2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动态多目标优化进化算法研究进展

马永杰 陈敏 龚影 程时升 王甄延

马永杰, 陈敏, 龚影, 程时升, 王甄延. 动态多目标优化进化算法研究进展. 自动化学报, 2020, 46(11): 2302−2318 doi: 10.16383/j.aas.c190489
引用本文: 马永杰, 陈敏, 龚影, 程时升, 王甄延. 动态多目标优化进化算法研究进展. 自动化学报, 2020, 46(11): 2302−2318 doi: 10.16383/j.aas.c190489
Ma Yong-Jie, Chen Min, Gong Ying, Cheng Shi-Sheng, Wang Zhen-Yan. Research progress of dynamic multi-objective optimization evolutionary algorithm. Acta Automatica Sinica, 2020, 46(11): 2302−2318 doi: 10.16383/j.aas.c190489
Citation: Ma Yong-Jie, Chen Min, Gong Ying, Cheng Shi-Sheng, Wang Zhen-Yan. Research progress of dynamic multi-objective optimization evolutionary algorithm. Acta Automatica Sinica, 2020, 46(11): 2302−2318 doi: 10.16383/j.aas.c190489

动态多目标优化进化算法研究进展

doi: 10.16383/j.aas.c190489
基金项目: 国家自然科学基金(62066041, 41861047)资助
详细信息
    作者简介:

    马永杰:西北师范大学物理与电子工程学院电子系教授. 主要研究方向为进化算法. 本文通信作者. E-mail: myjmyj@nwnu.edu.cn

    陈敏:西北师范大学物理与电子工程学院硕士研究生. 主要研究方向为进化算法. E-mail: cm9690@126.com

    龚影:西北师范大学物理与电子工程学院硕士研究生. 主要研究方向为智能计算. E-mail: 15320834175@163.com

    程时升:西北师范大学物理与电子工程学院硕士研究生. 主要研究方向为智能计算. E-mail: shishengcss@163.com

    王甄延:西北师范大学物理与电子工程学院硕士研究生. 主要研究方向为智能计算. E-mail: wzy1136390111@163.com

Research Progress of Dynamic Multi-objective Optimization Evolutionary Algorithm

Funds: Supported by National Natural Science Foundation of China (62066041, 41861047)
  • 摘要: 动态多目标优化问题(Dynamic multi-objective optimization problems, DMOPs)已成为工程优化的研究热点, 其目标函数, 约束函数和相关参数都可能随时间不断变化, 如何利用搜索到的历史最优解对新的环境变化做出快速响应, 是设计动态多目标优化进化算法(Dynamic multi-objective optimization evolutionary algorithm, DMOEA)的重点和难点. 本文在介绍DMOEA的基础上, 分析了近年来基于个体和种群级别的环境响应策略, 多策略混合等的DMOEA主要研究进展, 并介绍了DMOEA的性能测试函数, 评价指标以及在工程优化领域中的应用, 分析了DMOEA研究中仍面临的主要问题, 展望了未来的研究方向.
  • 图  1  DMOEA的设计流程框图

    Fig.  1  The design flow chart of DMOEA

    图  2  基于卡尔曼滤波的预测模型图

    Fig.  2  Relationship of EA with KF model

    图  3  动态环境中多种群调度方法的框架

    Fig.  3  Framework for multi-population methods with scheduling in dynamic environments

    图  4  BSCA算法体系结构图

    Fig.  4  The architecture of BSCA inspired by human NEI systems

    图  5  多种群的粒子群优化框架示意图

    Fig.  5  The framework of multi-swarm particle swarm optimization

    图  6  动态进化环境模型框图

    Fig.  6  A general framework of dynamic environment evolutionary model

  • [1] 刘淳安. 动态多目标优化进化算法研究综述. 海南大学学报自然科学版, 2010, 28(2): 176−182

    Liu Chun-An. Research on dynamic multiobjective optimization evolutionary algorithms. Natural Science Journal of Hainan University, 2010, 28(2): 176−182
    [2] 李智勇, 李峥, 陈恒勇, 张世文. 基于正交设计的动态多目标优化算法. 计算机工程与应用, 2016, 52(14): 42−49 doi: 10.3778/j.issn.1002-8331.1409-0064

    Li Zhi-Yong, Li Zheng, Chen Heng-Yong, Zhang Shi-Wen. Orthogonal design-based dynamic multi-objective optimization algorithm. Computer Engineering and Applications, 2016, 52(14): 42−49 doi: 10.3778/j.issn.1002-8331.1409-0064
    [3] Jiang S Y, Yang S X. Evolutionary dynamic multiobjective optimization: Benchmarks and algorithm comparisons. IEEE Transactions on Cybernetics, 2017, 47(1): 198−211 doi: 10.1109/TCYB.2015.2510698
    [4] Marichelvam M K, Prabaharan T, Yang X S. A discrete firefly algorithm for the multi-objective hybrid flowshop scheduling problems. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 301−305 doi: 10.1109/TEVC.2013.2240304
    [5] Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems: Test cases, approximation, and applications. In: Proceedings of the 2nd International Conference on Evolutionary Multi-Criterion Optimization. Faro, Portugal: Springer, 2003. 311−326
    [6] Farina M, Deb K, Amato P. Dynamic multiobjective optimization problems: Test cases, approximations, and applications. IEEE Transactions on Evolutionary Computation, 2004, 8(5): 425−442 doi: 10.1109/TEVC.2004.831456
    [7] Deb K, Rao N U B, Karthik S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling. In: Proceedings of the 4th International Conference on Evolutionary Multi-Criterion Optimization. Matsushima, Japan: Springer, 2007. 803−817
    [8] 刘淳安, 王宇平. 动态多目标优化的进化算法及其收敛性分析. 电子学报, 2007, 35(6): 1118−1121 doi: 10.3321/j.issn:0372-2112.2007.06.023

    Liu Chun-An, Wang Yu-Ping. Evolutionary algorithm for dynamic multi-objective optimization problems and its convergence. Acta Electronica Sinica, 2007, 35(6): 1118−1121 doi: 10.3321/j.issn:0372-2112.2007.06.023
    [9] Greeff M, Engelbrecht A P. Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation. In: Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008. 2917−2924
    [10] Koo W T, Goh C K, Tan K C. A predictive gradient strategy for multiobjective evolutionary algorithms in a fast changing environment. Memetic Computing, 2010, 2(2): 87−110 doi: 10.1007/s12293-009-0026-7
    [11] 武燕, 刘小雄, 池程芝. 动态多目标优化的预测遗传算法. 控制与决策, 2013, 28(5): 677−682

    Wu Yan, Liu Xiao-Xiong, Chi Cheng-Zhi. Predictive multiobjective genetic algorithm for dynamic multiobjective optimization problems. Control and Decision, 2013, 28(5): 677−682
    [12] 郑金华, 彭舟, 邹娟, 申瑞珉. 基于引导个体的预测策略求解动态多目标优化问题. 电子学报, 2015, 43(9): 1816−1825 doi: 10.3969/j.issn.0372-2112.2015.09.021

    Zheng Jin-Hua, Peng Zhou, Zou Juan, Shen Rui-Min. A prediction strategy based on guide-lndividual for dynamic multi-objective optimization. Acta Electronica Sinica, 2015, 43(9): 1816−1825 doi: 10.3969/j.issn.0372-2112.2015.09.021
    [13] Muruganantham A, Tan K C, Vadakkepat P. Evolutionary dynamic multiobjective optimization via kalman filter prediction. IEEE Transactions on Cybernetics, 2016, 46(12): 2862−2873 doi: 10.1109/TCYB.2015.2490738
    [14] Ruan G, Yu G, Zheng J H, Zou J, Yang S X. The effect of diversity maintenance on prediction in dynamic multi-objective optimization. Applied Soft Computing, 2017, 58: 631−647 doi: 10.1016/j.asoc.2017.05.008
    [15] Zou J, Li Q Y, Yang S X, Zheng J H, Peng Z, Pei T R. A dynamic multiobjective evolutionary algorithm based on a dynamic evolutionary environment model. Swarm and Evolutionary Computation, 2019, 44: 247−259 doi: 10.1016/j.swevo.2018.03.010
    [16] Isaacs A, Puttige V, Ray T, Smith W, Anavatti S. Development of a memetic algorithm for dynamic multi-objective optimization and its applications for online neural network modeling of UAVs. In: Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). Hong Kong, China: IEEE, 2008. 548−554
    [17] Ismayilov G, Topcuoglu H R. Neural network based multi-objective evolutionary algorithm for dynamic workflow scheduling in cloud computing. Future Generation Computer Systems, 2020, 102: 307−322 doi: 10.1016/j.future.2019.08.012
    [18] Sahmoud S, Topcuoglu H R. A general framework based on dynamic multi-objective evolutionary algorithms for handling feature drifts on data streams. Future Generation Computer Systems, 2020, 102: 42−52 doi: 10.1016/j.future.2019.07.069
    [19] Hu W Z, Jiang M, Gao X, Tan K C, Cheung Y M. Solving dynamic multi-objective optimization problems using incremental Support vector machine. In: Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC). Wellington, New Zealand: IEEE, 2019. 2794−2799
    [20] Orouskhani M, Teshnehlab M, Nekoui M A. Evolutionary dynamic multi-objective optimization algorithm based on Borda count method. International Journal of Machine Learning and Cybernetics, 2019, 10(8): 1931−1959 doi: 10.1007/s13042-017-0695-3
    [21] Coello C A C, Lamont G B, Van Veldhuizen D A. Evolutionary algorithms for solving multi-objective problems (Second edition). New York: Springer, 2007.
    [22] 彭舟. 动态环境下多目标进化优化的预测和保持种群多样性策略研究[硕士学位论文], 湘潭大学, 中国, 2015

    Peng Zhou. Research on Strategies of Prediction and Maintaining Population Diversity for Multi-objective Evolutionary Optimization in Dynamic Environment [Master thesis], Xiangtan University, China, 2015
    [23] 刘淳安, 王宇平. 基于新模型的动态多目标优化进化算法. 计算机研究与发展, 2008, 45(4): 603−611

    Liu Chun-An, Wang Yu-Ping. Dynamic multi-objective optimization evolutionary algorithm based on new model. Journal of Computer Research and Development, 2008, 45(4): 603−611
    [24] Trojanowski K, Michalewicz Z, Xiao J. Adding memory to the evolutionary planner/navigator. In: Proceedings of the 1997 IEEE International Conference on Evolutionary Computation. Indianapolis, USA : IEEE, 1997. 483−487
    [25] Trojanowski K, Michalewicz Z. Searching for optima in non-stationary environments. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99(Cat. No. 99TH8406). Washington, USA: IEEE, 1999.
    [26] 刘敏, 曾文华. 记忆增强的动态多目标分解进化算法. 软件学报, 2013, 24(7): 1571−1588

    Liu Min, Zeng Wen-Hua. Memory enhanced dynamic multi-objective evolutionary algorithm based on decomposition. Journal of Software, 2013, 24(7): 1571−1588
    [27] Yang S X. Memory-based immigrants for genetic algorithms in dynamic environments. In: Genetic and Evolutionary Computation Conference. Washington DC, USA: ACM, 2005. 1115−1122
    [28] Azzouz R, Bechikh S, Said L B. A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2017, 21(4): 885−906
    [29] Turky A, Abdullah S, Dawod A. A dual-population multi operators harmony search algorithm for dynamic optimization problems. Computers & Industrial Engineering, 2018, 117: 19−28
    [30] Hatzakis I, Wallace D. Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. Seattle, USA: ACM, 2006. 1201−1208
    [31] 丁进良, 杨翠娥, 陈立鹏, 柴天佑. 基于参考点预测的动态多目标优化算法. 自动化学报, 2017, 43(2): 313−320

    Ding Jin-Liang, Yang Cui-E, Chen Li-Peng, Chai Tian-You. Dynamic multi-objective optimization algorithm based on reference point prediction. Acta Automatica Sinica, 2017, 43(2): 313−320
    [32] 彭星光, 徐德民, 高晓光. 基于Pareto解集关联与预测的动态多目标进化算法. 控制与决策, 2011, 26(4): 615−618

    Peng Xing-Guang, Xu De-Min, Gao Xiao-Guang. A dynamic multi-objective evolutionary algorithm based on Pareto set linkage and prediction. Control and Decision, 2011, 26(4): 615−618
    [33] 耿焕同, 周山胜, 陈哲, 韩伟民. 基于分解的预测型动态多目标粒子群优化算法. 控制与决策, 2019, 34(6): 1307−1318

    Geng Huan-Tong, Zhou Shan-Sheng, Chen Zhe, Han Wei-Min. Decomposition-based predictive dynamic multi-objective particle swarm optimization algorithm. Control and Decision, 2019, 34(6): 1307−1318
    [34] Zhou A M, Jin Y C, Zhang Q F. A population prediction strategy for evolutionary dynamic multiobjective optimization. IEEE Transactions on Cybernetics, 2014, 44(1): 40−53 doi: 10.1109/TCYB.2013.2245892
    [35] Li Z Y, Chen H Y, Xie Z X, Chen C, Sallam A. Dynamic multiobjective optimization algorithm based on average distance linear prediction model. The Scientific World Journal, 2014, 2014: Article No. 389742
    [36] Zou J, Li Q Y, Yang S X, Bai H, Zhen J H. A prediction strategy based on center points and knee points for evolutionary dynamic multi-objective optimization. Applied Soft Computing, 2017, 61: 806−818 doi: 10.1016/j.asoc.2017.08.004
    [37] 李智翔, 李赟, 贺亮, 沈超. 使用新预测模型的动态多目标优化算法. 西安交通大学学报, 2018, 52(10): 8−15

    Li Zhi-Xiang, Li Yun, He Liang, Shen Chao. A dynamic multiobjective optimization algorithm with a new prediction model. Journal of Xi'an Jiaotong University, 2018, 52(10): 8−15
    [38] Jiang M, Huang Z Q, Qiu L M, Huang W Z, Yen G G. Transfer learning-based dynamic multiobjective optimization algorithms. IEEE Transactions on Evolutionary Computation, 2018, 22(4): 501−514 doi: 10.1109/TEVC.2017.2771451
    [39] Jiang M, Qiu L M, Huang Z Q, Yen G G. Dynamic multi-objective estimation of distribution algorithm based on domain adaptation and nonparametric estimation. Information Sciences, 2018, 435: 203−223 doi: 10.1016/j.ins.2017.12.058
    [40] Zhou J W, Zou J, Yang S X, Ruan G, Ou J W, Zheng J H. An evolutionary dynamic multi-objective optimization algorithm based on center-point prediction and sub-population autonomous guidance. In: Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI). Bangalore, India: IEEE, 2018. 2148−2154
    [41] Branke J, Kaussler T, Schmidt C, Schmeck H. A multi-population approach to dynamic optimization problems. Evolutionary Design and Manufacture. London: Springer, 2000. 299−307
    [42] 龙文. 一种改进的动态多种群并行差分进化算法. 计算机应用研究, 2012, 29(7): 2429−2431 doi: 10.3969/j.issn.1001-3695.2012.07.007

    Long Wen. Dynamic multi-species parallel differential evolution algorithm. Application Research of Computers, 2012, 29(7): 2429−2431 doi: 10.3969/j.issn.1001-3695.2012.07.007
    [43] 胡成玉, 姚宏, 颜雪松. 基于多粒子群协同的动态多目标优化算法及应用. 计算机研究与发展, 2013, 50(6): 1313−1323 doi: 10.7544/issn1000-1239.2013.20110847

    Hu Cheng-Yu, Yao Hong, Yan Xue-Song. Multiple particle swarms coevolutionary algorithm for dynamic multi-objective optimization problems and its application. Journal of Computer Research and Development, 2013, 50(6): 1313−1323 doi: 10.7544/issn1000-1239.2013.20110847
    [44] 张世文, 李智勇, 陈少淼, 李仁发. 基于生态策略的动态多目标优化算法. 计算机研究与发展, 2014, 51(6): 1313−1330 doi: 10.7544/issn1000-1239.2014.20120757

    Zhang Shi-Wen, Li Zhi-Yong, Chen Shao-Miao, Li Ren-FA. Dynamic multi-objective optimization algorithm based on ecological strategy. Journal of Computer Research and Development, 2014, 51(6): 1313−1330 doi: 10.7544/issn1000-1239.2014.20120757
    [45] Kordestani J K, Ranginkaman A E, Meybodi M R, Novoa-Hernández P. A novel framework for improving multi-population algorithms for dynamic optimization problems: A scheduling approach. Swarm and Evolutionary Computation, 2019, 44: 788−805 doi: 10.1016/j.swevo.2018.09.002
    [46] Yang Z, Jin Y, Hao K. A bio-inspired self-learning coevolutionary dynamic multiobjective optimization algorithm for Internet of Things services. IEEE Transactions on Evolutionary Computation, 2018, 23(4): 675−688 doi: 10.1109/TEVC.2018.2880458
    [47] Cobb H G, Grefenstette J J. Genetic algorithms for tracking changing environments. In: Proceedings of the 5th International Conference on Genetic Algorithms. Urbana-Champaign, USA: IEEE, 1993. 523−530
    [48] Vavak F, Fogarty T C, Jukes K. A genetic algorithm with variable range of local search for tracking changing environments. In: International Conference on Evolutionary Computation — The 4th International Conference on Parallel Problem Solving from Nature. Berlin, Germany: Springer, 1996. 376−385
    [49] Woldesenbet Y G, Yen G G. Dynamic evolutionary algorithm with variable relocation. IEEE Transactions on Evolutionary Computation, 2009, 13(3): 500−513 doi: 10.1109/TEVC.2008.2009031
    [50] Eriksson R, Olsson B. On the performance of evolutionary algorithms with life-time adaptation in dynamic fitness landscapes. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753). Portland, USA: IEEE, 2004. 1293−1300
    [51] Grefenstette J J. Genetic algorithms for changing environments. In: Proceedings of the 2nd Parallel Problem Solving From Nature 2. Brussels, Belgium: Elsevier, 1992. 137−144
    [52] Yang S X, Tinós R. A hybrid immigrants scheme for genetic algorithms in dynamic environments. International Journal of Automation and Computing, 2007, 4(3): 243−254 doi: 10.1007/s11633-007-0243-9
    [53] Mavrovouniotis M, Yang S X. Genetic algorithms with adaptive immigrants for dynamic environments. In: Proceedings of the 2013 IEEE Congress on Evolutionary Computation. Cancun, Mexico: IEEE, 2013. 2130−2137
    [54] Yang S X. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments. Evolutionary Computation, 2008, 16(3): 385−416 doi: 10.1162/evco.2008.16.3.385
    [55] Gee S B, Tan K C, Abbass H A. A benchmark test suite for dynamic evolutionary multiobjective optimization. IEEE Transactions on Cybernetics, 2017, 47(2): 461−472
    [56] Liu R C, Li J X, Fan J, Mu C H, Jiao L C. A coevolutionary technique based on multi-swarm particle swarm optimization for dynamic multi-objective optimization. European Journal of Operational Research, 2017, 261(3): 1028−1051 doi: 10.1016/j.ejor.2017.03.048
    [57] Rong M, Gong D, Zhang Y, Jin Y. Multidirectional prediction approach for dynamic multiobjective optimization problems. IEEE Transactions on Cybernetics, 2018, 49(9): 3362−3374
    [58] Liang Z P, Zheng S X, Zhu Z X, Yang S X. Hybrid of memory and prediction strategies for dynamic multiobjective optimization. Information Sciences, 2019, 485: 200−218 doi: 10.1016/j.ins.2019.01.066
    [59] 郑金华, 申瑞珉, 李密青, 邹娟, 袁琦钊. 多目标优化的进化环境模型及实现. 计算机学报, 2014, 37(12): 2530−2547

    Zheng Jin-Hua, Shen Rui-Min, Li Mi-Qing, Zou Juan, Yuan Qi-Zhao. An evolutionary environment model of multiobjective optimization and its realization. Chinese Journal of Computers, 2014, 37(12): 2530−2547
    [60] Yu X, Jin Y C, Tang K, Yao X. Robust optimization over time − a new perspective on dynamic optimization problems. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation. Barcelona, Spain: IEEE, 2010. 1−6
    [61] Liu C A. New dynamic multiobjective evolutionary algorithm with core estimation of distribution. In: Proceedings of the 2010 International Conference on Electrical and Control Engineering. Wuhan, China: IEEE, 2010. 1345−1348
    [62] Turky A M, Abdullah S. A multi-population electromagnetic algorithm for dynamic optimisation problems. Applied Soft Computing, 2014, 22: 474−482 doi: 10.1016/j.asoc.2014.04.032
    [63] Liu C A, Jia H M. Dynamic multiobjective evolutionary algorithm with two stages evolution operation. Intelligent Automation and Soft Computing, 2015, 21(4): 575−588
    [64] 耿焕同, 孙家清, 贾婷婷. 基于自适应启动策略的混合交叉动态约束多目标优化算法. 模式识别与人工智能, 2015, 28(5): 411−421

    Geng Huan-Tong, Sun Jia-Qing, Jia Ting-Ting. A mixture crossover dynamic constrained multi-objective evolutionary algorithm based on self-adaptive start-up strategy. Pattern Recognition and Artificial Intelligence, 2015, 28(5): 411−421
    [65] 焦儒旺, 曾三友, 李晰, 李长河. 基于学习的动态多目标方法求解约束优化问题. 武汉大学学报(理学版), 2017, 63(2): 177−183

    Jiao Ru-Wang, Zeng San-You, Li Xi, Li Chang-He. Constrained optimization by solving equivalent dynamic constrained multi-objective based on learning. Journal of Wuhan University (Natural Science Edition), 2017, 63(2): 177−183
    [66] 陈美蓉, 郭一楠, 巩敦卫, 杨振. 一类新型动态多目标鲁棒进化优化方法. 自动化学报, 2017, 43(11): 2014−2032

    Chen Mei-Rong, Guo Yi-Nan, Gong Dun-Wei, Yang Zhen. A novel dynamic multi-objective robust evolutionary optimization method. Acta Automatica Sinica, 2017, 43(11): 2014−2032
    [67] Barba-González C, García-Nieto J, Nebro A J, Cordero J A, Durillo J J, Navas-Delgado I, et al. jMetalSP: A framework for dynamic multi-objective big data optimization. Applied Soft Computing, 2018, 69: 737−748 doi: 10.1016/j.asoc.2017.05.004
    [68] Zhang Q F, Li H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712−731 doi: 10.1109/TEVC.2007.892759
    [69] Wang R, Ishibuchi H, Zhang Y, Zheng X K, Zhang T. On the effect of localized PBI method in MOEA/D for multi-objective optimization. In: Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI). Athens, Greece: IEEE, 2016. 1−8
    [70] Luo J P, Yang Y, Li X, Liu Q Q, Chen M R, Gao K Z. A decomposition-based multi-objective evolutionary algorithm with quality indicator. Swarm and Evolutionary Computation, 2018, 39: 339−355 doi: 10.1016/j.swevo.2017.11.004
    [71] 李智翔, 李赟, 贺亮. 采用新邻居模型的多目标分解进化算法. 计算机工程与应用, 2018, 54(14): 1−6 doi: 10.3778/j.issn.1002-8331.1803-0114

    Li Zhi-Xiang, Li Yun, He Liang. Decomposition multiobjective optimization algorithm with new neighborhood model. Computer Engineering and Applications, 2018, 54(14): 1−6 doi: 10.3778/j.issn.1002-8331.1803-0114
    [72] Biswas P P, Suganthan P N, Amaratunga G A J. Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization. Renewable Energy, 2018, 115: 326−337 doi: 10.1016/j.renene.2017.08.041
    [73] 李智翔, 贺亮, 韩杰思, 游凌. 一种基于偶图匹配的多目标分解进化算法. 控制与决策, 2018, 33(10): 1782−1788

    Li Zhi-Xiang, He Liang, Han Jie-Si, You Ling. A bigraph matching method for decomposition multiobjective optimization. Control and Decision, 2018, 33(10): 1782−1788
    [74] Liu R C, Li J X, Fan J, Jiao L C. A dynamic multiple populations particle swarm optimization algorithm based on decomposition and prediction. Applied Soft Computing, 2018, 73: 434−459
    [75] Qiao J F, Zhou H B, Yang C L, Yang S X. A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty. Applied Soft Computing, 2019, 74: 190−205
    [76] Cao L L, Xu L H, Goodman E D, Li H. Decomposition-based evolutionary dynamic multiobjective optimization using a difference model. Applied Soft Computing, 2019, 76: 473−490
    [77] 黄亮. 膜计算优化方法研究[博士学位论文], 浙江大学, 中国, 2007

    Huang L. Research on membrane computing optimization methods[Ph. D. dissertation], Zhejiang University, China, 2007
    [78] 陈兵华, 尤嘉兴, 陈基漓, 董明刚. 基于投影映射的动态多目标粒子群优化算法. 计算机仿真, 2016, 33(12): 233−238 doi: 10.3969/j.issn.1006-9348.2016.12.049

    Chen Bin-Hua, You Jia-Xing, Chen Ji-Li, Dong Ming-Gang. Dynamic multi-objective particle swarm optimization based on projection mapping. Computer Simulation, 2016, 33(12): 233−238 doi: 10.3969/j.issn.1006-9348.2016.12.049
    [79] 尤嘉兴, 陈基漓, 董明刚. 基于档案交叉的动态多目标粒子群优化算法. 计算机工程与设计, 2015, 36(2): 507−513

    You Jia-Xing, Chen Ji-Li, Dong Ming-gang. Dynamic multi-objective particle swarm optimization based on archive crossover. Computer Engineering and Design, 2015, 36(2): 507−513
    [80] 尚荣华, 焦李成, 公茂果, 马文萍. 免疫克隆算法求解动态多目标优化问题. 软件学报, 2007, 18(11): 2700−2711 doi: 10.1360/jos182700

    Shang Rong-Hua, Jiao Li-Cheng, Gong Mao-Guo, Ma Wen-Ping. An immune clonal algorithm for dynamic multi-objective optimization. Journal of Software, 2007, 18(11): 2700−2711 doi: 10.1360/jos182700
    [81] 郑金华, 邹娟. 多目标进化优化. 北京: 科学出版社, 2017

    Zheng Jin-Hua, Zou Juan. Multi-objective Evolutionary Optimization. Beijing:Science Press , 2017
    [82] Nguyen T T, Yang S X, Branke J. Evolutionary dynamic optimization: A survey of the state of the art. Swarm and Evolutionary Computation, 2012, 6: 1−24
    [83] Goh C K, Tan K C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2009, 13(1): 103−127
    [84] Van Veldhuizen D A, Lamont G B. On measuring multiobjective evolutionary algorithm performance. In: Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, USA: IEEE, 2000. 204−211
    [85] Van Veldhuizen D A. Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations[Ph. D. dissertation], Air Force Institute of Technology, USA, 1999.
    [86] Van Veldhuizen D A, Lamont G B. Evolutionary computation and convergence to a Pareto front. In: Proceedings of Late Breaking Papers at the Genetic Programming 1998 Conference. California, USA: Stanford University, 1998. 221−228
    [87] Liu M, Liu Y Z. A dynamic evolutionary multi-objective optimization algorithm based on decomposition and adaptive diversity introduction. In: Proceedings of the 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Changsha, China: IEEE, 2016. 235−240
    [88] Li X D, Branke J, Kirley M. On performance metrics and particle swarm methods for dynamic multiobjective optimization problems. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation. Singapore: IEEE, 2007. 576−583
    [89] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182−197
    [90] Schott J R. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization [Master thesis], Massachusetts Institute of Technology, USA, 1995
    [91] Yang S X. Memory-enhanced univariate marginal distribution algorithms for dynamic optimization problems. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation. Edinburgh, UK: IEEE, 2005. 2560−2567
    [92] Azzouz R, Bechikh S, Said L B, Trabelsi W. Handling time-varying constraints and objectives in dynamic evolutionary multi-objective optimization. Swarm and Evolutionary Computation, 2018, 39: 222−248
    [93] Cámara M, Ortega J, de Toro F. A single front genetic algorithm for parallel multi-objective optimization in dynamic environments. Neurocomputing, 2009, 72(16-18): 3570−3579
    [94] Camara M, Ortega J, Toro F J. Parallel processing for multi-objective optimization in dynamic environments. In: Proceedings of the 2007 IEEE International Parallel and Distributed Processing Symposium. Rome, Italy: IEEE, 2007. 1−8
    [95] 戴文战. 一种动态多目标决策模型及其应用. 控制与决策, 2000, 15(2): 197−200 doi: 10.3321/j.issn:1001-0920.2000.02.017

    Dai Wen-Zhan. A new kind of model of the dynamic multiple attribute decision making based on new effective function and its application. Control and Decision, 2000, 15(2): 197−200 doi: 10.3321/j.issn:1001-0920.2000.02.017
    [96] Vallerio M, Telen D, Cabianca L, Manenti F, van Impe J V, Logist F. Robust multi-objective dynamic optimization of chemical processes using the Sigma Point method. Chemical Engineering Science, 2016, 140: 201−216 doi: 10.1016/j.ces.2015.09.012
    [97] Qiao J F, Zhang W. Dynamic multi-objective optimization control for wastewater treatment process. Neural Computing and Applications, 2018, 29(11): 1261−1271 doi: 10.1007/s00521-016-2642-8
    [98] Han J, Yang C H, Zhou X J, Gui W H. Dynamic multi-objective optimization arising in iron precipitation of zinc hydrometallurgy. Hydrometallurgy, 2017, 173: 134-148
    [99] Luna R, Matias-Guiu P, López F, Pérez-Correa J R. Quality aroma improvement of Muscat wine spirits: A new approach using first-principles model-based design and multi-objective dynamic optimisation through multi-variable analysis techniques. Food and Bioproducts Processing, 2019, 115: 208−222 doi: 10.1016/j.fbp.2019.04.004
    [100] Guo Y N, Cheng J, Luo S, Gong D W, Xue Y. Robust dynamic multi-objective vehicle routing optimization method. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2018, 15(6): 1891−1903 doi: 10.1109/TCBB.2017.2685320
    [101] Kanoh H, Hara K. Hybrid genetic algorithm for dynamic multi-objective route planning with predicted traffic in a real-world road network. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation. Atlanta, USA: ACM, 2008. 657−664
    [102] Ghannadpour S F, Noori S, Tavakkoli-Moghaddam R, Ghoseiri K. A multi-objective dynamic vehicle routing problem with fuzzy time windows: Model, solution and application. Applied Soft Computing, 2014, 14: 504−527 doi: 10.1016/j.asoc.2013.08.015
    [103] Fernández-Rodríguez A, Fernández-Cardador A, Cucala A P. Balancing energy consumption and risk of delay in high speed trains: A three-objective real-time eco-driving algorithm with fuzzy parameters. Transportation Research Part C: Emerging Technologies, 2018, 95: 652−678 doi: 10.1016/j.trc.2018.08.009
    [104] Fernández-Rodríguez A, Fernández-Cardador A, Cucala A P. Real time eco-driving of high speed trains by simulation-based dynamic multi-objective optimization. Simulation Modelling Practice and Theory, 2018, 84: 50−68 doi: 10.1016/j.simpat.2018.01.006
    [105] Maravall D, de Lope J. Multi-objective dynamic optimization with genetic algorithms for automatic parking. Soft Computing, 2007, 11(3): 249−257 doi: 10.1007/s00500-006-0066-6
    [106] Min H Q, Zhu J H, Zheng X J. Obstacle avoidance with multi-objective optimization by PSO in dynamic environment. In: Proceedings of the 2005 International Conference on Machine Learning and Cybernetics. Guangzhou, China: IEEE, 2005. 2950−2956.
    [107] Cheng H, Yang S X, Cao J N. Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. Expert Systems with Applications, 2013, 40(4): 1381−1392 doi: 10.1016/j.eswa.2012.08.050
    [108] Jiao R W, Sun Y Z, Sun J Q, Jiang Y H, Zeng S Y. Antenna design using dynamic multi-objective evolutionary algorithm. IET Microwaves, Antennas & Propagation, 2018, 12(13): 2065−2072
    [109] 陈哲. 基于多样性策略的动态多目标粒子群优化算法研究及应用[硕士学位论文], 南京信息工程大学, 中国, 2017

    Chen Zhe. Research and Application on Dynamic Multi-Objective Particle Swarm Optimization Based on Diversity Strategy [Master thesis], Nanjing University of Information Engineering, China, 2017
    [110] 洪博文, 郭力, 王成山, 焦冰琦, 刘文建. 微电网多目标动态优化调度模型与方法. 电力自动化设备, 2013, 33(3): 100−107 doi: 10.3969/j.issn.1006-6047.2013.03.017

    Hong Bo-Wen, Guo Li, Wang Cheng-Shan, Jiao Bing-Qi, Liu Wen-Jian. Model and method of dynamic multi-objective optimal dispatch for microgrid. Electric Power Automation Equipment, 2013, 33(3): 100−107 doi: 10.3969/j.issn.1006-6047.2013.03.017
    [111] Discenzo F M, Chung D, Zevchek J K. System and Method for Dynamic Multi-Objective Optimization of Pumping System Operation and Diagnostics, U.S. Patent 7143016, November 2006.
    [112] Liu X L, Luo J G. A dynamic multi-objective optimization model with interactivity and uncertainty for real-time reservoir flood control operation. Applied Mathematical Modelling, 2019, 74: 606−620 doi: 10.1016/j.apm.2019.05.009
    [113] Huang L, Suh I H, Abraham A. Dynamic multi-objective optimization based on membrane computing for control of time-varying unstable plants. Information Sciences, 2011, 181(11): 2370−2391 doi: 10.1016/j.ins.2010.12.015
    [114] Ding J L, Yang C E, Xiao Q, Chai T Y, Jin Y C. Dynamic evolutionary multiobjective optimization for raw ore allocation in mineral processing. IEEE Transactions on Emerging Topics in Computational Intelligence, 2019, 3(1): 36−48
    [115] Hasan M M, Lwin K, Imani M, Shabut A, Bittencourt L F, Hossain M A. Dynamic multi-objective optimisation using deep reinforcement learning: Benchmark, algorithm and an application to identify vulnerable zones based on water quality. Engineering Applications of Artificial Intelligence, 2019, 86: 107−135 doi: 10.1016/j.engappai.2019.08.014
    [116] Jiang S Y, Yang S X. A steady-state and generational evolutionary algorithm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2017, 21(1): 65−82 doi: 10.1109/TEVC.2016.2574621
    [117] 刘若辰, 马亚娟, 张浪, 尚荣华. 基于预测策略的动态多目标免疫优化算法. 计算机学报, 2015, 38(8): 1544−1560 doi: 10.11897/SP.J.1016.2015.01544

    Liu Ruo-Chen, Ma Ya-Juan, Zhang Lang, Shang Rong-Hua. Dynamic multi-objective immune optimization algorithm based on prediction strategy. Chinese Journal of Computer, 2015, 38(8): 1544−1560 doi: 10.11897/SP.J.1016.2015.01544
    [118] 付锐, 张雅丽, 袁伟. 生态驾驶研究现状及展望. 中国公路学报, 2019, 32(3): 1−12

    Fu Rui, Zhang Ya-Li, Yuan Wei. Progress and prospect in research on eco-driving. China Journal of Highway and Transport, 2019, 32(3): 1−12
    [119] 吴国政. 从F03项目资助情况分析我国自动化学科的发展现状与趋势. 自动化学报, 2019, 45(9): 1611−1619

    Wu Guo-Zheng. Analysis of the status and trend of the development of China's automation discipline From F03 Funding of NSFC. Acta Automatica Sinica, 2019, 45(9): 1611−1619
    [120] Yang C E, Ding J L. Constrained dynamic multi-objective evolutionary optimization for operational indices of beneficiation process. Journal of Intelligent Manufacturing, 2019, 30(7): 2701−2713 doi: 10.1007/s10845-017-1319-1
    [121] Kyriakides A S, Voutetakis S, Papadopoulou S, Seferlis P. Integrated design and control of various hydrogen production flowsheet configurations via membrane based methane steam reforming. Membranes, 2019, 9(1): Article No. 14 doi: 10.3390/membranes9010014
  • 加载中
图(6)
计量
  • 文章访问数:  3973
  • HTML全文浏览量:  1578
  • PDF下载量:  1201
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 录用日期:  2019-11-15
  • 刊出日期:  2020-11-24

目录

    /

    返回文章
    返回