2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于性能指标约束的一类输入死区非线性系统最优控制

郭子杰 白伟伟 周琪 鲁仁全

郭子杰, 白伟伟, 周琪, 鲁仁全. 基于性能指标约束的一类输入死区非线性系统最优控制. 自动化学报, 2019, 45(11): 2128−2136 doi: 10.16383/j.aas.c190414
引用本文: 郭子杰, 白伟伟, 周琪, 鲁仁全. 基于性能指标约束的一类输入死区非线性系统最优控制. 自动化学报, 2019, 45(11): 2128−2136 doi: 10.16383/j.aas.c190414
Guo Zi-Jie, Bai Wei-Wei, Zhou Qi, Lu Ren-Quan. Adaptive optimal control for a class of nonlinear systems with dead zone input and prescribed performance. Acta Automatica Sinica, 2019, 45(11): 2128−2136 doi: 10.16383/j.aas.c190414
Citation: Guo Zi-Jie, Bai Wei-Wei, Zhou Qi, Lu Ren-Quan. Adaptive optimal control for a class of nonlinear systems with dead zone input and prescribed performance. Acta Automatica Sinica, 2019, 45(11): 2128−2136 doi: 10.16383/j.aas.c190414

基于性能指标约束的一类输入死区非线性系统最优控制

doi: 10.16383/j.aas.c190414
基金项目: 

广州市科技计划项目 201904020006

国家自然科学基金 61673072

广东省自然科学基金 2018B030312006

国家自然科学基金 61425009

详细信息
    作者简介:

    郭子杰  广东工业大学自动化学院硕士研究生.主要研究方向为非线性系统控制, 最优控制.E-mail:guozijie1995@163.com

    白伟伟  广东工业大学自动化学院博士后研究员.主要研究方向为自适应控制, 强化学习, 系统辨识, 及其在船舶控制系统中的应用.E-mail:baiweiwei_dl@163.com

    周琪  广东工业大学自动化学院教授.主要研究方向为复杂系统智能控制, 协同控制及其应用.E-mail:zhouqi2009@gmail.com

    通讯作者:

    鲁仁全  广东工业大学自动化学院教授.主要研究方向为网络化控制系统理论及应用, 医疗大数据分析, 智能制造.本文通信作者.E-mail:rqlu@gdut.edu.cn

Adaptive Optimal Control for a Class of Nonlinear Systems With Dead Zone Input and Prescribed Performance

Funds: 

the Science and Technology Program of Guangzhou 201904020006

National Natural Science Foundation of China 61673072

Guangdong Province Natural Science Foundation 2018B030312006

National Natural Science Foundation of China 61425009

More Information
    Author Bio:

     Master student at the School of Automation, Guangdong University of Technology. His main research interest covers nonlinear systems control, optimal control

     Post-doctoral researcher at the School of Automation, Guangdong University of Technology. His research interest covers adaptive control, reinforcement learning, system identification, and their applications to marine cybernetics

     Professor at the School of Automation, Guangdong University of Technology. Her research interest covers intelligent control of complex systems, cooperative control and its applications

    Corresponding author: LU Ren-Quan  Professor at the School of Automation, Guangdong University of Technology. His research interest covers theory and application of networked control system, medical big data analysis and intelligent manufacturing. Corresponding author of this paper
  • 摘要: 针对一类考虑指定性能和带有输入死区约束的严格反馈非线性系统,本文提出了一种自适应模糊最优控制方法.采用模糊逻辑系统逼近系统的未知非线性函数及代价函数,利用backstepping方法及命令滤波技术,设计前馈控制器.针对仿射形式的误差系统,结合自适应动态规划技术,设计最优反馈控制器.采用指定性能控制方法,将系统跟踪误差约束在指定范围内.利用死区斜率信息解决具有死区输入的非线性系统的控制问题.基于Lyapunov稳定性理论,证明闭环系统内所有信号是一致最终有界的.最后仿真结果验证了本文方法的可行性和有效性.
    Recommended by Associate Editor LIU Yan-jun
    1)  本文责任编委 刘艳军
  • 图  1  参考信号$ x_{1d}$和输出信号$ y$

    Fig.  1  Reference signal $ x_{1d}$ and output $ y$

    图  2  $ \tilde z_{1}$的轨迹和指定性能边界曲线

    Fig.  2  Trajectories of $ \tilde z_{1}$ and performance bounds

    图  3  代价函数权值$\hat{w}_{c i}$ 和哈密顿函数 $\hat{H}\left(Z, \hat{U}^{*}\right)$ 的轨迹(i = 1; 2; 3; 4; 5)

    Fig.  3  The trajectories of cost functions weights $\hat w_{ci}$ and Hamiltonian $\hat H(Z, \hat U^ *)$ $(i = 1, 2, 3, 4, 5)$

    图  4  执行器输入信号$v$和执行器输出信号$u$

    Fig.  4  Trajectories of actuator input $v$ and actuator output $u$

  • [1] Lee H, Tomizuka M. Robust adaptive control using a universal approximator for SISO nonlinear systems. IEEE Transactions on Fuzzy Systems, 2000, 8(1):95-106 doi: 10.1109/91.824777
    [2] Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica, 2002, 38(4):671-682 doi: 10.1016/S0005-1098(01)00254-0
    [3] Ge S S, Wang C. Direct adaptive NN control of a class of nonlinear systems. IEEE Transactions on Neural Networks, 2002, 13(1):214-221 doi: 10.1109/72.977306
    [4] Hu X, Wei X J, Zhang H F, Han J, Liu X H. Robust adaptive tracking control for a class of mechanical systems with unknown disturbances under actuator saturation. International Journal of Robust and Nonlinear Control, 2019, 29(6):1893-1908 doi: 10.1002/rnc.4465
    [5] Chen M, Shao S Y, Jiang B. Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Transactions on Cybernetics, 2017, 47(10):3110-3123 doi: 10.1109/TCYB.2017.2667680
    [6] Chen C L P, Wen G X, Liu Y J, Liu Z. Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Transactions on Cybernetics, 2016, 46(7):1591-1601 doi: 10.1109/TCYB.2015.2452217
    [7] Qian W, Gao Y S, Yang Y. Global consensus of multiagent systems with internal delays and communication delays. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018
    [8] Qian W, Wang L, Chen M Z Q. Local consensus of nonlinear multiagent systems with varying delay coupling. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(12):2462-2469 doi: 10.1109/TSMC.2017.2684911
    [9] Li T S, Wang D, Feng G, Tong S C. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(3):915-927 doi: 10.1109/TSMCB.2009.2033563
    [10] Dong W J, Farrell J A, Polycarpou M M, Djapic V, Sharma M. Command filtered adaptive backstepping. IEEE Transactions on Control Systems Technology, 2012, 20(3):566-580 doi: 10.1109/TCST.2011.2121907
    [11] Bai W W, Zhou Q, Li T S, Li H Y. Adaptive reinforcement learning neural network control for uncertain nonlinear system with input saturation. IEEE Transactions on Cybernetics, DOI: 10.1109/TCYB.2019.292105
    [12] Bellman R E. Dynamic Programming. Princeton:Princeton University Press, 1957
    [13] 王鼎, 穆朝絮, 刘德荣.基于迭代神经动态规划的数据驱动非线性近似最优调节.自动化学报, 2017, 43(3):366-375 http://www.aas.net.cn/CN/abstract/abstract19015.shtml

    Wang Ding, Mu Chao-Xu, Liu De-Rong. Data-driven nonlinear nearoptimal regulation based on iterative neural dynamic programming. Acta Automatica Sinica, 2017, 43(3):366-375 http://www.aas.net.cn/CN/abstract/abstract19015.shtml
    [14] 张化光, 张欣, 罗艳红, 杨珺.自适应动态规划综述.自动化学报, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtml

    Zhang Hua-Guang, Zhang Xin, Luo Yan-Hong, Yang Jun. An overview of research on adaptive dynamic programming. Acta Automatica Sinica, 2013, 39(4):303-311 http://www.aas.net.cn/CN/abstract/abstract17916.shtml
    [15] Murray J J, Cox C J, Lendaris G G, Saeks R. Adaptive dynamic programming. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2002, 32(2):140-153 doi: 10.1109/TSMCC.2002.801727
    [16] Vamvoudakis K G, Lewis F L. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem. Automatica, 2010, 46(5):878-888 doi: 10.1016/j.automatica.2010.02.018
    [17] Zargarzadeh H, Dierks T, Jagannathan S. Optimal control of nonlinear continuous-time systems in strict-feedback form. IEEE transactions on neural networks and learning systems, 2015, 26(10):2535-2549 doi: 10.1109/TNNLS.2015.2441712
    [18] Wang D, He H B, Zhao B, Liu D R. Adaptive near optimal controllers for nonlinear decentralised feedback stabilisation problems. IET Control Theory and Applications, 2017, 11(6):799-806 doi: 10.1049/iet-cta.2016.1383
    [19] Li Y M, Sun K K, Tong S C. Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE Transactions on Cybernetics, 2019, 49(2):649-661 doi: 10.1109/TCYB.2017.2785801
    [20] Sun J L, Liu C S. Distributed fuzzy adaptive backstepping optimal control for nonlinear multimissile guidance systems with input saturation. IEEE Transactions on Fuzzy Systems, 2019, 27(3):447-461 doi: 10.1109/TFUZZ.2018.2859904
    [21] Wei Q L, Liu D R, Lin Q, Song R Z. Adaptive dynamic programming for discrete-time zero-sum games. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4):957-969 doi: 10.1109/TNNLS.2016.2638863
    [22] Fan B, Yang Q M, Tang X Y, Sun Y X. Robust ADP design for continuous-time nonlinear systems with output constraints. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6):2127-2138 doi: 10.1109/TNNLS.2018.2806347
    [23] Chen M, Tao G. Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead-zone. IEEE Transactions on Cybernetics, 2016, 46(8):1851-1862 doi: 10.1109/TCYB.2015.2456028
    [24] Tong S C, Li Y M. Adaptive fuzzy output feedback control of MIMO nonlinear systems with unknown dead-zone inputs. IEEE Transactions on Fuzzy Systems, 2013, 21(1):134-146 doi: 10.1109/TFUZZ.2012.2204065
    [25] Yu J P, Shi P, Dong W J, Lin C. Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering. IEEE Transactions on Fuzzy Systems, 2018, 26(1):46-55 doi: 10.1109/TFUZZ.2016.2634162
    [26] Zhang L L, Yang G H. Adaptive fuzzy prescribed performance control of nonlinear systems with hysteretic actuator nonlinearity and faults. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 48(12):2349-2358 doi: 10.1109/TSMC.2017.2707241
    [27] Tong S C, Sun K K, Sui S. Observer-based adaptive fuzzy decentralized optimal control design for strict-feedback nonlinear large-scale systems. IEEE Transactions on Fuzzy Systems, 2018, 26(2):569-584 doi: 10.1109/TFUZZ.2017.2686373
  • 加载中
图(4)
计量
  • 文章访问数:  2192
  • HTML全文浏览量:  528
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-28
  • 录用日期:  2019-08-15
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回