2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于两台显微相机主动运动的微球孔姿态高精度测量方法

曲吉旺 徐德 张大朋 许家忠

曲吉旺, 徐德, 张大朋, 许家忠. 基于两台显微相机主动运动的微球孔姿态高精度测量方法. 自动化学报, 2021, 47(6): 1315−1326 doi: 10.16383/j.aas.c190432
引用本文: 曲吉旺, 徐德, 张大朋, 许家忠. 基于两台显微相机主动运动的微球孔姿态高精度测量方法. 自动化学报, 2021, 47(6): 1315−1326 doi: 10.16383/j.aas.c190432
Qu Ji-Wang, Xu De, Zhang Da-Peng, Xu Jia-Zhong. High precision pose measurement of microsphere-hole based on active movements of two microscopic cameras. Acta Automatica Sinica, 2021, 47(6): 1315−1326 doi: 10.16383/j.aas.c190432
Citation: Qu Ji-Wang, Xu De, Zhang Da-Peng, Xu Jia-Zhong. High precision pose measurement of microsphere-hole based on active movements of two microscopic cameras. Acta Automatica Sinica, 2021, 47(6): 1315−1326 doi: 10.16383/j.aas.c190432

基于两台显微相机主动运动的微球孔姿态高精度测量方法

doi: 10.16383/j.aas.c190432
基金项目: 国家自然科学基金(61873266, 61733004, 61673383)资助
详细信息
    作者简介:

    曲吉旺:哈尔滨理工大学硕士研究生. 2015年获得青岛科技大学学士学位. 主要研究方向为视觉测量, 视觉控制, 微装配与机器学习. E-mail: qujiwang2017@ia.ac.cn

    徐德:中国科学院自动化研究所研究员. 1985年和1990年分别获得山东工业大学学士和硕士学位. 2001年获得浙江大学博士学位. 主要研究方向为机器人视觉测量, 视觉控制, 智能控制, 视觉定位, 显微视觉, 微装配. 本文通信作者. E-mail: de.xu@ia.ac.cn

    张大朋:中国科学院自动化研究所副研究员. 2003年和2006年分别获得河北工业大学学士和硕士学位. 2011年获得北京航空航天大学博士学位. 主要研究方向为视觉控制, 微装配与医疗机器人. E-mail: dapeng.zhang@ia.ac.cn

    许家忠:哈尔滨理工大学自动化学院教授. 2002年获得东北农业大学硕士学位. 2007年获得哈尔滨理工大学博士学位. 主要研究方向为智能机器人与运动控制, 数控装备研发, 纤维缠绕复合材料制造工艺及数控装备研发. E-mail: 13904505290@126.com

High Precision Pose Measurement of Microsphere-hole Based on Active Movements of Two Microscopic Cameras

Funds: Supported by National Natural Science Foundation of China (61873266, 61733004, 61673383)
More Information
    Author Bio:

    QU Ji-Wang Master student at the School of Automation, Harbin University of Science and Technology. He received his bachelor degree from Qingdao University of Science and Technology in 2015. His research interest covers visual measurement, visual control, micro-assembly, and machine learning

    XU De Professor at the Institute of Automation, Chinese Academy of Sciences. He received his bachelor degree and master degree from Shandong University of Technology in 1985 and 1990, and received his Ph.D. degree from Zhejiang University in 2001, respectively. His research interest covers robotics and automation such as visual measurement, visual control, intelligent control, visual positioning, microscopic vision, and microassembly. Corresponding author of this paper

    ZHANG Da-Peng Associate professor at the Institute of Automation, Chinese Academy of Sciences (IACAS). He received his bachelor and master degrees from Hebei University of Technology in 2003 and 2006, respectively, and his Ph.D. degree from Beijing University of Aeronautics and Astronautics in 2011. His research interest covers visual control, micro-assembly, and medical robot

    XU Jia-Zhong Professor at the School of Automation, Harbin University of Science and Technology. He received his master degree from Northeast Agricultural University in 2002, and received his Ph.D. degree from Harbin University of Science and Technology in 2007, respectively. His research interest covers intelligent robots and motion control, computer numerical control (CNC) equipment development, fiber winding composite manufacturing process, and numerical control equipment development

  • 摘要: 在一些微装配任务中, 对微器件姿态的测量是至关重要的一步. 带有微孔的球形微器件, 特征较少, 姿态测量困难. 为此, 本文提出一种基于双目显微视觉的微球孔姿态高精度测量方法. 设计了微球/微孔边缘提取方法, 实现了微球球心和微孔孔心的精确定位. 通过对两路显微相机聚焦轴方向的标定, 弥补了由相机聚焦轴运动引入的测量误差, 提高了微球孔姿态的测量精度. 通过两路倾斜正交的显微相机的主动运动, 计算出微球孔姿态向量在相机运动坐标系中的分解角. 根据相机运动坐标系与微球调整平台坐标系间的角度转换矩阵, 将相机运动坐标系中的分解角转换为微球调整平台坐标系中的旋转角, 从而计算出精确的微球孔姿态向量. 实验结果表明, 微球孔姿态测量的最大误差为0.08°, 验证了本文方法的有效性.
  • 图  1  微球示意图

    Fig.  1  The miscrosphere

    图  2  实验平台示意图

    Fig.  2  Experiment platform

    图  3  平台坐标系示意图

    Fig.  3  Coordinates of experiment platform

    图  4  聚焦过程

    Fig.  4  Focusing process

    图  5  微球图像

    Fig.  5  The real miscrosphere

    图  6  微球图像中一行的灰度值变化曲线图

    Fig.  6  Gray value change graph of one line in the microsphere image

    图  7  微球边缘及球心的拟合

    Fig.  7  The fitting of microsphere edge and center

    图  8  微孔边缘检测与微孔中心的拟合

    Fig.  8  The detection of micro-hole edge and fitting of micro-hole center

    图  9  微球孔姿态测量原理示意图

    Fig.  9  Schematic diagram of microsphere hole pose measurement principle

    图  10  实验系统实物图

    Fig.  10  The real experiment system

    图  11  实验过程中采集的微球和微孔图像

    Fig.  11  Microsphere and micro-hole images acquired during the experiment

    图  12  用向量表示的微球孔姿态实验结果

    Fig.  12  Experimental results of microsphere hole poses expressed by vector

    表  1  $ X _{W} $轴旋转的实验结果(°)

    Table  1  Experimental results of rotation along with the $ X _{W} $ axis (°)

    次数 本文方法 文献 [20] 真实值
    ${\alpha}_{m1},$ ${\beta}_{m1}$ ${\alpha}_{m2},$ ${\beta}_{m2}$ ${\alpha}_{r},$ ${\beta}_{r}$
    1 2.03, 0.00 2.08, 0.04 2.00, 0.00
    2 4.05, 0.04 3.90, 0.08 4.00, 0.00
    3 6.05, 0.03 6.11, 0.10 6.00, 0.00
    4 8.02, −0.04 8.18, 0.15 8.00, 0.00
    5 −2.03, 0.04 −2.05, 0.03 −2.00, 0.00
    6 −3.95, 0.05 −3.91, 0.04 −4.00, 0.00
    7 −5.95, −0.04 −6.12, −0.08 −6.00, 0.00
    8 −7.96, −0.03 −8.13, −0.13 −8.00, 0.00
    下载: 导出CSV

    表  2  $ Y _{W} $轴旋转的实验结果(°)

    Table  2  Experimental results of rotation along with the $ Y _{W} $ axis (°)

    次数 本文方法 文献 [20] 真实值
    ${\alpha}_{m1}$, ${\beta}_{m1}$ ${\alpha}_{m2}$, ${\beta}_{m2}$ ${\alpha}_{r}$, ${\beta}_{r}$
    1 −0.06, 1.05 0.06, 1.07 0.00, 1.00
    2 0.02, 1.92 0.04, 2.12 0.00, 2.00
    3 0.08, 2.99 0.04, 3.11 0.00, 3.00
    4 0.03, 4.03 0.05, 4.13 0.00, 4.00
    5 −0.05, 5.04 −0.07, 5.16 0.00, 5.00
    6 0.01, −1.01 −0.04, −1.09 0.00, −1.00
    7 0.06, −2.04 −0.06, −2.11 0.00, −2.00
    8 −0.04, −3.06 −0.05, −3.13 0.00, −3.00
    9 0.07, −4.06 −0.07, −4.16 0.00, −4.00
    10 0.01, −5.07 −0.10, −5.17 0.00, −5.00
    下载: 导出CSV

    表  3  $ X _{W} $轴及$ Y _{W} $轴旋转的实验结果(°)

    Table  3  Experimental results of rotation along with the $ X _{W} $ and $ Y _{W} $ axis, simultaneously (°)

    次数 本文方法 文献 [20] 真实值
    ${\alpha}_{m1}$, ${\beta}_{m1}$ ${\alpha}_{m2}$, ${\beta}_{m2}$ ${\alpha}_{r}$, ${\beta}_{r}$
    1 1.03, 1.05 0.93, 1.03 1.00, 1.00
    2 2.02, 0.98 1.86, 1.10 2.00, 1.00
    3 3.01, 2.04 3.10, 2.08 3.00, 2.00
    4 3.97, 3.04 3.89, 3.18 4.00, 3.00
    5 4.96, 5.07 5.20, 4.88 5.00, 5.00
    6 −1.01, −2.00 −1.04, −2.05 −1.00, −2.00
    7 −2.02, −3.04 −1.92, −2.89 −2.00, −3.00
    8 −3.03, −0.97 −3.07, −0.95 −3.00, −1.00
    9 −3.96, −1.97 −3.85, −2.14 −4.00, −2.00
    10 −4.99, 4.04 −4.83, 4.10 −5.00, 4.00
    下载: 导出CSV
  • [1] 李福东. 基于显微视觉的微管-微球装配与胶接研究 [博士学位论文]. 中国科学院自动化研究所, 中国, 2014

    Li Fu-Dong. Research on Micro Tube and Micro Sphere Assembly Involving Adhesive Bonding Based on Microscopic Vision [Ph.D. dissertation]. Institute of Automation, Chinese Academy of Sciences, China, 2014.
    [2] Jia Z Y, Ma X, Liu W, Lu W B, Li X, Chen L, et al. Pose measurement method and experiments for high-speed rolling targets in a wind tunnel. Sensors, 2014, 14(12): 23933−23953 doi: 10.3390/s141223933
    [3] Lins R G, Givigi S N, Kurka P R G. Vision-based measurement for localization of objects in 3-D for robotic applications. IEEE Transactions on Instrumentation and Measurement, 2015, 64(11): 2950−2958 doi: 10.1109/TIM.2015.2440556
    [4] Hou D X, Mei X S, Huang W W, Li J, Wang C J, Wang X. An online and vision-based method for fixtured pose measurement of non-datum complex component. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3370−3376
    [5] Yang J C, Man J B, Xi M, Gao X B, Lu W, Meng Q G. Precise measurement of position and attitude based on convolutional neural network and visual correspondence relationship. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(6): 2030−2041
    [6] 李二闯, 张建杰, 袁亮, 吴金强. 基于四元数互补滤波的小型四旋翼姿态解算. 组合机床与自动化加工技术, 2019, (3): 37−39, 43

    Li Er-Chuang, Zhang Jian-Jie, Yuan Liang, Wu Jin-Qiang. Small quadruple rotor attitude solving based on quaternion complementary filtering. Modular Machine Tool and Automatic Manufacturing Technique, 2019, (3): 37−39, 43
    [7] Jin P J, Matikainen P, Srinivasa S S. Sensor fusion for fiducial tags: Highly robust pose estimation from single frame RGBD. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017.
    [8] Li J M, Wang J G, Zhou W T, Jia S W. Robot pose estimation and accuracy analysis based on stereo vision. In: Proceedings of the 9th IEEE International Conference on Mobile Ad-hoc and Sensor Networks. Dalian, China: IEEE, 2013.
    [9] Peng J Q, Xu W F, Liang B, Wu A G. Pose measurement and motion estimation of space non-cooperative targets based on laser radar and stereo-vision fusion. IEEE Sensors Journal, 2019, 19(8): 3008−3019 doi: 10.1109/JSEN.2018.2889469
    [10] Su J, Huang X H, Wang M. Pose detection of partly covered target in micro-vision system. In: Proceedings of the 10th World Congress on Intelligent Control and Automation. Beijing, China: IEEE, 2012.
    [11] Zhang P C, Xu D, Wu B L. Pose estimation for plane based on monocular microscope vision system. In: Proceedings of the 32nd Chinese Control Conference. Xi' an, China: IEEE, 2013.
    [12] 刘国华, 邓钊钊. 基于双目视觉的探针姿态检测. 天津工业大学学报, 2019, 38(2): 68−72, 88 doi: 10.3969/j.issn.1671-024x.2019.02.012

    Liu Guo-Hua, Deng Zhao-Zhao. Probe attitude detection based on binocular vision. Journal of Tianjin Polytechnic University, 2019, 38(2): 68−72, 88 doi: 10.3969/j.issn.1671-024x.2019.02.012
    [13] 张娟, 张正涛, 徐德. 基于显微视觉的微零件在线检测与装配策略研究. 高技术通讯, 2013, 23(8): 848−855 doi: 10.3772/j.issn.1002-0470.2013.08.011

    Zhang Juan, Zhang Zheng-Tao, Xu De. On-line detecting and assembling of micro parts based on microscope vision. High Technology Letters, 2013, 23(8): 848−855 doi: 10.3772/j.issn.1002-0470.2013.08.011
    [14] Ma Y Q, Liu X L and Xu D. Precision pose measurement of an object with flange based on shadow distribution. IEEE Transactions on Instrumentation and Measurement, 2020, 69(5): 2003−2015
    [15] Li F D, Xu D, Zhang Z T, Shi Y L. Realization of an automated micro assembly task involving micro adhesive bonding. International Journal of Automation and Computing, 2013, 10(6): 545−551 doi: 10.1007/s11633-013-0752-7
    [16] Huang X H, Zeng X J, Wang M. SVM-based identification and un-calibrated visual servoing for micro manipulation. International Journal of Automation and Computing, 2010, 7(1): 47−54 doi: 10.1007/s11633-010-0047-1
    [17] Qin F B, Shen F, Zhang D P, Liu X L, Xu D. Contour primitives of interest extraction method for microscopic images and its application on pose measurement. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(8): 1348−1359 doi: 10.1109/TSMC.2017.2669219
    [18] 史亚莉, 张正涛, 徐德. 跨尺度微管微球三维半自动装配点胶系统. 光学精密工程, 2015, 23(11): 3121−3128

    Shi Ya-Li, Zhang Zheng-Tao, Xu De. 3D semi-automatic assembly and dispensing system for trans-scale parts of micro-tube and micro-sphere. Optics and Precision Engineering, 2015, 23(11): 3121−3128
    [19] Li F D, Xu D, Zhang Z T, Shi Y L, Shen F. Pose measuring and aligning of a micro glass tube and a hole on the micro sphere. International Journal of Precision Engineering and Manufacturing, 2014, 15(12): 2483−2491 doi: 10.1007/s12541-014-0618-0
    [20] 李迎, 张大朋, 刘希龙, 徐德. 基于单目显微视觉的微球姿态测量方法. 自动化学报, 2019, 45(7): 1281−1289

    Li Ying, Zhang Da-Peng, Liu Xi-Long, Xu De. A pose measurement method for micro sphere based on monocular microscopic vision. Acta Automatica Sinica, 2019, 45(7): 1281−1289
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  193
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-04
  • 录用日期:  2019-11-01
  • 网络出版日期:  2021-06-10
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回