2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于对称三角模糊集的股票投资者情绪传播模型

王会东 李兆东 姚金丽 余德淦

王会东, 李兆东, 姚金丽, 余德淦. 基于对称三角模糊集的股票投资者情绪传播模型. 自动化学报, 2020, 46(5): 1031−1043 doi: 10.16383/j.aas.c190437
引用本文: 王会东, 李兆东, 姚金丽, 余德淦. 基于对称三角模糊集的股票投资者情绪传播模型. 自动化学报, 2020, 46(5): 1031−1043 doi: 10.16383/j.aas.c190437
Wang Hui-Dong, Li Zhao-Dong, Yao Jin-Li, Yu De-Gan. Sentimental propagation model of stock investors based on symmetric triangular fuzzy set. Acta Automatica Sinica, 2020, 46(5): 1031−1043 doi: 10.16383/j.aas.c190437
Citation: Wang Hui-Dong, Li Zhao-Dong, Yao Jin-Li, Yu De-Gan. Sentimental propagation model of stock investors based on symmetric triangular fuzzy set. Acta Automatica Sinica, 2020, 46(5): 1031−1043 doi: 10.16383/j.aas.c190437

基于对称三角模糊集的股票投资者情绪传播模型

doi: 10.16383/j.aas.c190437
基金项目: 国家自然科学基金(61402260, 71790603)资助
详细信息
    作者简介:

    王会东:山东财经大学管理科学与工程学院副教授. 2010年获中国科学院自动化研究所博士学位. 主要研究方向为计算智能理论与应用, 二型模糊, 模糊决策. 本文通信作者.E-mail: huidong.wang@ia.ac.cn

    李兆东:山东财经大学管理科学与工程学院硕士研究生. 主要研究方向为模糊舆情网络与投资者情绪.E-mail: lzd190663182@163.com

    姚金丽:山东财经大学管理科学与工程学院硕士研究生. 主要研究方向为模糊逻辑理论与应用, 模糊多属性决策.E-mail: yjl2mm@126.com

    余德淦:中山大学管理学院和中山大学现代会计与财务研究中心副研究员. 2017年获得美国罗德岛大学博士学位. 主要研究方向为公司金融,行为金融和供应链/金融交叉话题.E-mail: yudegan@mail.sysu.edu.cn

Sentimental Propagation Model of Stock Investors Based on Symmetric Triangular Fuzzy Set

Funds: Supported by National Natural Science Foundation of China (61402260, 71790603)
  • 摘要: 投资者情绪是股票市场中普遍存在的一种非理性行为, 是导致股票价格波动的重要因素. 本文采用模糊集合理论, 从微观视角下研究股票投资者情绪的传播过程. 采用对称三角模糊集合描述股票投资者思维的模糊性, 用模糊股价预期表示投资者情绪, 建立了股票投资者情绪的传播模型, 提出了三种基本的投资者情绪传播方式. 以股吧社区中的投资者情绪传播为例, 说明了所提出的股票投资者情绪传播模型的有效性.
  • 图  1  模糊股价预期中心传播

    Fig.  1  Center propagation of fuzzy stock expectation

    图  2  模糊股价预期中心传播时式(8)最大值的求取

    Fig.  2  How the max in (8) is achieved for center propagation of fuzzy stock expectation

    图  3  模糊股价预期不确定性传播

    Fig.  3  Uncertainty propagation of fuzzy stock expectation

    图  4  模糊股价预期不确定性传播时式(12)最大值的求取

    Fig.  4  How the max in (12) is achieved for uncertainty propagation function of fuzzy stock expectation

    图  5  X的无条件隶属度函数

    Fig.  5  Unconditional membership function of fuzzy set X under uncertainty propagation of fuzzy stock expectation

    图  6  模糊股价预期中心及不确定性传播

    Fig.  6  Center and uncertainty propagation of fuzzy stock expectation

    图  7  股吧评论图

    Fig.  7  Guba comments

    图  8  闭环投资者情绪传播示意图

    Fig.  8  Close-loop network diagram of investors' sentiment propagation

    图  9  投资者情绪传播结构图

    Fig.  9  Diagram of investors' sentiment propagation

  • [1] 文丹艳, 马超群, 王琨. 一种多源数据驱动的自动交易系统决策模型. 自动化学报, 2018, 44(8): 1505−1517

    Wen Dan-Yan, Ma Chao-Qun, Wang Kun. A multi-source data driven decision model for automatic trading systems. Acta Automatica Sinica, 2018, 44(8): 1505−1517
    [2] 孙彦林, 陈守东, 刘洋. 基于股市和汇市成交量信息视角的股价波动预测. 系统工程理论与实践, 2019, 39(4): 935−945 doi: 10.12011/1000-6788-2018-1985-11

    Sun Yan-Lin, Chen Shou-Dong, Liu-Yang. Forecast of stock price fluctuation based on the perspective of volume information in stock and foreign exchange market. Systems Engineering-Theory & Practice, 2019, 39(4): 935−945 doi: 10.12011/1000-6788-2018-1985-11
    [3] 伍燕然, 韩立岩. 不完全理性、投资者情绪与封闭式基金之谜. 经济研究, 2007, (3): 117−129

    Wu Yan-Ran, Han Li-Yan. Imperfect rationality, sentiment and closed-end-fund puzzle. Economic Research Journal, 2007, (3): 117−129
    [4] 乌达巴拉, 汪增福. 一种基于组合语义的文本情绪分析模型. 自动化学报, 2015, 41(12): 2125−2137

    Odbal, Wang Zeng-Fu. Emotion analysis model using compositional semantics. Acta Automatica Sinica, 2015, 41(12): 2125−2137
    [5] 郭东伟, 乌云娜, 邹蕴, 孟祥燕. 基于非理性博弈的舆情传播仿真建模研究. 自动化学报, 2014, 40(8): 1721−1732

    Guo Dong-Wei, Wu Yun-Na, Zou Yun, Meng Xiang-Yan. Simulation and modeling of non-rational game based public opinion spread. Acta Automatica Sinica, 2014, 40(8): 1721−1732
    [6] 部慧, 解峥, 李佳鸿. 基于股评的投资者情绪对股票市场的影响. 管理科学学报, 2018, 21(4): 91−106

    Bu Hui, Xie Zheng, Li Jia-Hong. Investor sentiment extracted from internet stock message boards and its effect on Chinese stock market. Journal of Management Sciences in China, 2018, 21(4): 91−106
    [7] Sul H K, Dennis A R, Yuan L. Trading on Twitter: using social media sentiment to predict stock returns. Decision Sciences, 2017, 48(3): 454−488 doi: 10.1111/deci.12229
    [8] 许启发, 伯仲璞, 蒋翠侠. 基于分位数Granger因果的网络情绪与股市收益关系研究. 管理科学, 2017, 30(3): 147−160 doi: 10.3969/j.issn.1672-0334.2017.03.013

    Xu Qi-Fa, Bo Zhong-Pu, Jiang Cui-Xia. Exploring the relationship between Internet sentiment and stock market returns based on quantile granger causality analysis. Journal of Management Science, 2017, 30(3): 147−160 doi: 10.3969/j.issn.1672-0334.2017.03.013
    [9] Scott J. Social Network Analysis (4th Edition), London, U.K.: Sage Publications Ltd, 2017.
    [10] Acemoglu D, Ozdaglar A. Opinion dynamics and learning in social networks. Dynamic Games and Applications, 2011, 1(1): 3−49 doi: 10.1007/s13235-010-0004-1
    [11] Yuan Y. Market-wide attention, trading, and stock returns. Journal of Financial Economics, 2015, 116(3): 548−564 doi: 10.1016/j.jfineco.2015.03.006
    [12] 吴璇, 田高良, 司毅. 网络舆情管理与股票流动性. 管理科学, 2017, 30(6): 51−64 doi: 10.3969/j.issn.1672-0334.2017.06.004

    Wu Xuan, Tian Gao-Liang, Si Yi. Internet media management and stock liquidity. Journal of Management Science, 2017, 30(6): 51−64 doi: 10.3969/j.issn.1672-0334.2017.06.004
    [13] Bozorgi A, Samet S, Kwisthout J, Wareham T. Community-based influence maximization in social networks under a competitive linear threshold model. Knowledge-Based Systems, 2017, 134: 149−158 doi: 10.1016/j.knosys.2017.07.029
    [14] Zhang X, Jiang D, Alsaedi A, Hayat T. Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching. Applied Mathematics Letters, 2016, 59: 87−93 doi: 10.1016/j.aml.2016.03.010
    [15] 熊熙, 乔少杰, 吴涛, 吴越, 韩楠, 张海清. 基于时空特征的社交网络情绪传播分析与预测模型. 自动化学报, 2018, 44(12): 2290−2299

    Xiong Xi, Qiao Shao-Jie, Wu Tao, Wu Yue, Han Nan, Zhang Hai-Qing. Spatio-temporal feature based emotional contagion analysis and prediction model for online social networks. Acta Automatica Sinica, 2018, 44(12): 2290−2299
    [16] Liu X, He D, Liu C. Information diffusion nonlinear dynamics modeling and evolution analysis in online social network based on emergency events. IEEE Transactions on Computational Social Systems, 2019, 6(1): 8−19 doi: 10.1109/TCSS.2018.2885127
    [17] Zhuang Y, Yagan O. Information propagation in clustered multilayer networks. IEEE Transactions on Network Science and Engineering, 2016, 3(4): 211−224 doi: 10.1109/TNSE.2016.2600059
    [18] Jackson M O. Social and Economic Networks. Princeton, NJ, USA: Princeton University Press, 2008
    [19] Wang L X, Mendel J M. Fuzzy opinion networks: a mathematical framework for the evolution of opinions and their uncertainties across social networks. IEEE Transactions on Fuzzy Systems, 2016, 24(4): 880−905 doi: 10.1109/TFUZZ.2015.2486816
    [20] Wang L X, Mendel J M. Fuzzy networks: What happens when fuzzy people are connected through social networks. In: Proceedings of the 2014 IEEE Symposium on Foundations of Comput-ational Intelligence (FOCI). Orlando, FL, USA: IEEE, 2014. 30-37
    [21] Wang L X. Hierarchical fuzzy opinion networks: top-down for social organizations and bottom-up for election. arXiv preprint, arXiv: 1901.00441, 2019
    [22] Hommes C H. Heterogeneous agent models in economics and finance. Handbook of Computational Economics, 2006, 2: 1109-1186
    [23] Wang L X. Modeling stock price dynamics with fuzzy opinion networks. IEEE Transactions on Fuzzy Systems, 2017, 25(2): 277−301 doi: 10.1109/TFUZZ.2016.2574911
    [24] Lux T. Estimation of an agent-based model of investor sentiment formation in financial markets. Journal of Economic Dynamics and Control, 2012, 36(8): 1284−1302 doi: 10.1016/j.jedc.2012.03.012
    [25] Anzilli L, Facchinetti G. A Fuzzy quantity mean-variance view and its application to a client financial risk tolerance model. International Journal of Intelligent Systems, 2016, 31(10): 963−988 doi: 10.1002/int.21812
    [26] Chen H M, Hu C F, Yeh W C. Option pricing and the greeks under gaussian fuzzy environments. Soft Computing, 2019, 23(24): 13351−13374 doi: 10.1007/s00500-019-03876-w
    [27] Baker M P, Wurgler J. Investor dentiment and the cross-section of stock returns. Economic Management Journal, 2006, 61(4): 1645−1680
    [28] Da Z, Engelberg J, Gao P. The sum of all FEARS investor sentiment and asset prices. Review of Financial Studies, 2014, 28(1): 1−32
    [29] Zadeh L A. Is there a need for fuzzy logic? Information Sciences, 2008, 178(13): 2751−2779
    [30] Zadeh L A. Outline of new approach to the analysis of complex systems and decision processes. IEEE Transaction Systems, Man, and Cybernetics, 1973, SMC-3(1): 28−44 doi: 10.1109/TSMC.1973.5408575
    [31] Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning-I. Information Sciences, 1975, 8(3): 199−249 doi: 10.1016/0020-0255(75)90036-5
  • 加载中
图(9)
计量
  • 文章访问数:  2010
  • HTML全文浏览量:  1140
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-05
  • 录用日期:  2019-11-16
  • 网络出版日期:  2020-06-01
  • 刊出日期:  2020-06-01

目录

    /

    返回文章
    返回