[1]
|
Saxena R K, Mathai A M, Haubold H J. Fractional reactiondiffusion equations. Astrophysics and Space Science, 2006, 305(3):289-296 doi: 10.1007/s10509-006-9189-6
|
[2]
|
Henry B I, Langlands T A M, Wearne S L. Anomalous diffusion with linear reaction dynamics: From continuous time random walks to fractional reaction-diffusion equations. Physical Review E, 2006, 74(3):031116 doi: 10.1103/PhysRevE.74.031116
|
[3]
|
Podlubny I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and some of Their Applications. New York: Academic Press, 1999.
|
[4]
|
del Castillo-Negrete D, Carreras B A, Lynch V E. Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. Physical Review Letters, 2003, 91:018302 doi: 10.1103/PhysRevLett.91.018302
|
[5]
|
张桂梅, 孙晓旭, 刘建新, 储珺. 基于分数阶微分的TV-L1光流模型的图像配准方法研究. 自动化学报, 2017, 43(12):2213-2224Zhang Gui-Mei, Sun Xxiao-Xu, Liu Jian-Xin, Chu Jun. Research on TV-L1 optical flow model for image registration based on fractional-order differentiation. Acta Automatica Sinica, 2017, 43(12):2213-2224
|
[6]
|
Yin H W, Wen X Q. Pattern formation through temporal fractional derivatives. Scientific Reports, 2018, 8(1):5070 doi: 10.1038/s41598-018-23470-8
|
[7]
|
Liu W J. Boundary feedback stabilization of an unstable heat equation. SIAM Journal on Control & Optimization, 2003, 42(3):1033-1043
|
[8]
|
Smyshlyaev A, Krstic M. Closed-form boundary state feedbacks for a class of 1-D partial integro-differential equations. IEEE Transactions on Automatic Control, 2004, 49(12): 2185-2202 doi: 10.1109/TAC.2004.838495
|
[9]
|
Smyshlyaev A, Krstic M. Backstepping observers for a class of parabolic PDEs. Systems & Control Letters, 2005, 54(7): 613-625
|
[10]
|
Smyshlyaev A, Krstic M. On control design for PDEs with space-dependent diffusivity or time-dependent reactivity. Automatica, 2005, 41(9):1601-1608 doi: 10.1016/j.automatica.2005.04.006
|
[11]
|
Krstic B M, Smyshlyaev A. Boundary Control of PDEs: A Course on Backstepping Design. Philadelphia: Society for Industrial and Applied Mathematics, 2008.
|
[12]
|
Smyshlyaev A. Adaptive Control of Parabolic PDEs. Princeton: Princeton University Press, 2010.
|
[13]
|
Baccoli A, Pisano A, Orlov Y. Boundary control of coupled reaction-diffusion processes with constant parameters. Automatica, 2015, 54:80-90 doi: 10.1016/j.automatica.2015.01.032
|
[14]
|
Baccoli A, Pisano A. Anticollocated backstepping observer design for a class of coupled reaction-diffusion PDEs. Journal of Control Science and Engineering, 2015, 2015:1-10
|
[15]
|
Liu B N, Boutat D, Liu D Y. Backstepping observer-based output feedback control for a class of coupled parabolic PDEs with different diffusions. Systems & Control Letters, 2016, 97:61-69
|
[16]
|
Orlov Y, Pisano A, Pilloni A, Usia E. Output feedback stabilization of coupled reaction-diffusion processes with constant parameters. SIAM Journal on Control and Optimization, 2017, 55(6):4112-4155 doi: 10.1137/15M1034325
|
[17]
|
Vazquez R, Krstic M. Boundary control of coupled reactionadvection-diffusion systems with spatially-varying coefficients. IEEE Transactions on Automatic Control, 2017, 62(4):2026-2033 doi: 10.1109/TAC.2016.2590506
|
[18]
|
Deutscher J, Kerschbaum S. Output regulation for coupled linear parabolic PIDEs. Automatica, 2019, 100:360-370 doi: 10.1016/j.automatica.2018.11.033
|
[19]
|
Ge F D, Chen Y Q, Kou C H. Boundary feedback stabilisation for the time fractional-order anomalous diffusion system. IET Control Theory & Applications, 2016, 10(11):1250-1257
|
[20]
|
Ge F D, Chen Y Q. Extended Luenberger-type observer for a class of semilinear time fractional diffusion systems. Chaos, Solitons & Fractals, 2017, 102:229-235
|
[21]
|
Ge F D, Meurer T, Chen Y. Mittag-Leffler convergent backstepping observers for coupled semilinear subdiffusion systems with spatially varying parameters. Systems & Control Letters, 2018, 122:86-92
|
[22]
|
Ge F D, Chen Y Q. Observer design for semilinear time fractional diffusion systems with spatially varying parameters. In: Proceedings of the 2018 International Conference on Fractional Differentiation and Its Applications. Amman, Jordan: SSRN, 2018. [Online], available: http://dx.doi.org/10.2139/ssrn.3281639
|
[23]
|
Ge F D, Chen Y Q. Event-triggered boundary feedback control for networked reaction-subdiffusion processes with input uncertainties. Information Sciences, 2019, 476:239-255. doi: 10.1016/j.ins.2018.10.023
|
[24]
|
Chen J, Zhuang B, Chen Y Q, Cui B T. Backstepping-based boundary feedback control for a fractional reaction diffusion system with mixed or Robin boundary conditions. IET Control Theory & Applications, 2017, 11(17):2964-2976.
|
[25]
|
Chen J, Cui B T, Chen Y Q, Mao L. Backstepping-based observer for output feedback stabilization of a boundary controlled fractional reaction diffusion system. In: Proceedings of the 11th Asian Control Conference. Gold Coast, Australia: IEEE, 2017. 2435−2440
|
[26]
|
Chen J, Cui B T, Chen Y Q. Backstepping-based boundary control design for a fractional reaction diffusion system with a space-dependent diffusion coefficient. ISA Transactions, 2018, 80:203-211 doi: 10.1016/j.isatra.2018.04.013
|
[27]
|
Chen J, Cui B T, Chen Y Q. Observer-based output feedback control for a boundary controlled fractional reaction diffusion system with spatially-varying diffusivity. IET Control Theory & Applications, 2018, 12(11):1561-1572
|
[28]
|
Zhou H C, Guo B Z. Boundary feedback stabilization for an unstable time fractional reaction diffusion equation. SIAM Journal on Control and Optimization, 2018, 56(1):75-101 doi: 10.1137/15M1048999
|
[29]
|
Li Y, Chen Y Q, Podlubny I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 2009, 45(8):1965-1969 doi: 10.1016/j.automatica.2009.04.003
|
[30]
|
Li Y, Chen Y Q, Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers & Mathematics with Applications, 2010, 59(5):1810-1821
|
[31]
|
Hardy G H, Littlewood J E, Pólya G. Inequalities. 2nd ed. Cambridge, UK: Cambridge University Press, 1988.
|
[32]
|
Podlubny I. Fractional-order systems and PIλDµ-controllers. IEEE Transactions on Automatic Control, 1999, 44(1):208-214 doi: 10.1109/9.739144
|
[33]
|
Matignon D. Stability results for fractional differential equations with applications to control processing. Computational Engineering in Systems Applications, 1996, 2:963-968
|
[34]
|
Aguila-Camacho N, Duarte-Mermoud M A, Gallegos J A. Lyapunov functions for fractional order systems. Communications in Nonlinear Science & Numerical Simulation, 2014, 19(9):2951-2957
|
[35]
|
Curtain R F, Zwart H. An Introduction to Infinitedimensional Linear Systems Theory. New York: Springer Science and Business Media, 1995.
|
[36]
|
Li H F, Cao J X, Li C P. High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (III). Journal of Computational and Applied Mathematics, 2016, 299:159-175 doi: 10.1016/j.cam.2015.11.037
|