 葛睿. ±500 kV林枫直流双极闭锁故障案例仿真分析. 电网技术, 2014, 38(4): 877-881Li Guo-Dong, Pi Jun-Bo, Zheng Li, Chen Long-Xiang, Dong Yu, Ge Rui. Simulation analysis on case of bipolar blocking in ±500kV EHVDC power transmission line from Tuanlin to Fengjing. Power System Technology, 2014, 38(4): 877-881 [2] 宣晓华, 尹峰, 张永军, 张宝, 卢敏, 陈利跃. 特高压受端电网直流闭锁故障下机组一次调频性能分析. 中国电力, 2016, 49(11): 140-144 doi: 10.11930/j.issn.1004-9649.2016.11.140.05Xuan Xiao-Hua, Yin Feng, Zhang Yong-Jun, Zhang Bao, Lu Min, Chen Li-Yue. Analysis on primary frequency regulation performance of the units under DC blocking fault in UHV receiving end power grid. Electric Power, 2016, 49(11): 140-144 doi: 10.11930/j.issn.1004-9649.2016.11.140.05 [3] Kundur P, Paserba J, Ajjarapu V, et al. Definition and classification of power system stability: IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 2004, 19(3): 1387-1401 doi: 10.1109/TPWRS.2004.825981 [4] 赵婷, 戴义平, 高林. 多区域电网一次调频能力分布对电网安全稳定运行的影响. 中国电力, 2006, 39(5): 18-22 doi: 10.3969/j.issn.1004-9649.2006.05.004Zhao Ting, Dai Yi-Ping, Gao Lin. Influence of primary frequency control ability distribution on power system security and stability. Electric Power, 2006, 39(5): 18-22 doi: 10.3969/j.issn.1004-9649.2006.05.004 [5] 陶骞, 贺颖, 潘杨, 孙建军. 电力系统频率分布特征及改进一次调频控制策略研究. 电力系统保护与控制, 2016, 44(17): 133-138 doi: 10.7667/PSPC151605Tao Qian, He Ying, Pan Yang, Sun Jian-Jun. Characteristics of power system frequency abnormal distribution and improved primary frequency modulation control strategy. Power System Protection and Control, 2016, 44(17): 133-138 doi: 10.7667/PSPC151605 [6] 金娜, 刘文颖, 曹银利, 行舟, 崔岗. 大容量机组一次调频参数对电网频率特性的影响. 电力系统保护与控制, 2012, 40(1): 91-95, 100 doi: 10.3969/j.issn.1674-3415.2012.01.016Jin Na, Liu Wen-Ying, Cao Yin-Li, Xing Zhou, Cui Gang. Influence on the grid frequency characteristic by the parameters of primary frequency modulation of large capacity generator units. Power System Protection and Control, 2012, 40(1): 91-95, 100 doi: 10.3969/j.issn.1674-3415.2012.01.016 [7] 郎澄宇, 史昱, 廖大鹏. 机组运行方式对一次调频的影响与对策. 电站系统工程, 2012, 28(2): 63-64, 66 doi: 10.3969/j.issn.1005-006X.2012.02.027Lang Cheng-Yu, Shi Yu, Liao Da-Peng. Influence and countermeasures for primary frequency caused by different unit operating mode. Power System Engineering, 2012, 28(2): 63-64, 66 doi: 10.3969/j.issn.1005-006X.2012.02.027 [8] 于达仁, 郭钰锋. 电网一次调频能力的在线估计. 中国电机工程学报, 2004, 24(3): 72-76 doi: 10.3321/j.issn:0258-8013.2004.03.014Yu Da-Ren, Guo Yu-Feng. The online estimate of primary frequency control ability in electric power system. Proceedings of the CSEE, 2004, 24(3): 72-76 doi: 10.3321/j.issn:0258-8013.2004.03.014 [9] 贺颖, 潘杨, 陶骞, 刘悦遐, 孙建军, 查晓明. 考虑调频死区的电网一次调频能力评价指标. 电力系统保护与控制, 2016, 44(19): 85-90 doi: 10.7667/PSPC151783He Ying, Pan Yang, Tao Qian, Liu Yue-Xia, Sun Jian-Jun, Zha Xiao-Ming. Evaluation index of power grid primary frequency modulation considering dead zone. Power System Protection and Control, 2016, 44(19): 85-90 doi: 10.7667/PSPC151783 [10] 王飞跃. 平行系统方法与复杂系统的管理和控制. 控制与决策, 2004, 19(5): 485-489, 514 doi: 10.3321/j.issn:1001-0920.2004.05.002Wang Fei-Yue. Parallel system methods for management and control of complex systems. Control and Decision, 2004, 19(5): 485-489, 514 doi: 10.3321/j.issn:1001-0920.2004.05.002 [11] 王飞跃, 杨坚, 韩双双, 杨柳青, 程翔. 基于平行系统理论的平行网络架构. 指挥与控制学报, 2016, 2(1): 71-77Wang Fei-Yue, Yang Jian, Han Shuang-Shuang, Yang Liu-Qing, Cheng Xiang. The framework of parallel network based on the parallel system theory. Journal of Command and Control, 2016, 2(1): 71-77 [12] 王飞跃, 刘德荣, 熊刚, 程长建, 赵冬斌. 复杂系统的平行控制理论及应用. 复杂系统与复杂性科学, 2012, 9(3): 1-12 doi: 10.3969/j.issn.1672-3813.2012.03.001Wang Fei-Yue, Liu De-Rong, Xiong Gang, Cheng Chang-Jian, Zhao Dong-Bin. Parallel control theory of complex systems and applications. Complex Systems and Complexity Science, 2012, 9(3): 1-12 doi: 10.3969/j.issn.1672-3813.2012.03.001 [13] 郑松, 吴晓林, 王飞跃, 林东东, 郑蓉, 柯伟林, 等. 平行系统方法在自动化集装箱码头中的应用研究. 自动化学报, 2019, 45(3): 490-504Zheng Song, Wu Xiao-Lin, Wang Fei-Yue, Lin Dong-Dong, Zheng Rong, Ke Wei-Lin, et al. Applying the parallel systems approach to automatic container terminal. Acta Automatica Sinica, 2019, 45(3): 490-504 [14] 张会, 于泉, 刘金广, 荣建. 平行系统理论在交通工程中的应用浅探. 交通信息与安全, 2009, 27(S1): 32-35Zhang Hui, Yu Quan, Liu Jin-Guang, Rong Jian. Application of parallel systems theory in traffic engineering. Journal of Transport Information and Safety, 2009, 27(S1): 32-35 [15] 王飞跃, 赵杰, 伦淑娴. 人工电力系统与复杂大电网的运营和管理. 南方电网技术, 2008, 2(3): 1-6 doi: 10.3969/j.issn.1674-0629.2008.03.001Wang Fei-Yue, Zhao Jie, Lun Shu-Xian. Artificial power systems for the operation and management of comolex power grids. Southern Power System technology, 2008, 2(3): 1-6 doi: 10.3969/j.issn.1674-0629.2008.03.001 [16] 王飞跃. 平行控制: 数据驱动的计算控制方法. 自动化学报, 2013, 39(4): 293-302Wang Fei-Yue. Parallel control: A method for data-driven and computational control. Acta Automatica Sinica, 2013, 39(4): 293-302 [17] 徐春雷, 徐瑞, 仇晨光, 张小白, 钱玉妹, 刘俊伟. 发电机组一次调频在线测试与AGC性能考核系统设计. 电力工程技术, 2017, 36(3): 1-6 doi: 10.3969/j.issn.1009-0665.2017.03.001Xu Chun-Lei, Xu Rui, Qiu Chen-Guang, Zhang Xiao-Bai, Qian Yu-Mei, Liu Jun-Wei. Evaluation system design of online test of primary frequency regulation and AGC performance for generator unit. Electric Power Engineering Technology, 2017, 36(3): 1-6 doi: 10.3969/j.issn.1009-0665.2017.03.001 [18] 刘洋, 张道农, 孙铭泽, 于骏, 金元, 詹庆才, 等. 基于WAMS的发电机组一次调频在线监测与考核系统设计. 电力科学与技术学报, 2016, 31(3): 14-21 doi: 10.3969/j.issn.1673-9140.2016.03.005Liu Yang, Zhang Dao-Nong, Sun Ming-Ze, Yu Jun, Jin Yuan, Zhan Qing-Cai, et al. Design of on-line monitoring and assessment system for generator unit primary frequency regulation based on WAMS. Journal of Electric Power Science and Technology, 2016, 31(3): 14-21 doi: 10.3969/j.issn.1673-9140.2016.03.005 [19] 郑涛, 高伏英. 基于PMU的机组一次调频特性参数在线监测. 电力系统自动化, 2009, 33(11): 57-61, 71 doi: 10.3321/j.issn:1000-1026.2009.11.012Zheng Tao, Gao Fu-Ying. On-line monitoring and computing of unit PFR characteristic parameter based on PMU. Automation of Electric Power Systems, 2009, 33(11): 57-61, 71 doi: 10.3321/j.issn:1000-1026.2009.11.012 [20] 高林, 戴义平, 王江峰, 赵攀, 赵婷. 机组一次调频参数指标在线估计方法. 中国电机工程学报, 2012, 32(16): 62-69Gao Lin, Dai Yi-Ping, Wang Jiang-Feng, Zhao Pan, Zhao Ting. An online estimation method of primary frequency regulation parameters of generation units. Proceedings of the CSEE, 2012, 32(16): 62-69 [21] 王茂海, 徐正山, 谢开, 吕少坤. 基于WAMS的系统自然频率特性系数确定方法. 电力系统自动化, 2007, 31(3): 15-18, 46 doi: 10.3321/j.issn:1000-1026.2007.03.004Wang Mao-Hai, Xu Zheng-Shan, Xie Kai, lü Shao-Kun. Calculation of frequency characteristic coefficients for an interconnected power system based on WAMS. Automation of Electric Power Systems, 2007, 31(3): 15-18, 46 doi: 10.3321/j.issn:1000-1026.2007.03.004 [22] 刘克天, 王晓茹, 薄其滨. 基于广域量测的电力系统扰动后最低频率预测. 中国电机工程学报, 2014, 34(13): 2188-2195Liu Ke-Tian, Wang Xiao-Ru, Bo Qi-Bin. Minimum frequency prediction of power system after disturbance based on the WAMS data. Proceedings of the CSEE, 2014, 34(13): 2188-2195 [23] 邵帅. 基于WAMS的电力系统频率动态时空分布特性分析 [硕士学位论文], 东北电力大学, 中国, 2016. 19−25Shao Shuai. Research on the Space-time Distribution Characteristics of Frequency Dynamics Based on the WAMS [Master thesis], Northeast Electric Power University, China, 2016. 19−25