Fault Testing and Validation Simulation Platform for Traction Drive System of High-speed Trains
-
摘要: 牵引传动系统作为高速列车能量传递与转换的核心部分, 是保障高铁安全稳定运行的关键系统之一. 故障测试与验证平台是确保实时故障诊断技术在高速列车上有效应用的重要手段和途径. 围绕高速列车牵引传动系统故障测试与验证平台中面临的挑战性问题和关键技术, 本文从故障注入、仿真可信度评估、算法性能评估和仿真平台实现等方法和技术方面进行分析, 并针对上述难题概述了一些解决方案, 提出并构建了一种集高速列车实时仿真、故障运行行为逼真模拟以及随机故障测试和故障诊断算法评估于一体的牵引传动系统故障测试与验证实时仿真平台. 最后, 总结展望了高速列车安全监测验证平台未来研究方向.
-
关键词:
- 故障测试 /
- 验证平台 /
- 故障注入 /
- 测试评估 /
- 高速列车牵引传动系统
Abstract: As the power system of high-speed train, the traction drive system is one of the key systems to guarantee the safe and stable operation for high-speed train. Fault testing and verification platform is an important way to ensure the effective application of real-time fault diagnosis methods on high-speed trains. Focusing on the challenging issues in the fault testing and verification platform of the traction drive system of high-speed train, this paper analyzes the methods and technologies of fault injection, simulation reliability evaluation, algorithm performance evaluation and simulation platform implementation, and summarizes some solutions to the above problems. Moreover, this paper further proposes and builds a fault testing verification platform for high-speed train traction drive system, which integrates real-time simulation of high-speed train, realistic simulation for fault scenarios, random fault testing and fault diagnosis algorithm evaluation. Finally, the future research direction of the safety monitoring and verification platform for high-speed trains is summarized and prospected. -
在信息处理领域, 通常将信号自相关矩阵最大特征值对应的特征向量称之为信号的主成分, 而由信号的多个主成分张成的空间称为信号的主子空间.在很多信号处理问题中, 需要对信号的主子空间进行在线跟踪, 如视觉跟踪[1]、波达方向估计[2]、图像处理[3]、谱分析[4]等领域.因此, 发展主子空间跟踪算法就成为了一件非常有意义的工作.
以往解决主子空间跟踪问题主要依靠矩阵特征值分解(Eigenvalue decomposition, EVD)和奇异值分解(Singular value decomposition, SVD)等, 然而该方法计算复杂度高, 而且难以满足实时信号处理的要求.为了克服这些缺点, 学者们提出了基于Hebbian神经网络的主子空间跟踪方法.相比传统的EVD和SVD方法, 神经网络方法具有以下3个方面的优点: 1)可以对输入信号的自相关矩阵进行在线估计; 2)算法的计算复杂度较低; 3)能够处理非平稳的随机信号[4].基于上述优势, 神经网络方法已经成为近些年来国际上的一个研究热点.
基于单层线性神经网络, Oja提出了著名的Oja算法[5], 然而Oja算法是一个单维主成分提取算法.为了能够实现对信号主子空间的跟踪, 学者们通过对Oja算法进行了改进提出了很多算法, 如FDPM (Fast data projection method)算法[6]、SOOJA (Stable and orthonormal OJA algorithm)算法[7]、SDPM (Stable DPM algorithm)算法[8]等, 然而上述算法大多是基于启发式推理提出来的, 而并没有建立相对应的信息准则.由于信息准则在算法发展中具有很重要的意义[9], 因此研究主子空间准则是一件非常有意义的工作.在文献[10]中, 基于最小均方误差(Least mean squared error, LMSE)准则, Yang提出了投影近似子空间跟踪算法(Projection approximation subspace tracking, PAST); 此后, Miao等提出了NIC (Novel information criterion)准则[11], 并分别导出了梯度和递归型主子空间跟踪算法; 基于Rayleigh商函数, Kong等提出了UIC (Unified information criterion)准则[12], 仿真实验表明基于UIC准则导出的算法具有很快的收敛速度.目前, 发展主子空间跟踪准则仍然具有很强的研究价值.
本文将提出一种新型的主子空间跟踪信息准则, 并通过梯度法导出快速的主子空间跟踪算法.论文的结构安排如下:第1节是提出一种新的主子空间信息准则; 第2节是对所提信息准则进行前景分析; 第3节主要是采用梯度上升法导出主子空间算法; 第4节通过两组仿真实验对所提算法的性能进行验证; 本文的结论在第5节.
1. 新型主子空间跟踪信息准则
考虑一个具有如下形式的多输入多输出线性神经网络模型:
$$ \begin{equation} {\pmb{y}} = {{W}^{\rm T}}{\pmb{x}} \end{equation} $$ (1) 其中, $ {W} = [{\pmb {w}_1}, {\pmb {w}_2}, \cdots , {\pmb {w}_r}] \in {{\bf {R}}^{n \times r}} $是神经网络的权矩阵, $ {\pmb {w}_i} $是权矩阵$ {W} $的第$ i $列; $ {\pmb{x}} \in {{\bf {R}}^{n \times 1}} $是采样信号, 这里作为神经网络的输入; $ {\pmb{y}} \in {{\bf {R}}^{r \times 1}} $为采样信号的低维表示, $ r $是子空间的维数.本文的目的就是构造合适的神经网络权矩阵迭代更新方程, 使神经网络的权矩阵最终能够收敛到采样信号的主子空间.
基于上述神经网络模型, 给定域$ \Omega = \{ {W}|0 < {{W}^{\rm T}}{RW} < \infty , {{W}^{\rm T}}{W} \ne 0\} $, 提出如下信息准则:
$$ \begin{align} {{W}^*} = \, & {\rm{arg}}{\kern 1pt} \mathop {\max }\limits_{{W} \in \Omega } J({W})\\& J({W}) = \frac{1}{2}{\rm tr}\left[ {({{W}^{\rm T}}{RW}){{({{W}^{\rm T}}{W})}^{ - 1}}} \right]+\\& \frac{1}{2}{\rm tr}\left[ {\ln ({{W}^{\rm T}}{W}) - {{W}^{\rm T}}{W}} \right] \end{align} $$ (2) 其中, $ {{R}} = {\rm E}[{{\pmb {xx}}}_{}^{\rm T}] $为采样信号的自相关矩阵.根据矩阵理论可得:矩阵$ {{R}} $是一个对称的正定矩阵, 且特征值均是非负的.对矩阵$ {{R}} $特征值分解得:
$$ \begin{equation} {{R}} = {{U\Lambda }}{{{U}}^{\rm T}} \end{equation} $$ (3) 其中, $ {{U}} = [{{\pmb {u}}_1}, {{\pmb {u}}_2}, \cdots , {{\pmb {u}}_n}] $是由矩阵$ {{R}} $的特征向量构成的矩阵, $ {{\Lambda }} = {\rm {\rm {\rm diag}}}\{{\lambda _1}, {\lambda _2}, \cdots , {\lambda _n}\} $是由矩阵$ {{R}} $的特征值组成.为了后续使用方便, 这里将特征值按降序进行排列, 即特征值满足如下方程:
$$ \begin{equation} {\lambda _1} > {\lambda _2} > \cdots > {\lambda _r} > \cdots > {\lambda _n} > 0 \end{equation} $$ (4) 根据主子空间的定义可知特征值$ {\lambda _1}, {\lambda _2}, \cdots , {\lambda _r} $所对应的特征向量张成的子空间称为输入信号的主子空间.从式(2)可得$ J({W}) $是无下界的, 且当$ {W} $趋于无穷大时, $ J({W}) $将趋于负无穷大, 因此研究$ J({W}) $的极小值是没有任何意义的.实际上, 我们关心的是$ J({W}) $的极大点.具体说来, 我们关心以下几个问题:
1) $ J({W}) $有没有全局极大点?
2) $ J({W}) $的全局极大点与信号的主子空间之间的关系是什么?
3) $ J({W}) $有没有其他局部极值?
上述三个问题的回答将由下在一节中完成.
2. 信息准则的全局最优值分析
信息准则(2)的全局最优值分析通过定理1和定理2来完成.
定理1. 在域$ \Omega = \{ {W}|0 < {{W}^{\rm T}}{RW} < \infty , {{W}^{\rm T}}{W} \ne 0\} $内, 当且仅当$ {W} = {{{U'}}_r}{{Q}} $时, 权矩阵$ {W} $是信息准则$ J({W}) $的一个平稳点, 其中$ {{{U'}}_r} = [{{\pmb {u}}_{j1}}, {{\pmb {u}}_{j2}}, \cdots , {{\pmb {u}}_{jr}}] $是由自相关矩阵$ {{R}} $的任意$ r $个特征向量构成的矩阵, $ {{Q}} $是任意一个$ r \times r $维正交矩阵.
将$ {{R}} $的特征向量作为空间$ {{\bf{R}}^{n \times n}} $的一组正交基, 则权矩阵$ {W} $可以表示为: $ {W} = {{{U}}^{\rm T}}{{\tilde W}} $, 其中$ {{\tilde W}} \in {{\bf {R}}^{n \times r}} $称为系数矩阵.将这一结果代入式(2)可得:
$$ \begin{align} {{{{\tilde W}}}^*} = \, & {\rm{arg}}{\kern 1pt} \mathop {\max }\limits_{{W} \in \Omega } E({{\tilde W}})\\ E({{\tilde W}}) = \, & \frac{1}{2}{\rm tr}[({{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}}){({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}}]+\\& \frac{1}{2}{\rm tr}[\ln ({{{{\tilde W}}}^{\rm T}}{{\tilde W}}) - {{{{\tilde W}}}^{\rm T}}{{\tilde W}}] \end{align} $$ (5) 显然式(2)和式(5)是等价的, 即定理1的证明是可以通过对下述推论的证明来完成.
推论1. 在域$ \tilde \Omega = \left\{ {{{\tilde W}}|0 < {{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} < \infty} \right. $, $ \left. { {{{{\tilde W}}}^{\rm T}}{{\tilde W}} \ne 0} \right\} $中, 当且仅当$ {{\tilde W}} = {{{P}}_r}{{Q}} $时, $ {{\tilde W}} $是$ E({{\tilde W}}) $的一个平稳点, 其中$ {{{P}}_r} \in {{ {R}}^{n \times r}} $是任意一个$ n \times r $维置换矩阵.
证明参见附录A.
定理2. 在域$ \Omega $内, 当且仅当$ {W} = {{{\tilde U}}_r}{{Q}} $时, 其中$ {{{\tilde U}}_r} = [{{\pmb {u}}_1}, {{\pmb {u}}_2}, \cdots , {{\pmb {u}}_r}] $是由自相关矩阵$ {{R}} $的前$ r $个特征向量构成的矩阵且$ {{Q}} $是任意一个$ r \times r $维正交矩阵, 信息准则$ J({W}) $达到全局极大. $ J({W}) $没有其他局部极值, 在全局最大点处有:
$$ \begin{equation} J({W}) = \frac{1}{2}\sum\limits_{i = 1}^r {{\lambda _i}} - \frac{r}{2} \end{equation} $$ (6) 同定理1的证明过程一样, 这里将通过对推论2的证明来完成定理2的证明.
推论2. 在域$ \tilde \Omega $中, 当且仅当$ {{\tilde W}} = {{\bar PQ}} $, 信息准则$ E({{\tilde W}}) $达到全局最大点, 其中$ {{\bar P}} = {( {{{\tilde P}}}\; \; {{0}})^{\rm T}} \in {{ {\bf R}}^{n \times r}} $一个$ n \times r $维矩阵, $ {{\tilde P}} $是一个置换矩阵, 而$ E({{\tilde W}}) $所有其他的平稳点都是鞍点.
证明参见附录B.
通过定理1和定理2可知, 当神经网络权矩阵$ {W} $刚好收敛到自相关矩阵$ {{R}} $的主子空间的一组正交基时, $ J({W}) $取得全局极大值, 从而建立起神经网络与信号主子空间之间的关系.由于信息准则$ J({W}) $只有一个全局最大点, 而没有局部极值, 因此采用非线性规划算法(如梯度法、共轭梯度法、牛顿法等)来求解该优化问题.梯度算法是采用$ J({W}) $的梯度作为迭代步长; 共轭梯度法需要不断修正算法的共轭方向, 所导出的算法通常具有较高的计算复杂度; 牛顿法则用到的Hessian矩阵, 而当$ {W} $是一个矩阵时该Hessian矩阵是非常难以获得的.相比共轭梯度法和牛顿算法, 梯度法具有算法结构更为简单, 计算复杂度低, 因此下一节将采用梯度算法导出新型的主子空间跟踪算法.
3. 主子空间跟踪算法
假定$ {\pmb{x}}(k), k = 0, 1, 2, \cdots $是一个平稳的随机过程, 这里将其作为神经网络模型的输入.根据随机学习理论, 权矩阵$ {W} $的变化规律与输入向量$ {\pmb{x}}(k) $并不相关.取式(2)作为最优化函数, 则可以得出所提信息准则的梯度流为:
$$ \begin{align} \frac{{{\rm d}{W}(t)}}{{\rm d}{t}} = \, & \left[ {\frac{{{W}(t)}}{{{{W}^{\rm T}}(t){W}(t)}} - {W}(t)} \right]+\\& \left[ {{RW}(t) - \frac{{{W}(t){{W}^{\rm T}}(t){RW}(t)}} {{{{W}^{\rm T}}(t){W}(t)}}} \right]\times\\& {\left\{ {{{W}^{\rm T}}(t){W}(t)} \right\}^{ - 1}} \end{align} $$ (7) 应用随机近似理论可得:
$$ \begin{align} &\frac{{{\rm d}{W}(t)}}{{\rm d}{t}} = \\&\quad \left[ {{W}(t){{\left\{ {{{W}^{\rm T}}(t){W}(t)} \right\}}^{ - 1}} - {W}(t)} \right]- \\&\quad \left[ {{W}(t){{W}^{\rm T}}(t){\pmb{x}}(t){{\pmb{x}}^{\rm T}}(t){W}(t){{\left\{ {{{W}^{\rm T}}(t){W}(t)} \right\}}^{ - 1}}} \right.- \\&\quad \left. {{\pmb{x}}(t){{\pmb{x}}^{\rm T}}(t){W}(t)} \right]{\left\{ {{{W}^{\rm T}}(t){W}(t)} \right\}^{ - 1}} \end{align} $$ (8) 对式(8)进行离散化操作后获得如下方程:
$$ \begin{align} &{W}\left( {k + 1} \right) = \\&\quad {{W}}(k) - \eta \left[ {{{W}}(k){{\left( {{{{W}}^{\rm T}}(k){{W}}(k)} \right)}^{ - 1}}{\pmb{y}}(k){{\pmb{y}}^{\rm T}}(k)} \right.- \\&\quad \left. {{\pmb{x}}(k){{\pmb{y}}^{\rm T}}(k)} \right] {\left( {{{{W}}^{\rm T}}(k){{W}}(k)} \right)^{ - 1}} - \eta {{W}}(k)+ \\&\quad \eta {{W}}(k){\left( {{{{W}}^{\rm T}}(k){{W}}(k)} \right)^{ - 1}} \end{align} $$ (9) 其中, $ \eta $是神经网络的学习因子, 且满足$ 0 < \eta < 1 $.式(9)所描述的算法在每一步迭代过程中计算复杂度为: $ n{{r}^{2}}+4{{r}^{3}}\text{ /}3 $, 这点与UIC算法[12]是相同的, 要少于NIC算法[11]中的$ 2{n^2}r + {\rm O}(n{r^2}) $的计算量和共轭梯度算法[13] $ 12{n^2}r + {\rm O}(n{r^2}) $的计算量.
4. 仿真实验
本节通过两个仿真实例来对所提算法的性能进行验证.第一个实验考察所提算法提取多维主子空间的能力并将仿真结果与其他同类型算法进行对比; 第二个是应用所提算法解决图像重构问题.
4.1 主子空间跟踪实验
在本实验中, 所提算法将与UIC算法和SDPM算法进行对比.为了衡量算法的收敛性能, 这里采用如下两个评价函数, 第一个是第$ k $次迭代时的权矩阵模值
$$ \begin{equation} p({{{W}}_k}) = {\left\| {{{W}}_k^{\rm T}{{{W}}_k}} \right\|_F} \end{equation} $$ (10) 第二个是指标参数
$$ \begin{equation} {\rm{dist}}({{{W}}_k}) = {\left\| {{{W}}_k^{\rm T}{{{W}}_k}{\rm diag}{\left\{{{{W}}_k^{\rm T}{{{W}}_k}} \right\}^{ - 1}} - {{{I}}_r}} \right\|_F} \end{equation} $$ (11) 指标参数代表着权矩阵正交化的偏离程度.显然, 如果$ {\rm{dist}}({{{W}}_k}) $收敛到0, 则意味着权矩阵收敛到了主子空间的一个正交基.
本实验中信号产生方法与文献[12]相同, 即输入信号$ {{{X}}_k} = {{B}}{{\pmb {z}}_k} $, 其中$ B=\text{randn}(31,31)/31$是一个随机产生的矩阵, $ {{\pmb {z}}_k} \in {{ {\bf R}}^{31 \times 1}} $是高斯的、瞬时白的、随机产生的向量.在本实验中, 分别采用UIC算法、SDPM算法和所提算法对信号的12维主子空间进行提取跟踪.三种算法采用相同的学习因子$ \eta = 0.1 $, 初始权矩阵是随机产生的(即矩阵的每一个元素均服从均值为零方差为1的高斯分布).通常情况下, 取不同的初始化权矩阵时, 算法具有不同的收敛速度.为了更全面地衡量算法性能, 通常取多次实验的平均值来描述算法收敛过程.在图 1和图 2分别给出了三种算法在迭代过程中的权矩阵模值曲线和指标参数曲线, 该结果曲线是100次独立实验结果平均得到的.图中实线代表着所提算法, 虚线代表UIC算法, 点划线代表SDPM算法.
图 1和图 2中可以发现, 所提算法的权矩阵模值曲线收敛到了一个常数而且指标参数收敛到了零.这就表明所提算法具备跟踪信号主子空间的能力.从图 1中我们还可以发现, 所提算法的权矩阵模值在200步时就已经收敛, 而UIC算法则需要300步, SDPM算法需要800步, 即所提算法的权矩阵模值曲线具有最快的收敛速度.同理, 从图 2中可以发现所提算法指标参数的收敛速度要优于其他两个算法.综合两图可以得出结论:三种算法中, 所提算法具有最快的收敛速度.
4.2 图像压缩重构离实验
数据压缩是主子空间算法的一个很重要的应用.本实验将利用所提算法对著名的Lena图像进行压缩重构.如图 3所示, 原始Lena图像的像素为$ 512 \times 512 $.在本实验中, 将Lena图像分解成若干个$ 8 \times 8 $不重叠的小块.将每一个小块中的数据按照从左至右从上到下的顺序排列起来, 构成一个64维向量.在去掉均值和标准化后, 将这些图像数据构成一个输入序列.然后采用SDPM算法、UIC算法以及所提算法对该图像进行压缩重构, 这里重构维数为5.与实验1相同, 本实验同样采用权矩阵模值和指标参数两个评价函数.
本实验中三种算法的初始化参数设置方法与实验1相类似, 具体参数如下:学习因子$ \eta = 0.2 $, 初始化权矩阵是随机产生的.图 4是经过所提算法压缩后重构出来的Lena图像, 图 5是三种算法的权矩阵模值曲线, 图 6是三种算法的指标参数曲线, 该结果曲线都是100次独立实验的平均值.对比图 3和图 4可以发现, 重构的Lena图像是很清晰的, 即所提算法能够有效解决图像压缩重构问题.通过图 5和图 6可以发现:不论是权矩阵模值曲线还是指标参数曲线, 所提算法的收敛速度均要快于UIC算法和SDPM算法.这进一步证实了所提算法在收敛速度方面的优势.
5. 结论
主子空间跟踪算法在现代信息科学各个领域均有着很重要的应用.基于Hebbian神经网络的主子空间跟踪是近些年来国际上的一个研究热点.然而目前大多数主子空间跟踪神经网络算法是基于启发式推理而提出来的, 能够提供信息准则的算法并不多见.针对这一问题, 本文提出了一种新型的信息准则, 并对所提信息准则的前景进行了严格的证明.通过梯度上升法导出了一个主子空间跟踪算法.仿真实验表明:相比一些现有主子空间跟踪算法, 所提算法具有更快的收敛速度.
进一步的研究方向是寻找新型的主子空间信息准则, 创新信息准则的平稳点分析方法, 将主子空间算法应用于更广泛的领域.
附录A.推论1证明
证明 在域$ \tilde \Omega $内, $ E({{\tilde W}}) $对于矩阵$ {{\tilde W}} $的一阶微分存在, 且有
$$ \begin{align} \nabla E({{\tilde W}}) = \, & {{\Lambda \tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} - {{\tilde W}} - \\& {{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 2}}{{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} + {{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} \end{align} $$ (A1) 定义一个矩阵集$ \left\{ {{{\tilde W}}|{{\tilde W}} = {{{P}}_r}{{Q}}} \right\} $, 则在该集合内的任意一点均有:
$$ \begin{align} & \nabla E({{\tilde W}}){|_{{{\tilde W}} = {{{P}}_r}{{Q}}}} = \\&\qquad {{\Lambda }}{{{P}}_r}{{Q}}{({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r} {{Q}})^{ - 1}} + {{{P}}_r}{{Q}}{({{{Q}}^{\rm T}} {{P}}_r^{\rm T}{{{P}}_r}{{Q}})^{ - 1}}- \\&\qquad {{{P}}_r}{{Q}}{({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r}{{Q}})^{ - 2}}{{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}{{Q}} - {{{P}}_r}{{Q}} = \\&\qquad {{\Lambda }}{{{P}}_r}{{Q}} + {{{P}}_r}{{Q}}{{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}{{Q}} = 0 \end{align} $$ (A2) 反之, 根据定义可得, 在$ E({{\tilde W}}) $平稳点处有$ \nabla E({{\tilde W}}) = {{0}} $成立, 即
$$ \begin{align} &{{\Lambda \tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} + {{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}}- \\&\qquad {{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 2}}{{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} - {{\tilde W}} = {{0}} \end{align} $$ (A3) 将上式左右两边各乘以$ {{{\tilde W}}^{\rm T}} $可得:
$$ \begin{align} & {{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} + {{{{\tilde W}}}^{\rm T}}{{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}}- \\&\qquad {{{{\tilde W}}}^{\rm T}}{{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 2}}{{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} - {{{{\tilde W}}}^{\rm T}}{{\tilde W}} = \\&\qquad {{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} {({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} - {{{{\tilde W}}}^{\rm T}}{{W}}- \\&\qquad {({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}}{{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} + {{I}} = \\&\qquad {{I}} - {{{{\tilde W}}}^{\rm T}}{{W}} = {{0}} \end{align} $$ (A4) 根据上式可得, 在$ E({{\tilde W}}) $平稳点处有
$$ \begin{equation} {{{\tilde W}}^{\rm T}}{{W}} = {{I}} \end{equation} $$ (A5) 上式表明在$ E({{\tilde W}}) $平稳点处矩阵$ {{\tilde W}} $的各个列向量之间是相互正交的.将式(A5)代入式(A3)可得:
$$ \begin{equation} {{\Lambda \tilde W}} = {{\tilde W}}{{{\tilde W}}^{\rm T}}{{\Lambda \tilde W}} \end{equation} $$ (A6) 令矩阵$ {\tilde W}$的行向量为${{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{u}}}_{i}}\ (i=1,2,\cdots ,n) $, 即有$ \tilde W{\rm{ = }}{\left[ {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over u} _1^{\rm{T}},\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over u} _2^{\rm{T}}, \cdots ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over u} _n^{\rm{T}}} \right]^{\rm{T}}} $, 同时定义矩阵$ {{B}} = {{{\tilde W}}^{\rm T}}{{\Lambda \tilde W}} $, 则根据式(11)可得:
$$ \begin{equation} {\sigma _i}{\mathord{\buildrel{\lower3pt\hbox{$ \smile$}} \over u} _i} = {\mathord{\buildrel{\lower3pt\hbox{$ \smile$}} \over u} _i}{{B}}, \quad i = 1, 2, \cdots , n \end{equation} $$ (A7) 显然, 上式可以看作是矩阵$ {{B}} $的特征值分解.由于$ {{B}} $是一个$ r \times r $维对称正定矩阵, 只有$ r $个相互正交的左行特征向量, 即矩阵$ {{\tilde W}} $只有$ r $个相互正交的行向量.更进一步, 矩阵$ {{\tilde W}} $的这$ r $个非零行向量正好构成了一个正交矩阵, 也就是说此时矩阵$ {{\tilde W}} $可以通过$ {{\tilde W}} = {{{P}}_r}{{Q}} $来表示.
附录B.推论2证明
证明 定义一个置换矩阵$ {{{P}}_r} \ne {{\bar P}} $, 则矩阵$ {{{P}}_r} $中的第$ r + 1 $到$ n $个行向量之中必有一个非零的行向量.由于$ {{{P}}_r} $和$ {{\bar P}} $同为两个置换矩阵, 则必定存在两个对角矩阵$ {{\bar \Lambda }} $和$ {{\hat \Lambda }} $使得下式成立:
$$ \begin{equation} {{{\bar P}}^{\rm T}}{{\Lambda \bar P}} = {{\bar \Lambda }}, {{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r} = {{\hat \Lambda }} \end{equation} $$ (B1) 根据上式可得:
$$ \begin{equation} \begin{cases} {\rm tr}\left( {{{{{\bar P}}}^{\rm T}}{{\Lambda \bar P}}} \right) = \sum\limits_{i = 1}^r {{\lambda _i}} \\ {\rm tr}\left( {{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}} \right) = \sum\limits_{i = 1}^r {{\lambda _{{{\hat j}_i}}}} \end{cases} \end{equation} $$ (B2) 将特征值$ {\lambda _{\hat ji}} $ $ (i = 1, 2, \cdots , r) $按照降序顺序排列, 即有$ {\hat \lambda _{\hat j1}} > {\hat \lambda _{\hat j2}} > \cdots > {\hat \lambda _{\hat jr}} $, 则对于$ {{{P}}_r} \ne {{\bar P}} $, 则必定存在有$ {\lambda _i} > {\hat \lambda _{\hat ji}}\; (i = 1, 2, \cdots , r) $成立, 即有:
$$ \begin{equation} {\rm tr}\left( {{{{{\bar P}}}^{\rm T}}{{\Lambda \bar P}}} \right) > {\rm tr}\left( {{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}} \right) \end{equation} $$ (B3) 由于
$$ \begin{align} E({{{P}}_r}{{Q}}) = \, & \frac{1}{2}{\rm tr}[({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}{{Q}}){({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r}{{Q}})^{ - 1}}]+\\& \frac{1}{2}{\rm tr}[\ln ({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r}{{Q}}) - {{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r}{{Q}}] = \\& \frac{1}{2}{\rm tr}[({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}{{Q}})] - \frac{r}{2} = \\& \frac{1}{2}{\rm tr}[({{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r})] - \frac{r}{2} \end{align} $$ (B4) $$ \begin{align} E({{{{\bar P}}}^{\rm T}}{{Q}}) = \, & \frac{1}{2}{\rm tr}[({{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\Lambda \bar PQ}}){({{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\bar PQ}})^{ - 1}}]+ \\& \frac{1}{2}{\rm tr}[\ln ({{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\bar PQ}}) - {{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\bar PQ}}] = \\& \frac{1}{2}{\rm tr}[({{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\Lambda \bar PQ}})] - \frac{r}{2} = \\& \frac{1}{2}{\rm tr}[({{{{\bar P}}}^{\rm T}}{{\Lambda \bar P}})] - \frac{r}{2} \end{align} $$ (B5) 根据式(B3)有:
$$ \begin{equation} E({{{P}}_r}{{Q}}) < E({{{\bar P}}^{\rm T}}{{Q}}) \end{equation} $$ (B6) 即集合$ \left\{ {{P_r}Q|{Q^{\rm{T}}}\Lambda Q > 0\& {{\rm{P}}_{\rm{r}}} \ne {\rm{\bar P}}} \right\} $的点并不是全局极大点.
由于$ {{{P}}_r} \ne {{\bar P}} $, 则矩阵$ {{\bar P}} $中必定存在一列向量$ {{{\bar p}}_i} $ $ (1 \le i \le r) $, 使得:
$$ \begin{equation} {{\bar p}}_i^{\rm T}{{{P}}_r} = {{0}} \end{equation} $$ (B7) 同理, 矩阵$ {{{P}}_r} $中也存在一列向量$ {{{p}}_{r, j}}\; (1 \le j \le r) $使得
$$ \begin{equation} {{{p}}_{r, j}}{{\bar P}} = {{0}} \end{equation} $$ (B8) 令$ {{{\bar p}}_i} $的非零元素为$ {\bar j_i} $行, $ {{{p}}_{r, j}} $的非零元素为$ {\hat j_j} $行, 则有$ {\bar j_i} > {\hat j_j} $和$ {\lambda _{{{\hat j}_j}}} > {\lambda _{{{\bar j}_i}}} $.定义矩阵:
$$ \begin{equation} {{B}} = \left[ {{{{p}}_{r, 1}}, \cdots , \frac{{{{{p}}_{r, i}} + \varepsilon {{{{\bar p}}}_i}}}{{\sqrt {1 + {\varepsilon ^2}} }}, \cdots , {{{p}}_{r, r}}} \right] \end{equation} $$ (B9) 其中, $ \varepsilon $是正任意小数.由$ {{{\bar p}}_i} $和$ {{{p}}_{r, j}} $有且仅有一个非零元素得
$$ \begin{align} {{\Lambda B}} = \, & {\rm diag}\left\{ {{\lambda _{\hat j1}}{{{p}}_{r, 1}}, \cdots , } {\frac{{{\lambda _{\hat jj}}{{{p}}_{r, i}} + \varepsilon {\lambda _{\bar ji}}{{{{\bar p}}}_i}}}{{\sqrt {1 + {\varepsilon ^2}} }}, \cdots , {\lambda _{\hat jr}}{{{p}}_{r, r}}} \right\} \end{align} $$ (B10) 更进一步有:
$$ \begin{equation} {{{B}}^{\rm T}}{{\Lambda B}} = {\rm diag}\left\{ {{\lambda _{\hat j1}}, \cdots , \frac{{{\lambda _{\hat jj}} + \varepsilon {\lambda _{\bar ji}}}}{{1 + {\varepsilon ^2}}}, \cdots , {\lambda _{\hat jr}}} \right\} \end{equation} $$ (B11) 通过式(A8)可得:
$$ \begin{align} & {{{B}}^{\rm T}}{{\Lambda B}} - {{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r} = \\& \qquad {\rm diag}\left\{ {{\lambda _{\hat j1}}, \cdots , \frac{{{\lambda _{\hat jj}} + \varepsilon {\lambda _{\bar ji}}}}{{1 + {\varepsilon ^2}}}, \cdots , {\lambda _{\hat jr}}} \right\}- \\& \qquad {\rm diag}\left\{ {{\lambda _{\hat j1}}, \cdots , {\lambda _{\hat jj}}, \cdots , {\lambda _{\hat jr}}} \right\} = \\& \qquad {\rm diag}\left\{ {0, \cdots , \frac{{\left( { - {\lambda _{\hat jj}} + {\lambda _{\bar ji}}} \right){\varepsilon ^2}}}{{1 + {\varepsilon ^2}}}, \cdots , 0} \right\} \end{align} $$ (B12) 由于$ {\lambda _{\hat jj}} > {\lambda _{\bar ji}} $, 所以$ {{{B}}^{\rm T}}{{\Lambda B}} - {{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r} $是一个负定矩阵, 因此有:
$$ \begin{equation} E({{BQ}}) = \frac{1}{2}{\rm tr}[{{{B}}^{\rm T}}{{\Lambda B}}] - \frac{r}{2} < E({{{P}}_r}{{Q}}) \end{equation} $$ (B13) 即集合$ \left\{ {{P_r}Q|{Q^{\rm{T}}}\hat \Lambda Q > \;0{\rm{\& }}{P_r} \ne \bar P} \right\} $中所有平稳点都是不稳定的鞍点.
接下来将证明: $ J({{W}}) $没有其他局部极值.令$ {{{\dot U}}_r} = {{{\tilde U'}}_r} + \varepsilon {{{M}}_1} $, 其中$ {{{M}}_1} = [{{0}}, \cdots , {{\pmb {u}}_k}, \cdots , {{0}}] $, $ 1 \le k \le r $.即$ {{{\dot U}}_r} $是$ {{{\tilde U'}}_r} $沿$ {{\pmb {u}}_k} $的方向增长而成.由于$ {{{\tilde U'}}_r} \ne {{{\tilde U}}_r} $, 则必定有$ {\lambda _k} > {\lambda _{jk}} $.
当$ {{W}} = {{{\dot U}}_r}{{Q}} $时, 有:
$$ \begin{align} & {\left. {J({{W}})} \right|_{{{W}} = {{{{\dot U}}}_r}{{Q}}}} - {\left. {J({{W}})} \right|_{{{W}} = {{{{\tilde U'}}}_r}{{Q}}}} = \\& \qquad \frac{1}{2}\left( {{\lambda _k} - {\lambda _{jk}}} \right){\varepsilon ^2} + o({\varepsilon ^2}) \end{align} $$ (B14) 令$ {{{\ddot U}}_r} = {{{\tilde U'}}_r} + \varepsilon {{{M}}_2} $, 其中$ {{{M}}_2} = [{{0}}, \cdots , {{\pmb {u}}_{jk}}, \cdots , {{0}}] $, $ 1 \le k \le r $.即$ {{{\dot U}}_r} $是$ {{{\tilde U'}}_r} $沿$ {{\pmb {u}}_{jk}} $的方向增长而成.当$ {{W}} = {{{\dot U}}_r}{{Q}} $时, 有:
$$ \begin{align} & {\left. {J({{W}})} \right|_{{{W}} = {{{{\ddot U}}}_r}{{Q}}}} - {\left. {J({{W}})} \right|_{{{W}} = {{{{\tilde U'}}}_r}{{Q}}}} = - 2{\varepsilon ^2} + o({\varepsilon ^2}) \end{align} $$ (B15) 从式(B14)$ \, \sim\, $(B15)得当$ {{W}} = {{{U'}}_r}{{Q}} $且$ {{W}} \ne {{{\tilde U}}_r}{{Q}} $时, $ J({{W}}) $沿$ {{\pmb {u}}_k} $方向是增的, 而沿$ {{\pmb {u}}_{jk}} $方向是减的, 所以$ J({{W}}) $在该平稳点处不可能取得局部极值.
-
表 1 平台实现方式的对比
Table 1 Comparison of platform implementation schemes
实现
方式实验
成本测试数据
可信度模拟故障
危险性测试
周期平台实现
难易实物 高 高 高 慢 难 虚拟 低 低 低 中 易 半实物 中 中 中 快 中 表 2 现有具备故障模拟功能的高速列车验证平台对比
Table 2 Comparison of the existing high-speed train verification platform with fault simulation injection
实现方式 可控性 故障场景的覆盖面 实时性 实物 手动为主,
可控性差硬件故障为主 满足算法实时性测试 虚拟 自动操作,
可控性高故障类型限制小 不满足算法实时性测试 半实物 自动操作,
可控性高个别元部件、简单故障,
难以模拟复杂故障场景基本满足算法实时性测试 表 3 实时仿真器不同处理器芯片的对比
Table 3 Comparison of different processor chips in real-time simulator
芯片 运算
方式运算
频率平均耗时
范围运算负载
影响单价 不足 DSP 串行 GHz 毫秒-
微秒级大 低 模型平均解算速度
慢, 且与模型解算
规模成反比FPGA 并行 MHz 纳秒级 小 高 资源有限,
时序受约束表 4 三级故障测试性能评估指标
Table 4 Three-level-based performance evaluation index for fault testing
综合性能指标 关键性能指标 基本性能指标 综合性能指标 可维修性指标群 平均检测延迟 灵敏度 检测可用性指标群 检测率 误检率 漏检率 诊断可靠性指标群 故障位置辨识率 故障类型辨识率 故障参数辨识率 -
[1] 秦勇, 马慧, 贾利民. 先进轨道交通系统发展趋势与主动安全保障技术. 中国铁路, 2015, 2015(12): 77−811 Qin Yong, Ma Hui, Jia Li-Min. Development trend and active safety technology for advanced rail transit system. China Railway, 2015, 2015(12): 77−81 [2] 2 Chen C L. Reshaping Chinese space-economy through high-speed trains: opportunities and challenges. Journal of Transport Geography, 2012, 22(2): 312−316 [3] 杨戈. 复兴路上驶来" 复兴号”. 中国科技奖励, 2017, 2017(8): 20−233 Yang Ge. Fuxing bullet train on the revival road. China Awards for Science and Technology, 2017, 2017(8): 20−23 [4] 李拯. 从" 复兴号”启程看弯道超车. 人民日报, 2017-06-27(005)Li Zheng, Starting from " Fuxing” to see overtaking in corners. People′s Daily, 2017-06-27(005) [5] 国家发展和改革委员会. 铁路" 十三五”发展规划[Online], available: http://www.ndrc.gov.cn/gzdt/201711/t20171124_867822.html. 2019年12月9日National Development and Reform Commission. The " 13th five-year” development plan for railway [Online], available: http://www.ndrc.gov.cn/gzdt/201711/t20171124_867822.html. December 9, 2019 [6] 姜斌, 吴云凯, 陆宁云, 冒泽慧. 高速列车牵引系统故障诊断与预测技术综述. 控制与决策, 2018, 33(5): 841−8556 Jiang Bin, Wu Yun-Kai, Lu Ning-Yun, Mao Ze-Hui. Review of fault diagnosis and prognosis techniques for high-speed railway traction system. Control and Decision, 2018, 33(5): 841−855 [7] 戴舜华. CRH2型系列动车组牵引变流器介绍及故障分析. 铁道机车车辆, 2013, 33(2): 93−977 Dai Shun-Hua. Introduction and failure analysis of traction converter for CRH2 EMUs. Railway Locomotive and Car, 2013, 33(2): 93−97 [8] 8 Ge X, Pu J, Gou B, Liu Y. An open-circuit fault diagnosis approach for single-phase three-level neutral-point-clamped converters. IEEE Transactions on Power Electronics, 2018, 33(3): 2559−2570 doi: 10.1109/TPEL.2017.2691804 [9] 9 Fernando G, Javier P, Patxi M, Jon D O, Gaizka A. A review in fault diagnosis and health assessment for railway traction drives. Applied Sciences, 2018, 8(12): 2475−2494 doi: 10.3390/app8122475 [10] 10 Zhang K K, Jiang B, Yan X G, Shen J. Interval sliding mode observer based incipient sensor fault detection with application to a traction device in china railway high-speed. IEEE Transactions on Vehicular Technology, 2019, 68(3): 2585−2597 doi: 10.1109/TVT.2019.2894670 [11] 尹进田, 谢永芳, 阳春华. 基于RVMD的牵引电机转子初期断条故障监测. 控制与决策, 2018, 33(03): 497−50211 Yin Jin-Tian, Xie Yong-Fang, Yang Chun-Hua. Monitoring of incipient rotor bars broken fault in traction motors based on RVMD method. Control and Decision, 2018, 33(03): 497−502 [12] 12 Chen Z, Li X, Yang C, Peng T, Yang C, Karimi H R, Gui W. A data-driven ground fault detection and isolation method for main circuit in railway electrical traction system. ISA Transactions, 2019, 87: 264−271 doi: 10.1016/j.isatra.2018.11.031 [13] 陶宏伟, 彭涛, 杨超, 阳春华, 陈志文, 桂卫华. 高速列车牵引整流器多类故障联合诊断方法. 自动化学报, 2019, 45(12): 2294−230213 Tao Hong-Wei, Peng Tao, Yang Chao, Yang Chun-Hua, Chen Zhi-Wen, Gui Wei-Hua. Joint fault diagnosis method of multiclass faults for traction rectifler in high-speed train. Acta Automatica Sinica, 2019, 45(12): 2294−2302 [14] 周东华, 纪洪泉, 何潇. 高速列车信息控制系统的故障诊断技术. 自动化学报, 2018, 44(7): 1153−116414 Zhou Dong-Hua, Ji Hong-Quan, He Xiao. Fault diagnosis techniques for the information control system of high-speed trains. Acta Automatica Sinica, 2018, 44(7): 1153−1164 [15] 15 Dong H, Lin X, Yao X, Bai W, Ning B. Composite disturbance- observer-based control and H∞ control for high speed trains with actuator faults. Asian Journal of Control, 2018, 20(2): 735−745 doi: 10.1002/asjc.1590 [16] 16 Fernando G, Jon D O, Javier P, Patxi M, Gaizka A. Integral sensor fault detection and isolation for railway traction drive. Sensors, 2018, 18(5): 1543−1562 doi: 10.3390/s18051543 [17] 17 Alejandro B, Higinio R, Cristina C, García-Prada J C. EMD-based methodology for the Identification of a high-speed train running in a gear operating state. Sensors, 2018, 18(3): 793−809 doi: 10.3390/s18030793 [18] 18 Rankin D J, Jiang J. A hardware-in-the-loop simulation platform for the verification and validation of safety control systems. IEEE Transactions on Nuclear Science, 2011, 58(2): 468−478 doi: 10.1109/TNS.2010.2103325 [19] 丁荣军, 桂卫华, 陈高华. 电力机车交流传动系统的半实物实时仿真. 中国铁道科学, 2008, 29(4): 96−10219 Ding Rong-Jun, Gui Wei-Hua, Chen Gao-Hua. HIL real-time simulation of electric locomotive AC drive system. China Railway Science, 2008, 29(4): 96−102 [20] 20 Lv C, Cao D P, Zhao Y F, Auger D J, Sullman M, Wang H J, Dutka L M, Skrypchuk L, Mouzakitis A. Analysis of autopilot disengagements occurring during autonomous vehicle testing. IEEE/CAA Journal of Automatica Sinica, 2018, 5(1): 56−68 [21] 李天梅. 装备测试性验证试验优化设计与综合评估方法研究[博士学位论文]. 国防科学技术大学, 中国, 2010.Li Tian-Mei. Research on optimization design and integrated evaluation of testability verification test for equipments [Ph.D. dissertation]. National University of Defense Technology, China, 2010. [22] 黄振晖, 王贵国, 蒋大旺, 曹源, 张玉琢. 国内外高速试验列车综述. 中国铁路, 2013, (4): 100−10522 Huang Zhen-Hui, Wang Gui-Guo, Jiang Da-Wang, Cao Yuan, Zhang Yu-Zhuo. Summary of high-speed test trains at home and abroad. China Railway, 2013, (4): 100−105 [23] ALSTOM, The AGV, Alstom′s latest very high-speed train, starts test runs at 360 km/h [Online], available: https://www.alstom.com/press-releases-news/2008/12/The-AGV-Alstoms-latest-very-high-speed-train-starts-test-runs-at-360-km-h-20081208. December 5, 2019 [24] Ji H Q, He X, Sai H S, Tai X H, Zhou D H. Fault detection of EMU brake cylinder. In: Proceedings of the 35th Chinese Control Conference (CCC). Chengdu, China: IEEE, 2016. 6668−6672 [25] Fang X, Yang Z, Lin F. Virtual development platform of high-speed train traction drive system in view of top-level goals. In: Proceedings fo the 2013 Vehicle Power and Propulsion Conference (VPPC). Beijing, China: IEEE, 2013. 1−5 [26] 26 Feng J, Cao J, Wu Z. Analysis and study of the influence on the train side harmonic as a SMES fabricated into the EMU converter system. IEEE Transactions on Applied Super-Conductivity, 2019, 29(2): 1−5 [27] 27 Zhou Y H, Xin T, Lei L, Ning J J. Revisiting the 7/23 train accident using computer reconstruction simulation for causation and prevention analysis. Mathematics and Computers in Simulation, 2018, 2018(148): 1−15 [28] 28 Gao S, Dong H, Ning B. Adaptive fault-tolerant automatic train operation using RBF neural networks. Neural Computing and Applications, 2015, 2015(26): 141−149 [29] 杨笑悦. 高速列车牵引传动控制系统故障实时仿真与诊断方法研究[博士学位论文]. 中南大学, 中国, 2018.Yang Xiao-Yue. Real-time fault simulation and diagnosis for traction control system of high-speed train [Ph.D. dissertation]. Central South University, China, 2018. [30] 30 Liu Z, Xiang C, Wang Y, Liao Y, Zhang G. A model-based predictive direct power control for traction line-side converter in high-speed railway. IEEE Transactions on Industry Applications, 2017, 53(5): 4934−4943 doi: 10.1109/TIA.2017.2714624 [31] 31 Song W, Jiao S, Li W, Wang J, Huang J. High-frequency harmonic resonance suppression in high-speed railway through single-phase traction converter with LCL filter. IEEE Transactions on Transportation Electrification, 2016, 2(3): 347−356 doi: 10.1109/TTE.2016.2584921 [32] 冯江华, 王坚, 李江红. 高速列车牵引传动系统综合仿真平台的分析与设计. 铁道学报, 2012, 34(2): 21−2632 Feng Jiang-Hua, Wang Jian, Li Jiang-Hong. Integrated simulation platform of high-speed train traction drive system. Journal of the China Railway Society, 2012, 34(2): 21−26 [33] Xia J, Guo Y, Dai B, Zhang X. Sensor fault tolerant control method for electric traction PWM rectifier using sliding mode observer. In: Proceedings of the 19th International Conference on Electrical Machines and Systems (ICEMS), Chiba, Japan. 2016, 1−6 [34] 34 Willian T H, George M B. Design of built-in tests for active fault detection and isolation of discrete faults. IEEE Access, 2018, 6(2018): 50959−50973 [35] 郝春生, 秦月. 航空发动机故障诊断方法及测试流程分析. 航空发动机, 2014, 40(3): 71−7435 Hao Chun-Sheng, Qin Yue. Fault diagnosis methods and testing procedure of aeroengine. Aeroengine, 2014, 40(3): 71−74 [36] 柴毅, 毛万标, 任浩, 屈剑锋, 尹宏鹏, 杨志敏, 等. 航天发射系统运行安全性评估研究进展与挑战. 自动化学报, 2019, 45(10): 1829−184536 Chai Yi, Mao Wan-Biao, Ren Hao, Qu Jian-Feng, Yin Hong-Peng, Yang Zhi-Min, et al. Research on operational safety assessment for spacecraft launch system: Progress and challenges. Acta Automatica Sinica, 2019, 45(10): 1829−1845 [37] 37 Cunningham A, Kass M. Development, integration, and test architecture for a software-based hardware-agnostic fault tolerant flight computer. IEEE Instrumentation and Measurement Magazine, 2016, 19(4): 38−43 [38] 38 Ananda C M. General aviation aircraft avionics: Integration and system tests. IEEE Aerospace and Electronic Systems Magazine, 2009, 24(5): 19−25 doi: 10.1109/MAES.2009.5109949 [39] 39 Shi Y, Wu X, Chen H, Xu T. A research of weapon system storage reliability simulation method based on fuzzy theory. Physics Procedia: Part C, 2012, 24: 2266−2272 doi: 10.1016/j.phpro.2012.02.334 [40] 李玉洁, 吴延军. 武器装备的测试性设计方法研究. 舰船电子工程, 2017, 37(11): 126−12940 Li Yu-Jie, Wu Yan-Jun. Methods study for testability of weapon equipment. Ship Electronic Engineering, 2017, 37(11): 126−129 [41] 杨金鹏, 连光耀, 邱文昊, 陈然. 装备测试性验证技术研究现状及发展趋势. 现代防御技术, 2018, 46(2): 186−19241 Yang Jin-Peng, Lian Guang-Yao, Qiu Wen-Hao, Chen Ran. Research status and development trend of equipment testability verification technology. Modern Defence Technology, 2018, 46(2): 186−192 [42] 张艳红, 易志虎. 导弹故障诊断系统中的故障注入方法研究. 弹箭与制导学报, 2007, 2007(3): 292−29442 Zhang Yan-Hong, Yi Zhi-Hu. Research of fault injection in missile fault diagnosis system. Journal of Projectiles, Rockets, Missiles and Guidance, 2007, 2007(3): 292−294 [43] Johnson B W, Smith D T, DeLong T A. A Survey of Fault Simulation, Fault Grading and Test Pattern Generation Techniques with Emphasis on the Feasibility of VHDL Based Fault Simulation. Virginia University Charlottesville, 1997. [44] 44 Hsueh M C, Tsai T K, Iyer R K. Fault injection techniques and tools. Computer, 1997, 30(4): 75−82 doi: 10.1109/2.585157 [45] 45 Lago L D, Ferrante O, Passerone R, Ferrari A. Dependability assessment of SOA-based CPS with contracts and model-based fault injection. IEEE Transactions on Industrial Informatics, 2018, 14(1): 360−369 doi: 10.1109/TII.2017.2689337 [46] Kooli M, Di Natale G. A survey on simulation-based fault injection tools for complex systems. In: Proceedings of the 9th IEEE International Conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), Santorini, Greece. 2014. 1−6 [47] 崔恒斌, 马志文, 韩坤, 冯晓云, 仝力. 电动车组牵引传动系统的实时仿真研究. 中国铁道科学, 2011, 32(6): 94−10147 Cui Heng-Bin, Ma Zhi-Wen, Han Kun, Feng Xiao-Yun, Tong Li. Research on the real-time simulation of the traction drive system in electric multiple units. China Railway Science, 2011, 32(6): 94−101 [48] 48 Zhang Y, Tang T, Zheng W, Niu H. A train control system simulation and analysis method. International Journal of Simulation and Process Modelling, 2012, 7(1): 57−66 [49] 王子才. 仿真科学的发展及形成. 系统仿真学报, 2005, 17(6): 1279−128149 Wang Zi-Cai. Development and formation of simulation science. Journal of System Simulation, 2005, 17(6): 1279−1281 [50] 李伟, 林圣琳, 周玉臣, 马萍, 杨明. 复杂仿真系统可信度评估研究进展. 中国科学: 信息科学, 2018, 48(7): 29−4450 Li Wei, Lin Sheng-Lin, Zhou Yu-Chen, Ma Ping, Yang Ming. Research progress on credibility assessment of a complex simulation system. Scientia Sinica Imformationis, 2018, 48(7): 29−44 [51] 李军, 苑士华. 车辆动力学仿真的可信度评估方法研究. 北京理工大学学报, 2015, 35(1): 44−4751 Li Jun, Yuan Shi-Hua. Research on credibility evaluation method applied to vehicle dynamic simulation. Transactions of Beijing Institute of Technology, 2015, 35(1): 44−47 [52] 高文天, 吴勇, 张建东, 田海宝, 焦敬涛. 改进型灰色聚类法对航电火控系统仿真可信度评估. 火力与指挥控制, 2012, 37(4): 54−57 doi: 10.3969/j.issn.1002-0640.2012.04.01452 Gao Wen-Tian, Wu Yong, Zhang Jian-Dong, Tian Hai-Bao, Jiao Jing-Tao. A grey theory model using in the simulation credibility evaluation of integrative avionics system. Fire Control and Command Control, 2012, 37(4): 54−57 doi: 10.3969/j.issn.1002-0640.2012.04.014 [53] 53 Fang K, Yang M. Dynamic AHP net for simulation systems verification. Systems Engineering and Electronics, 2011, 33(3): 707−711 [54] 豆建斌, 王小兵, 单斌, 张燕. 制导武器半实物仿真试验可信度评估研究. 系统仿真学报, 2017, 29(12): 3023−302954 Dou Jian-Bin. Wang Xiao-Bing, Shan Bin, Zhang Yan. Credibility evaluation of hardware-in-the-loop simulation test for guided weapons. Journal of System Simulation, 2017, 29(12): 3023−3029 [55] Yang C, Gui W, Chen Z, Zhang J, Tao P, Yang C, et al. Voltage difference residual-based open-circuit fault diagnosis approach for three-level converters in electric traction systems. IEEE Transactions on Power Electronics, to be published. [56] 56 Tao H W, Peng T, Yang C, Chen Z W, Yang C H, Gui W H. Open-circuit fault analysis and modeling for power converter based on single arm model. Electronics, 2019, 8(6): 633−648 doi: 10.3390/electronics8060633 [57] 57 Chen Z, Ding S, Peng T, Yang C, Gui W. Fault detection for non-gaussian processes using generalized canonical correlation analysis and randomized algorithms. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1559−1567 doi: 10.1109/TIE.2017.2733501 [58] 58 Chen H, Jiang B, Lu N, Mao Z. deep PCA based real-time incipient fault detection and diagnosis methodology for electrical drive in high-speed trains. IEEE Transactions on Vehicular Technology, 2018, 67(6): 4819−4830 doi: 10.1109/TVT.2018.2818538 [59] 59 Chen H, Jiang B, Chen W, Yi H. Data-driven detection and diagnosis of incipient faults in electrical drives of high-speed trains. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4716−4725 doi: 10.1109/TIE.2018.2863191 [60] 国家标准. GB/T 21562-2008. 轨道交通-可靠性、可用性、可维修性和安全性规范及示例. 2008.National Standard. GB/T 21562-2008: Railway applications — specification and demonstration of reliability, maintainabilitylity and safety (RAMS). 2008. [61] 61 Rubaai A, Ofoli A R, Cobbinah D. DSP-based real-time implementation of a hybrid H1 adaptive fuzzy tracking controller for servo-motor drives. IEEE Transactions on Industry Applications, 2007, 43(2): 476−484 doi: 10.1109/TIA.2006.889904 [62] 62 Pak L F, Faruque M O, Nie X, Dinavahi V. A versatile cluster-based real-time digital simulator for power engineering research. IEEE Transactions on Power System, 2006, 21(2): 455−465 doi: 10.1109/TPWRS.2006.873414 [63] Dufour C, Blanger J. A PC-based real-time parallel simulatorof electric systems and drive. In: Proceedings of the 2004 International Conference on Parallel Computing in Electrical Engineering, Dresden, Germany: IEEE, 2004. 105−113 [64] RTDS Technology Incorporated. Real-Time Simulation [Online], available: http://www.rtds.com. December 5, 2019 [65] dSPACE GmbH. dSPACE Product Manual [Online], available: http://www.dspace.com. December 9, 2019 [66] 66 Chen Y, Dinavahi V. Multi-FPGA digital hardware design for detailed large-scale real-time electromagnetic transient simulation of power systems. IET Generation Transmission and Distribution, 2013, 7(5): 13−20 [67] 67 Saad H, Member S, Ould-bachir T, Mahseredjian J, Dufour C. Real-Time Simulation of MMCs Using. IEEE Transactions on Power Electronics, 2015, 36(1): 259−267 [68] 阳春华, 冯江华, 彭涛, 尚敬, 杨笑悦, 张宇, 杨超, 徐立恩. 一种高速列车信息控制系统协同故障仿真系统, 中国专利ZL201510362521.6, 2017年10月13日Yang Chun-Hua, Feng Jiang-Hua, Peng Tao, Shang Jing, Yang Xiao-Yue, Zhang Yu, Yang Chao, Xu Li-En. A collaborative fault simulation system for high-speed train information control system, Chian Patent ZL201510362521.6, October 13, 2017 [69] 阳春华, 杨超, 彭涛, 陶宏伟, 赵帅, 史露, 尹进田, 杨笑悦, 贺泽洲, 刘博, 李晟, 故障注入方法及系统, 中国专利ZL201710003376.1, 2019年8年30日Yang Chun-Hua, Yang Chao, Peng Tao, Tao Hong-Wei, Zhao Shuai, Shi Lu, Yin Jin-Tian, Yang Xiao-Yue, He Ze-Zhou, Liu Bo, Li Sheng. A fault injection method and its system, China Patent ZL201710003376.1, August 30, 2019 [70] 尹进田, 谢永芳, 陈志文, 彭涛, 阳春华, 杨超. 基于故障传播与因果关系的故障溯源方法及其在牵引传动控制系统中的应用. 自动化学报, 2019, DOI: 10.16383/j.aas.c19025Yin Jin-Tian, Xie Yong-Fang, Chen Zhi-Wen, Peng Tao, Yang Chun-Hua, Yang Chao. Fault tracing method based on fault propagation and causality with its application to the traction drive control system. Acta Automatica Sinica, 2019, DOI: 10.16383/j.aas.c19025 [71] 彭涛, 赵帅, 阳春华, 史露, 杨超, 尹进田, 杨笑悦、贺泽洲, 刘博, 陶宏伟, 李晟, 鼠笼型异步电机转子导条故障注入方法及故障注入器, 中国专利CN 201611107891.6, 2016年12月6日Peng Tao, Zhao Shuai, Yang Chun-Hua, Shi Lu, Yang Chao, Yin Jin-Tian, Yang Xiao-Yue, He Ze-Zhou, Liu Bo, Tao Hong-Wei, Li Sheng. Fault injection method and fault injector for the rotor bar of squirrel cage asynchronous motor, Patent CN 201611107891.6, December. 6, 2016 [72] 72 Yang C, Yang C, Peng T, Yang X, Gui W. A fault-injection strategy for traction drive control systems. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5719−5727 doi: 10.1109/TIE.2017.2674610 [73] 杨笑悦, 阳春华, 彭涛, 等. 基于替代模型的单粒子瞬态效应注入. 上海应用技术学院学报(自然科学版), 2015, 150(3): 299−30473 Yang Xiao-Yue, Yang Chun-Hua, Peng Tao, Lu Shi, Yang Chao. Single event transient injection method based on substitution model. Journal of Shanghai Institute of Technology (Natural Science), 2015, 150(3): 299−304 [74] 74 Tao H, Peng T, Yang C,. Chen Z, Yang C, Gui W, Hamid R K. A uniform modeling method based on open-circuit faults analysis for NPC-three-level converter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(3): 457−461 doi: 10.1109/TCSII.2018.2856862 [75] Li S, Peng X, Peng T. A group evaluation method for complex simulation system credibility based on 2-order additive fuzzy measure. In: Proceedings of the 2016 Chinese Control and Decision Conference (CCDC2016). Yinchuan, China: IEEE, 2016. 147−154 [76] 李晟, 彭小奇, 彭涛. 基于关联群广义直觉模糊软集的仿真可信度指标聚合方法. 控制与决策, 2018, 33(1): 126−13476 Li Sheng, Peng Xiao-Qi, Peng Tao. Aggregation method for simulation credibility index based on group generalized intuitionistic fuzzy soft sets with correlations. Control and Decision, 2018, 33(1): 126−134 [77] 彭涛, 方帝凯, 杨超, 陈志文, 陶宏伟, 桂卫华, 提军伟. 一种基于随机故障注入的诊断算法评估方法, 中国专利CN201811638187.2, 2018年12月30日Peng Tao, Fang Di-Kai, Yang Chao, Chen Zhi-Wen, Tao Hong-Wei, Gui Wei-Hua, Ti Jun-Wei. A random fault injection-based diagnosis algorithm evaluation method, China Patent CN201811638187.2, December 30, 2018 [78] 78 Yang X, Yang C, Peng T, Chen Z, Liu B, Gui W. Hardware-in-the-loop fault injection for traction control system. IEEE Journal on Emerging and Selected Topics in Power Electronics, 2018, 6(2): 696−706 doi: 10.1109/JESTPE.2018.2794339 [79] 中南大学. 基于dSPACE的牵引传动控制系统故障测试软件(D-TDCS-FT, v1.0). 中国软件著作权2018sr878040, 2018年10月10日Central South University. dSPACE-based fault testing software for traction drive control system (D-TDCS-FT, v1.0). China Software Copyright 2018sr878040, October 10, 2018 [80] Laboratory of Energy Saving Control and Safety Monitoring for Rail Transportation [Online], available: http://gfist.csu.edu.cn/IndexE.html, December 9, 2019 [81] 81 Wang H, Liserre M, Blaabjerg F, Rimmen P P, Jackbsen J B, Kvisgaard T, Landkildehus J. Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(1): 97−114 doi: 10.1109/JESTPE.2013.2290282 [82] 82 Schleich B, Anwer N, Mathieu L, Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Annals - Manufacturing Technology, 2017, 66(1): 141−144 doi: 10.1016/j.cirp.2017.04.040 [83] 83 Tuegel E J, Ingraffea A R, Eason T G, Spottswood S M. Reengineering aircraft structural life prediction using a digital twin. International Journal of Aerospace Engineering, 2011, 2011: 1687−5966 期刊类型引用(4)
1. 卢操,徐长飞,余洁文. 基于多目标的新能源微电网混合储能控制系统. 能源与环保. 2023(01): 267-272 . 百度学术
2. 何海祝,乔世成. 基于大数据的网络信息安全认证仿真研究. 计算机仿真. 2023(08): 398-402 . 百度学术
3. 张荆沙,张琰. 基于嵌入式技术的光纤干涉型传感器智能控制研究. 激光杂志. 2022(10): 193-196 . 百度学术
4. 张开利,李俊. 基于属性排查的软件运行风险多目标控制仿真. 计算机仿真. 2021(09): 306-309+385 . 百度学术
其他类型引用(6)
-