2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于样本特征解码约束的GANs

陈泓佑 陈帆 和红杰 朱翌明

陈泓佑, 陈帆, 和红杰, 朱翌明. 基于样本特征解码约束的GANs. 自动化学报, 2022, 48(9): 2288−2300 doi: 10.16383/j.aas.c190496
引用本文: 陈泓佑, 陈帆, 和红杰, 朱翌明. 基于样本特征解码约束的GANs. 自动化学报, 2022, 48(9): 2288−2300 doi: 10.16383/j.aas.c190496
Chen Hong-You, Chen Fan, He Hong-Jie, Zhu Yi-Ming. A GANs model based on sample feature decoding constraint. Acta Automatica Sinica, 2022, 48(9): 2288−2300 doi: 10.16383/j.aas.c190496
Citation: Chen Hong-You, Chen Fan, He Hong-Jie, Zhu Yi-Ming. A GANs model based on sample feature decoding constraint. Acta Automatica Sinica, 2022, 48(9): 2288−2300 doi: 10.16383/j.aas.c190496

基于样本特征解码约束的GANs

doi: 10.16383/j.aas.c190496
基金项目: 国家自然科学基金(61872303, U1936113)和四川省科技厅科技创新人才计划(2018RZ0143)资助
详细信息
    作者简介:

    陈泓佑:西南交通大学信息科学与技术学院博士研究生. 主要研究方向为机器学习和图像处理.E-mail: chy2019@foxmail.com

    陈帆:西南交通大学信息科学与技术学院副教授. 主要研究方向为多媒体安全和计算机应用.E-mail: fchen@home.swjtu.edu.cn

    和红杰:西南交通大学信息科学与技术学院教授. 主要研究方向为图像取证和图像处理. 本文通信作者.E-mail: hjhe@home.swjtu.edu.cn

    朱翌明:西南交通大学信息科学与技术学院硕士研究生. 主要研究方向为深度学习和图像处理.E-mail: swjtu163zym@163.com

A GANs Model Based on Sample Feature Decoding Constraint

Funds: Supported by National Natural Science Foundation of China (61872303, U1936113) and Technology Innovation Talent Program of Science & Technology Department of Sichuan Province (2018RZ0143)
More Information
    Author Bio:

    CHEN Hong-You Ph.D. candidate at the School of Information Science and Technology, Southwest Jiaotong University. His research interest covers machine learning and image processing

    CHEN Fan Associate professor at the School of Information Science and Technology, Southwest Jiaotong University. His research interest covers multi-media security and computer applications

    HE Hong-Jie Professor at the School of Information Science and Technology, Southwest Jiaotong University. Her research interest covers image forensics and image processing. Corresponding author of this paper

    ZHU Yi-Ming Master student at the School of Information Science and Technology, Southwest Jiaotong University. His research interest covers deep learning and image processing

  • 摘要: 生成式对抗网络(Generative adversarial networks, GANs)是一种有效模拟训练数据分布的生成方法, 其训练的常见问题之一是优化Jensen-Shannon (JS)散度时可能产生梯度消失问题. 针对该问题, 提出了一种解码约束条件下的GANs, 以尽量避免JS散度近似为常数而引发梯度消失现象, 从而提高生成图像的质量. 首先利用U-Net结构的自动编码机(Auto-encoder, AE)学习出与用于激发生成器的随机噪声同维度的训练样本网络中间层特征. 然后在每次对抗训练前使用设计的解码约束条件训练解码器. 其中, 解码器与生成器结构相同, 权重共享. 为证明模型的可行性, 推导给出了引入解码约束条件有利于JS散度不为常数的结论以及解码损失函数的类型选择依据. 为验证模型的性能, 利用Celeba和Cifar10数据集, 对比分析了其他6种模型的生成效果. 通过实验对比Inception score (IS)、弗雷歇距离和清晰度等指标发现, 基于样本特征解码约束的GANs能有效提高图像生成质量, 综合性能接近自注意力生成式对抗网络.
  • 图  1  总体结构示意图

    Fig.  1  Overall structure sketch

    图  2  特征学习网络结构图

    Fig.  2  Structure diagram of feature learning network

    图  3  Celeba数据集样本

    Fig.  3  Samples of Celeba dataset

    图  4  Cifar10数据集样本

    Fig.  4  Samples of Cifar10 dataset

    图  5  U-Net自动编码示例

    Fig.  5  Samples of U-Net auto-encoder

    图  6  Celeba中均匀特征实验样本

    Fig.  6  Uniform feature experimental samples in Celeba

    图  7  Celeba中L2解码不限制权重实验样本

    Fig.  7  L2 decoding with not restrict weight experimental samples in Celeba

    图  8  Celeba中本文方法实验样本

    Fig.  8  Experimental samples of our method in Celeba

    图  9  Cifar10中均匀特征实验样本

    Fig.  9  Uniform feature experimental samples in Cifar10

    图  10  Cifar10中L2解码不限制权重实验样本

    Fig.  10  L2 decoding with not restrict weight experimental samples in Cifar10

    图  11  Cifar10中本文方法实验样本

    Fig.  11  Experimental samples of our method in Cifar10

    图  12  Celeba中BEGANs实验样本

    Fig.  12  Experimental samples of BEGANs in Celeba

    图  13  Celeba中DCGANs实验样本

    Fig.  13  Experimental samples of DCGANs in Celeba

    图  14  Celeba中WGANsGP实验样本

    Fig.  14  Experimental samples of WGANsGP in Celeba

    图  15  Celeba中SAGANs1实验样本

    Fig.  15  Experimental samples of SAGANs1 in Celeba

    图  16  Cifar10中BEGANs实验样本

    Fig.  16  Experimental samples of BEGANs in Cifar10

    图  17  Cifar10中DCGANs实验样本

    Fig.  17  Experimental samples of DCGANs in Cifar10

    图  18  Cifar10中WGANsGP实验样本

    Fig.  18  Experimental samples of WGANsGP in Cifar10

    图  19  Cifar10中SAGANs1实验样本

    Fig.  19  Experimental samples of SAGANs1 in Cifar10

    表  1  原图像与重构图像的PSNR和SSIM值统计

    Table  1  PSNR & SSIM between original and reconstructed images

    数据集 指标 均值 标准差 极小值 极大值
    Celeba PSNR 40.588 5.558 22.990 61.158
    SSIM 0.9984 0.0023 0.9218 1.0000
    Cifar10 PSNR 46.219 6.117 28.189 66.779
    SSIM 0.9993 0.0019 0.8180 1.0000
    下载: 导出CSV

    表  2  Celeba中不同解码实验结果

    Table  2  Results of different decoding experiments in Celeba

    对比项 IS ($ \sigma \times 0.01 $) FID 清晰度均值 清晰度均值差值
    训练集 2.71 ± 2.48 0.00 107.88 0.00
    正态特征 1.88 ± 1.25 42.54 121.40 13.52
    均匀特征 1.82 ± 1.48 43.04 123.02 15.14
    L1 1.99 ± 1.53 32.95 120.16 12.28
    L2* 1.69 ± 0.97 46.08 96.88 11.00
    L2 (本文) 2.05 ± 1.84 25.62 114.95 7.07
    下载: 导出CSV

    表  3  Cifar10中不同解码实验结果

    Table  3  Results of different decoding experiments in Cifar10

    对比项 IS ($ \sigma \times 0.1 $) FID 清晰度均值 清晰度均值差值
    训练集 10.70 ± 1.47 0.00 120.56 0.00
    正态特征 5.63 ± 0.64 48.21 139.88 19.32
    均匀特征 5.51 ± 0.79 46.57 137.13 16.57
    L1 5.63 ± 0.79 44.53 138.04 17.48
    L2* 4.69 ± 0.55 79.10 119.62 0.94
    L2 (本文) 5.83 ± 0.70 42.70 134.97 14.41
    下载: 导出CSV

    表  4  时间代价测试

    Table  4  Test of time cost

    数据集 模型 epoch 数 总耗时 (s) 单位耗时 (s)
    Celeba DCGANs[9] 20 3616.03 180.80
    本文方法 15 2868.33 191.22
    Cifar10 DCGANs[9] 20 2388.53 119.43
    本文方法 15 1859.51 123.97
    下载: 导出CSV

    表  5  Celeba中不同GANs对比

    Table  5  Comparsion of different GANs in Celeba

    GANs 模型 epoch 数 优化项 参数量 ($ \times 10^6 $) IS ($ \sigma \times 0.01 $) FID 清晰度均值 清晰度均值差值
    训练集 2.71 ± 2.48 0.00 107.88 0.00
    BEGANs[16] 35 沃瑟斯坦距离 4.47 1.74 ± 1.29 46.24 77.58 30.30
    DCGANs[9] 20 JS 散度 9.45 1.87 ± 1.58 50.11 124.82 16.94
    LSGANs[15] 35 Pearson 散度 9.45 2.02 ± 1.63 39.11 122.19 14.31
    WGANs[14] 35 沃瑟斯坦距离 9.45 2.03 ± 1.75 40.31 117.15 9.27
    WGANsGP[17] 35 沃瑟斯坦距离 9.45 1.98 ± 1.82 37.01 121.16 13.28
    SAGANs1[23] 30 沃瑟斯坦距离 10.98 2.06 ± 1.79 21.94 109.94 2.06
    SAGANs2[23] 30 JS 散度 10.98 1.99 ± 1.79 31.04 99.57 8.31
    本文方法 15 JS + $ \lambda \cdot $KL 散度 9.45 + 0.84 2.05 ± 1.84 25.62 114.95 7.07
    下载: 导出CSV

    表  6  Cifar10中不同GANs对比

    Table  6  Comparsion of different GANs in Cifar10

    GANs 模型 epoch 数 优化项 参数量 ($ \times 10^6 $) IS ($ \sigma \times 0.1 $) FID 清晰度均值 清晰度均值差值
    训练集 10.70 ± 1.47 0.00 120.56 0.00
    BEGANs[16] 35 沃瑟斯坦距离 3.67 5.36 ± 0.65 107.64 80.89 39.67
    DCGANs[9] 20 JS 散度 8.83 5.04 ± 0.27 54.27 139.12 18.56
    LSGANs[15] 35 Pearson 散度 8.83 5.70 ± 0.36 43.35 135.80 15.24
    WGANs[14] 35 沃瑟斯坦距离 8.83 5.25 ± 0.33 53.88 136.74 16.18
    WGANsGP[17] 35 沃瑟斯坦距离 8.83 5.39 ± 0.30 50.60 139.17 18.61
    SAGANs1[23] 30 沃瑟斯坦距离 8.57 6.09 ± 0.47 42.90 126.28 5.72
    SAGANs2[23] 30 JS 散度 8.57 5.37 ± 0.46 53.49 133.54 12.98
    本文方法 15 JS + $ \lambda \cdot $KL 散度 8.83 + 0.23 5.83 ± 0.70 42.70 134.97 14.41
    下载: 导出CSV
  • [1] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: Proceedings of the International Conference on Neural Information Processing Systems. Montreal, Canada: 2014. 2672−2680
    [2] Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath A A. Generative adversarial networks:an overview[J]. IEEE Signal Processing Magazine, 2018, 35(1): 53-65 doi: 10.1109/MSP.2017.2765202
    [3] Hong Y J, Hwang U, Yoo J, Yoon S. How generative adversarial networks and their variants work: an overview. ACM Computing Surveys, 2019, 52(1): Article 10, 1-43
    [4] Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint, 2014, arXiv: 1411.1784v1
    [5] Odena A. Semi-supervised learning with generative adversarial networks. arXiv preprint, 2016, arXiv: 1606.01583v2
    [6] Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the International Conference on Machine Learning. Sydney, Australia: 2017.
    [7] Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the International Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 2180−2188
    [8] Donahue J, Krahenbuhl K, Darrell T. Adversarial feature learning. In: Proceedings of the International Conference on Learning Representations. Toulon, France: 2017.
    [9] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. In: Proceedings of the International Conference on Learning Representations. San Juan, Puerto Rico: 2016.
    [10] Denton E, Chintala S, Szlam A, Fergus R. Deep generative image using a laplacian pyramid of adversarial networks. In: Proceedings of the International Conference on Neural Information Processing Systems. Montreal, Canada: 2015. 1486−14944
    [11] Brock A, Donahue J, Simonyan K. Large scale GAN training for high fidelity natural image synthesis. In: Proceedings of the International Conference on Learning Representations. New Orleans, USA: 2019.
    [12] Nguyen T D, Le T, Vu H, Phung D. Dual discriminator generative adversarial nets. In: Proceedings of the Proceedings of International Conference on Neural Information Processing Systems. Long Beach, USA: 2017.
    [13] 张龙, 赵杰煜, 叶绪伦, 董伟. 协作式生成对抗网络[J]. 自动化学报, 2018, 44(5): 804-810

    Zhang Long, Zhao Jie-Yu, Ye Xu-Lun, Dong Wei. Cooperative generative adversarial nets[J]. Acta Automatica Sinica, 2018, 44(5): 804-810
    [14] Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: Proceedings of the International Conference on Machine Learning. Sydney, Australia: 2017. 214−223
    [15] Mao X D, Li Q, Xie H R, Lau R Y K, Wang Z, Smolley S P. Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: 2017. 2813−2821
    [16] Berthelot D, Schumm T, Metz L. BEGAN: Boundary equilibrium generative adversarial networks. arXiv preprint, 2017, arXiv: 1703.10717v4
    [17] Gulrajani I, Ahmed G, Arjovsky M, Dumoulin V, Courville A. Improved training of Wasserstein GANs. In: Proceedings of the International Conference on Neural Information Processing Systems. Long beach, USA: 2017.
    [18] Wu J Q, Huang Z W, Thoma J, Acharya D, Gool L V. Wasserstein divergence for GANs. In: Proceedings of the European Conference on Computer Vision. Munich, Germany: 2018. 673− 688
    [19] Su J L. GAN-QP: A novel GAN framework without gradient vanishing and Lipschitz constraint. arXiv preprint, 2018, arXiv: 1811.07296v2
    [20] Zhao J B, Mathieu M, LeCun Y. Energy-based generative adversarial networks. In: Proceedings of the International Conference on Learning Representations. Toulon, France: 2017
    [21] 王功明, 乔俊飞, 乔磊. 一种能量函数意义下的生成式对抗网络. 自动化学报, 2018, 44(5): 793-803

    Wang Gong-Ming, Qiao Jun-Fei, Qiao Lei. A generative adversarial network in terms of energy function. Acta Automatica Sinica, 2018, 44(5): 793-803
    [22] Qi G J. Loss-sensitive generative adversarial networks on Lipschitz densities. arXiv preprint, 2017, arXiv: 1701.06264v5
    [23] Zhang H, Goodfellow I, Metaxas D, Odena A. Self-attention generative adversarial networks. In: Proceedings of the International Conference on Machine Learning. Long Beach, USA: 2019
    [24] Cover T M, Thomas J A. Elements of Information Theory. New York: John Wiley & Sons Inc., 2006. 12−49
    [25] Nielsen F. A family of statistical symmetric divergences based on Jensen's inequality. arXiv preprint, 2011, arXiv: 1009.4004v2
    [26] Goodfellow I, Bengio Y, Courville A. Deep Learning. Cambridge: MIT Press, 2017. 502−525
    [27] Alain G, Bengio Y. What regularized autoencoders learn from the data generating distribution. The Journal of Machine Learning Research, 2014, 15(1): 3563-3593
    [28] Vincent P, Larochelle H, Bengio Y, Manzagol P A. Extracting and composing robust features with denoising autoencoders. In: proceedings of the International Conference on Machine Learning. Rhineland, Germany: 2008.
    [29] Rifai S, Vincent P, Muller X, Glorot X, Bengio Y. Contractive auto-encoders: Explicit invariance during feature extraction. In: proceedings of the International Conference on Machine Learning. Washington, USA: 2011.
    [30] Kavukcuoglu K, Ranzato M, LeCun Y. Fast inference in sparse coding algorithms with applications to object recognition. arXiv preprint, 2010, arXiv: 1010.3467v1
    [31] Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention. Munich, Germany: 2015. 234− 241
    [32] Salimans T, Goodfellow I J, Zaremaba W, Cheung V, Radford A, Chen X. Improved techniques for training GANs. In: Proceedings of the International Conference on Neural Information Processing Systems. Barcelona, Spain: 2016. 2234−2242
    [33] Xu Q T, Huang G, Yuan Y, Huo C, Sun Y, Wu F, et al. An empirical study on evaluation metrics of generative adversarial networks. arXiv preprint, 2018, arXiv: 1806.07755v2
    [34] Shmelkov K, Schmid C, Alahari K. How good is my GAN? In: Proceedings of the European Conference on Computer Vision. Munich, Germany: 2018. 218−234
  • 加载中
图(19) / 表(6)
计量
  • 文章访问数:  948
  • HTML全文浏览量:  355
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-29
  • 网络出版日期:  2022-08-12
  • 刊出日期:  2022-09-16

目录

    /

    返回文章
    返回