2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于概率关联的局部高斯过程回归算法

肖文鑫 张文文

肖文鑫, 张文文. 一种基于概率关联的局部高斯过程回归算法. 自动化学报, 2022, 48(8): 1940−1949 doi: 10.16383/j.aas.c190445
引用本文: 肖文鑫, 张文文. 一种基于概率关联的局部高斯过程回归算法. 自动化学报, 2022, 48(8): 1940−1949 doi: 10.16383/j.aas.c190445
Xiao Wen-Xin, Zhang Wen-Wen. A local Gaussian regression algorithm based on probability association. Acta Automatica Sinica, 2022, 48(8): 1940−1949 doi: 10.16383/j.aas.c190445
Citation: Xiao Wen-Xin, Zhang Wen-Wen. A local Gaussian regression algorithm based on probability association. Acta Automatica Sinica, 2022, 48(8): 1940−1949 doi: 10.16383/j.aas.c190445

一种基于概率关联的局部高斯过程回归算法

doi: 10.16383/j.aas.c190445
详细信息
    作者简介:

    肖文鑫:北京大学计算机学院博士研究生. 主要研究方向为软件工程和机器学习. E-mail: wenxin.xiao@stu.pku.edu.cn

    张文文:同济大学电子与信息工程学院博士研究生. 主要研究方向为传感器检测技术与测量系统. 本文通信作者. E-mail: zhangwenwen_1203@163.com

A Local Gaussian Regression Algorithm Based on Probability Association

More Information
    Author Bio:

    XIAO Wen-Xin Ph.D. candidate at the School of Computer Science, Peking University. His research interest covers software engineering and machine learning

    ZHANG Wen-Wen Ph.D. candidate at the College of Electronic and Information Engineering, Tongji University. His research interest covers sensor detection technology and measurement system. Corresponding author of this paper

  • 摘要: 在针对控制和机器人的机器学习任务中, 高斯过程回归是一种常用方法, 具有无参数学习技术的优点. 然而, 它在面对大量训练数据时存在计算量大的缺点, 因此并不适用于实时更新模型的情况. 为了减少这种计算量, 使模型能够通过实时产生的大量数据不断更新, 本文提出了一种基于概率关联的局部高斯过程回归算法. 与其他局部回归模型相比, 该算法通过对多维局部空间模型边界的平滑处理, 使用紧凑支持的概率分布来划分局部模型中的数据, 得到了更好的预测精度. 另外, 还对更新预测矢量的计算方法进行了改进, 并使用k-d树最近邻搜索减少数据分配和预测的时间. 实验证明, 该算法在保持全局高斯过程回归预测精度的同时, 显著提升了计算效率, 并且预测精度远高于其他局部高斯过程回归模型. 该模型能够快速更新和预测, 满足工程中的在线学习的需求.
  • 图  1  一维局部模型激活函数示意图

    Fig.  1  Schematic diagram of one-dimensional local model activation function

    图  2  二维局部模型分布示意图

    Fig.  2  Schematic diagram of two-dimensional local model distribution

    图  3  局部模型参数对边界约束模型性能的影响

    Fig.  3  Influence of local model parameters on performance of boundary constraint model

    图  4  对一维测试集的预测结果

    Fig.  4  Prediction results for one-dimensional test sets

    图  5  更新时间随数据量增长的变化趋势

    Fig.  5  The trend of update time as data increases

    图  6  预测时间随数据量增长的变化趋势

    Fig.  6  The trend of prediction time as the data increases

    图  7  预测误差随数据量增长的变化趋势

    Fig.  7  The trend of prediction error as data increases

    图  8  预设和实际运动轨迹的参数

    Fig.  8  Preset and actual motion trajectory parameters

    图  9  运动轨迹误差

    Fig.  9  Motion track error

    表  1  3种方法的性能对比

    Table  1  Performance comparison of three methods

    全局 GPR硬边界 LGPR边界约束 LGPR
    预测误差$ 1.281\times10^{-4}$$ 97.775\times 10^{-4}$$ 1.953\times10^{-4}$
    更新时间 (ms)132.7530.9291.230
    预测时间 (ms)2.1902.3711.342
    下载: 导出CSV
  • [1] Schneider M, Ertel W. Robot learning by demonstration with local Gaussian process regression. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 255−260
    [2] Hoefling F, Franosch T. Anomalous transport in the crowded world of biological cells. Reports on Progress in Physics, 2013, 76(4): 046602 doi: 10.1088/0034-4885/76/4/046602
    [3] Qiu L, Yuan S F, Chang F K, Bao Q, Mei H F. Online updating Gaussian mixture model for aircraft wing spar damage evaluation under time-varying boundary condition. Smart Materials and Structures, 2014, 23(12): 125001 doi: 10.1088/0964-1726/23/12/125001
    [4] Gramacy R B, Apley D W. Local Gaussian process approximation for large computer experiments. Journal of Computational and Graphical Statistics, 2015, 24(2): 561-578 doi: 10.1080/10618600.2014.914442
    [5] Bishop C M. Pattern Recognition and Machine Learning. Berlin: Springer-Verlag, 2006. 306−311
    [6] Candela J Q, Rasmussen C E. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 2005, 6(Dec): 1939-1959
    [7] Rasmussen C E. The infinite Gaussian mixture model. Advances in neural information processing systems, 2000, 12: 554-560
    [8] Plagemann C. Gaussian Processes for Flexible Robot Learning [Ph.D. dissertation], Albert Ludwig University of Freiburg, Germany, 2008.
    [9] 夏嘉欣, 陈曦, 林金星, 李伟鹏, 吴奇. 基于带有噪声输入的稀疏高斯过程的人体姿态估计. 自动化学报, 2019, 45(4): 693-705

    Xia Jia-Xin, Chen Xi, Lin Jin-Xing, Li Wei-Peng, Wu Qi. Sparse Gaussian process with input noise for human pose estimation. Acta Automatica Sinica, 2019, 45(4): 693-705
    [10] 乔少杰, 韩楠, 丁治明, 金澈清, 孙未未, 舒红平. 多模式移动对象不确定性轨迹预测模型. 自动化学报, 2018, 44(4): 608-618

    Qiao Shao-Jie, Han Nan, Ding Zhi-Ming, Jin Che-Qing, Sun Wei-Wei, Shu Hong-Ping. A multiple-motion-pattern trajectory prediction model for uncertain moving objects. Acta Automatica Sinica, 2018, 44(4): 608-618
    [11] 王传云, 秦世引. 动态场景红外图像的压缩感知域高斯混合背景建模. 自动化学报, 2018, 44(7): 1212-1226

    Wang Chuan-Yun, Qin Shi-Yin. Background modeling of infrared image in dynamic scene with Gaussian mixture model in compressed sensing domain. Acta Automatica Sinica, 2018, 44(7): 1212-1226
    [12] Da B S, Ong Y S, Gupta A, Feng L, Liu H T. Fast transfer Gaussian process regression with large-scale sources. Knowledge-Based Systems, 2019, 165: 208-218 doi: 10.1016/j.knosys.2018.11.029
    [13] Liu X, Ma Z M. Discriminant analysis with local gaussian similarity preserving for feature extraction. Neural Processing Letters, 2018, 47(1): 39-55 doi: 10.1007/s11063-017-9630-6
    [14] Binois M, Gramacy R B, Ludkovski M. Practical heteroscedastic Gaussian process modeling for large simulation experiments. Journal of Computational and Graphical Statistics, 2018, 27(4): 808-821 doi: 10.1080/10618600.2018.1458625
    [15] 任志刚, 梁永胜, 张爱民, 庞蓓. 基于一般二阶混合矩的高斯分布估计算法. 自动化学报, 2018, 44(4): 635-645

    Ren Zhi-Gang, Liang Yong-Sheng, Zhang Ai-Min, Pang Bei. A Gaussian estimation of distribution algorithm using general second-order mixed moment. Acta Automatica Sinica, 2018, 44(4): 635-645
    [16] Sarkar D, Osborne M A. Prediction of tidal currents using Bayesian machine learning. Ocean Engineering, 2018, 158: 221-231. doi: 10.1016/j.oceaneng.2018.03.007
    [17] Nguyen-Tuong D, Seeger M, Peters J. Model learning with local Gaussian process regression. Advanced Robotics, 2009, 27(13): 1003-1012
    [18] Berg M D, Cheong O, Kreveld M V, Overmars M. Computational Geometry: Algorithms and Applications. Berlin: Springer-Verlag, 2008. 99−105
    [19] Rasmussen C E. Gaussian Processes in Machine Learning. Berlin: Springer-Verlag, 2003. 7−31
    [20] Nocedal J, Wright S. Numerical Optimization. Berlin: Springer-Verlag, 2006. 101−133
    [21] Bentley J L. Multidimensional binary search trees used for associative searching. Communications of the ACM, 1975, 18(9): 509-517 doi: 10.1145/361002.361007
    [22] Freidman J, Bentley J L, Finkel R A. An algorithm for finding best matches in logarithmic expected time. ACM Transactions on Mathematical Software, 1977, 3(3): 209-226 doi: 10.1145/355744.355745
    [23] Otair M. Approximate k-nearest neighbour based spatial clustering using k-d tree. International Journal of Database Management Systems, 2013, 5(1): 1-12 doi: 10.5121/ijdms.2013.5101
    [24] Park C, Huang J H Z. Efficient computation of Gaussian process regression for large spatial data sets by patching local Gaussian processes. Journal of Machine Learning Research, 2016, 17(1): 6071-6099
    [25] Fang G, Wang X M, Wang K, Lee K H, Ho J D L, Fu H C, Fu D K C, Kwok K W. Vision-based online learning kinematic control for soft robots using local Gaussian process regression. IEEE Robotics and Automation Letters, 2019, 4(2): 1194-1201 doi: 10.1109/LRA.2019.2893691
    [26] Alcala-Fdez J, Fernandez A, Luengo J. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 2011, 17(2-3): 255-287
    [27] Beckers T, Umlauft J and Hirche S. Stable model-based control with Gaussian process regression for robot manipulators. IFAC-PapersOnLine, 2017, 50(1): 3877-3884 doi: 10.1016/j.ifacol.2017.08.359
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  712
  • HTML全文浏览量:  258
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 录用日期:  2019-10-16
  • 网络出版日期:  2022-07-08
  • 刊出日期:  2022-06-01

目录

    /

    返回文章
    返回