[1]
|
Nedić A, Olshevsky A, Rabbat M G. Network topology and communication-computation tradeoffs in decentralized optimization. Proceedings of the IEEE, 2018, 106(5): 953−976 doi: 10.1109/JPROC.2018.2817461
|
[2]
|
谢佩, 游科友, 洪奕光, 谢立华. 网络化分布式凸优化算法研究进展. 控制理论与应用, 2018, 35(7): 918−927 doi: 10.7641/CTA.2018.80205Xie Pei, You Ke-You, Hong Yi-Guang, Xie Li-Hua. A survey of distributed convex optimization algorithms over networks. Control Theory and Applications, 2018, 35(7): 918−927 doi: 10.7641/CTA.2018.80205
|
[3]
|
Nedić A, Ozdaglar A. Distributed subgradient methods for multi-agent optimization. IEEE Transactions on Automatic Control, 2009, 54(1): 48−61 doi: 10.1109/TAC.2008.2009515
|
[4]
|
Nedić A, Ozdaglar A, Parrilo P A. Constrained consensus and optimization in multi-agent networks. IEEE Transactions on Automatic Control, 2010, 55(4): 922−938 doi: 10.1109/TAC.2010.2041686
|
[5]
|
Zhu M H, Martínez S. On distributed convex optimization under inequality and equality constraints. IEEE Transactions on Automatic Control, 2012, 57(1): 151−164 doi: 10.1109/TAC.2011.2167817
|
[6]
|
Zhang Y Q, Lou Y C, Hong Y G. An approximate gradient algorithm for constrained distributed convex optimization. IEEE/CAA Journal of Automatica Sinica, 2014, 1(1): 61−67 doi: 10.1109/JAS.2014.7004621
|
[7]
|
Guo F H, Wen C Y, Mao J F, Li G Q, Song Y D. A distributed hierarchical algorithm for multi-cluster constrained optimization. Automatica, 2017, 77: 230−238 doi: 10.1016/j.automatica.2016.11.029
|
[8]
|
Tuck J, Hallac D, Boyd S. Distributed majorizationminimization for laplacian regularized problems. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1): 45−52 doi: 10.1109/JAS.2019.1911321
|
[9]
|
Shi G D, Johansson K H, Hong Y G. Reaching an optimal consensus: Dynamical systems that compute intersections of convex sets. IEEE Transactions on Automatic Control, 2013, 58(3): 610−622 doi: 10.1109/TAC.2012.2215261
|
[10]
|
Lu J, Tang C Y. Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case. IEEE Transactions on Automatic Control, 2012, 57(9): 2348−2354 doi: 10.1109/TAC.2012.2184199
|
[11]
|
Qiu Z R, Liu S, Xie L H. Distributed constrained optimal consensus of multi-agent systems. Automatica, 2016, 68: 209−215 doi: 10.1016/j.automatica.2016.01.055
|
[12]
|
Yi P, Hong Y G, Liu F. Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Systems and Control Letters, 2015, 83: 42−52
|
[13]
|
Le X Y, Chen S J, Yan Z, Xi J T. A neurodynamic approach to distributed optimization with globally coupled constraints. IEEE Transactions on Cybernetics, 2018, 48(11): 3149−3158 doi: 10.1109/TCYB.2017.2760908
|
[14]
|
Yang S F, Liu Q S, Wang J. A multi-agent system with a proportional-integral protocol for distributed constrained optimization. IEEE Transactions on Automatic Control, 2017, 62(7): 3461−3467 doi: 10.1109/TAC.2016.2610945
|
[15]
|
Rahili S, Ren W. Distributed continuous-time convex optimization with time-varying cost functions. IEEE Transactions on Automatic Control, 2017, 62(4): 1590−1605 doi: 10.1109/TAC.2016.2593899
|
[16]
|
张青, 弓志坤, 杨正全, 陈增强. 多智能体系统的自适应群集分布式优化. 控制理论与应用, 2019, 36(4): 666−672 doi: 10.7641/CTA.2018.80562Zhang Qing, Gong Zhi-Kun, Yang Zheng-Quan, Chen Zeng-Qiang. Distributed optimization for adaptive flocking of multi-agent systems, Control Theory and Applications, 2019, 36(4): 666−672 doi: 10.7641/CTA.2018.80562
|
[17]
|
Song Y F, Chen W S. Finite-time convergent distributed consensus optimisation over networks. IET Control Theory & Applications, 2016, 10(11): 1314−1318
|
[18]
|
Hu Z L, Yang J Y. Distributed finite-time optimization for second order continuous-time multiple agents systems with time-varying cost function. Neurocomputing, 2018, 287(11): 173−184
|
[19]
|
Santilli M, Marino A, Gasparri A. A finite-time protocol for distributed continuous-time optimization of sum of locally coupled strictly convex functions. In: Proceedings of the 2018 IEEE Conference on Decision and Control. Florida, USA: IEEE, 2018. 993−998
|
[20]
|
Lin P, Ren W, Farrell J A. Distributed continuous-time optimization: Nonuniform gradient gains, finite-time convergence, and convex constraint set. IEEE Transactions on Automatic Control, 2017, 62(5): 2238−2253
|
[21]
|
Wang L, Xiao F. Finite-time consensus problems for networks of dynamic agents. IEEE Transactions on Automatic Control, 2010, 55(4): 950−955 doi: 10.1109/TAC.2010.2041610
|
[22]
|
Li S H, Du H B, Lin X Z. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica, 2011, 47(8): 1706−1712 doi: 10.1016/j.automatica.2011.02.045
|
[23]
|
刘凡, 杨洪勇, 杨怡泽, 李玉玲, 刘远山. 带有不匹配干扰的多智能体系统有限时间积分滑模控制. 自动化学报, 2019, 45(4): 749−758Liu Fan, Yang Hong-Yong, Yang Yi-Ze, Li Yu-Ling, Liu Yuan-Shan. Finite-time integral sliding-mode control for multi-agent systems with mismatched disturbances, Acta Aotomatica Sinica, 2019, 45(4): 749−758
|
[24]
|
Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 2012, 57(8): 2106−2110 doi: 10.1109/TAC.2011.2179869
|
[25]
|
Zuo Z Y, Han Q L, Ning B D, Ge X, H Zhang X M. An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2322−2334 doi: 10.1109/TII.2018.2817248
|
[26]
|
Fu J J, Wang J Z. Finite-time consensus formulti-agent systems with globally bounded convergence time under directed communication graphs. International Journal of Control, 2017, 90(9): 1807−1817 doi: 10.1080/00207179.2016.1223348
|
[27]
|
Ni J K, Liu L, Liu C X, Liu J. Fixed-time leader-following consensus for second-order multiagent systems with input delay. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8635−8646 doi: 10.1109/TIE.2017.2701775
|
[28]
|
陈刚, 李志勇, 韦梦立. 孤岛微电网的分布式固定时间二次协调控制. 控制与决策, 2019, 34(1): 205−212Chen Gang, Li Zhi-Yong, Wei Meng-Li. Distributed fixedtime secondary coordination control of islanded microgrids, Control and Decision, 2019, 34(1): 205−212
|
[29]
|
Wang Y J, Song Y D, Hill D J, Krstic M. Prescribed-time consensus and containment control of networked multiagent systems. IEEE Transactions on Cybernetics, 2019, 49(4): 1138−1147 doi: 10.1109/TCYB.2017.2788874
|
[30]
|
Ning B, Han Q, Zuo Z. Distributed optimization for multiagent systems: An edge-based fixed-time consensus approach. IEEE Transactions on Cybernetics, 2019, 49(1): 122−132 doi: 10.1109/TCYB.2017.2766762
|
[31]
|
Chen G, Li Z Y. A fixed-time convergent algorithm for distributed convex optimization in multi-agent systems. Automatica, 2018, 95: 539−543 doi: 10.1016/j.automatica.2018.05.032
|
[32]
|
Sun Q Y, Han R K, Zhang H G, Zhou J G, Guerrero J M. A multiagent-based consensus algorithm for distributed coordinated control of distributed generators in the energy internet. IEEE Transactions on Smart Grid, 2015, 6(6): 3006−3019 doi: 10.1109/TSG.2015.2412779
|
[33]
|
Droge G, Kawashima H, Egerstedt M B. Continuous-time proportional-integral distributed optimisation for networked systems. Journal of Control and Decision, 2014, 1(3): 191−213 doi: 10.1080/23307706.2014.926622
|
[34]
|
衣鹏, 洪奕光. 分布式合作优化及其应用. 中国科学: 数学, 2016, 46(10): 1547−1564Yi Peng, Hong Yi-Guang. Distributed cooperative optimization and its applications, Scientia Sinica Mathematica, 2016, 46(10): 1547−1564
|
[35]
|
Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004. 1−716
|