2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非匹配扰动下的多智能体系统固定时间一致跟踪

孙小童 郭戈 张鹏飞

孙小童, 郭戈, 张鹏飞. 非匹配扰动下的多智能体系统固定时间一致跟踪. 自动化学报, 2021, 47(6): 1368−1376 doi: 10.16383/j.aas.c190339
引用本文: 孙小童, 郭戈, 张鹏飞. 非匹配扰动下的多智能体系统固定时间一致跟踪. 自动化学报, 2021, 47(6): 1368−1376 doi: 10.16383/j.aas.c190339
Sun Xiao-Tong, Guo Ge, Zhang Peng-Fei. Fixed-time consensus tracking of multi-agent systems under unmatched disturbances. Acta Automatica Sinica, 2021, 47(6): 1368−1376 doi: 10.16383/j.aas.c190339
Citation: Sun Xiao-Tong, Guo Ge, Zhang Peng-Fei. Fixed-time consensus tracking of multi-agent systems under unmatched disturbances. Acta Automatica Sinica, 2021, 47(6): 1368−1376 doi: 10.16383/j.aas.c190339

非匹配扰动下的多智能体系统固定时间一致跟踪

doi: 10.16383/j.aas.c190339
基金项目: 国家自然科学基金(61573077, U1808205)资助
详细信息
    作者简介:

    孙小童:大连海事大学控制科学与工程博士研究生. 主要研究方向为多智能体系统.E-mail: sdyxsxt@126.com

    郭戈:东北大学教授. 1998年获得东北大学博士学位. 主要研究方向为智能交通系统, 运动目标检测跟踪网络. 本文通信作者.E-mail: geguo@yeah.net

    张鹏飞:大连海事大学控制科学与工程博士研究生. 主要研究方向为多智能体系统, 水面水下机器人镇定控制、跟踪控制.E-mail: peng-fei_zhang@outlook.com

Fixed-time Consensus Tracking of Multi-agent Systems Under Unmatched Disturbances

Funds: Supported by National Natural Science Foundation of China (61573077, U1808205)
More Information
    Author Bio:

    SUN Xiao-Tong Ph. D. candidate at the School of Control Science and Engineering, Dalian Maritime University. His research interest covers multi-agent systems

    GUO Ge Professor at Northeastern University. He received his Ph.D. degree from Northeastern University in 1998. His research interest covers intelligent transportation systems, moving target detection and tracking with networks. Corresponding author of this paper

    ZHANG Peng-Fei Ph. D. candidate at the School of Control Science and Engineering, Dalian Maritime University. His research interest covers multi-agent systems, stabilizing control and tracking control of surface underwater robot

  • 摘要: 本文研究了有向拓扑网络中具有非匹配扰动的二阶多智能体系统固定时间一致跟踪问题. 基于固定时间扰动观测器, 估计系统匹配扰动, 其次引入正弦补偿函数设计非奇异分布协议, 在避免系统奇异性的同时克服了非匹配扰动, 使多智能体系统实现固定时间一致跟踪. 最后通过仿真验证了算法的有效性.
  • 图  1  系统的相位图

    Fig.  1  The phase plot of the system

    图  2  算法流程图

    Fig.  2  Algorithm flowchart

    图  3  交互拓扑图${g^e}$

    Fig.  3  The topology graph ${g^e}$

    图  4  协议(22)下的位置轨迹

    Fig.  4  Position trajectory under protocol (22)

    图  5  协议(22)下的速度轨迹

    Fig.  5  Speed trajectory under protocol (22)

    图  6  协议(36)下的位置轨迹

    Fig.  6  Position trajectory under protocol (36)

    图  7  协议(36)下的速度轨迹

    Fig.  7  Speed trajectory under protocol (36)

  • [1] Zheng Y F, Chen W D. Mobile robot team forming for crystallization of proteins. Autonomous Robots, 2007, 23(1): 69−78 doi: 10.1007/s10514-007-9031-1
    [2] Smith R S, Hadaegh F Y. Control of deep-space formation-flying spacecraft; relative sensing and switched information. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 106−114 doi: 10.2514/1.6165
    [3] 黄勤珍. 离散时间多智能体系统的一致性. 自动化学报, 2012, 38(7): 1127−1133

    Huang Qin-Zhen. Consensus analysis of multi-agent discrete-time systems. Acta Automatica Sinica, 2012, 38(7): 1127−1133
    [4] Cao Y C, Yu W W, Ren W, Chen G R. An overview of recent progress in the study of distributed multi-agent coordination. IEEE Transactions on Industrial Informatics, 2013, 9(1): 427−438 doi: 10.1109/TII.2012.2219061
    [5] 董涛, 李小丽, 赵大端. 基于事件触发的三阶离散多智能体系统一致性分析. 自动化学报, 2019, 45(7): 1366−1372

    Dong Tao, Li Xiao-Li, Zhao Da-Duan. Event-triggered consensus of third-order discrete-time multi-agent systems. Acta Automatica Sinica, 2019, 45(7): 1366−1372
    [6] Hong Y G, Hu J P, Gao L X. Tracking control for multi-agent consensus with an active leader and variable topology. Automatica, 2006, 42(7): 1177−1182 doi: 10.1016/j.automatica.2006.02.013
    [7] Hu J P, Hong Y G, Feng G. Distributed dynamic control for leaderless multi-agent consensus with star-like topology. Asian Journal of Control, 2008, 10(2): 233−237 doi: 10.1002/asjc.21
    [8] Wu Y, Wang Z, Ding S, Zhang H G. Leader-follower consensus of multi-agent systems in directed networks with actuator faults. Neurocomputing, 2018, 275: 1177−1185 doi: 10.1016/j.neucom.2017.09.066
    [9] Du H B, Li S H, Qian C J. Finite-time attitude tracking control of spacecraft with application to attitude synchronization. IEEE Transactions on Automatic Control, 2011, 56(11): 2711−2717 doi: 10.1109/TAC.2011.2159419
    [10] Zhao L W, Hua C C. Finite-time consensus tracking of second-order multi-agent systems via nonsingular TSM. Nonlinear Dynamics, 2014, 75(1-2): 311−318 doi: 10.1007/s11071-013-1067-5
    [11] Yu H, Shen Y, Xia X. Adaptive finite-time consensus in multi-agent networks. Systems & Control Letters, 2013, 62(10): 880−889
    [12] Yu S, Long X. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode. Automatica, 2015, 54: 158−165 doi: 10.1016/j.automatica.2015.02.001
    [13] Hua C C, Sun X L, You X, Guan X P. Finite-time consensus control for second-order multi-agent systems without velocity measurements. International Journal of Systems Science, 2017, 48(2): 337−346 doi: 10.1080/00207721.2016.1181224
    [14] Wang X, Li S, Lam J. Distributed active anti-disturbance output consensus algorithms for higher-order multi-agent systems with mismatched disturbances. Automatica, 2016, 74: 30−37 doi: 10.1016/j.automatica.2016.07.010
    [15] Zhang L L, Hua C C, Guan X P. Distributed output feedback consensus tracking prescribed performance control for a class of nonlinear multi-agent systems with unknown disturbances. IET Control Theory and Applications, 2016, 10(8): 877−883 doi: 10.1049/iet-cta.2015.1120
    [16] Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 2011, 57(8): 2106−2110
    [17] Wang H, Yu W W, Wen G H, Chen G R. Fixed-time consensus tracking of multi-agent systems under a directed communication topology. In: Proceedings of the 12th IEEE International Conference on Control and Automation. Kathmandu, Nepal: IEEE, 2016. 186−191
    [18] Zuo Z Y. Nonsingular fixed-time consensus tracking for second-order multi-agent networks. Automatica, 2015, 54: 305−309 doi: 10.1016/j.automatica.2015.01.021
    [19] Liu J, Zhang Y L, Sun C Y, Yu Y. Fixed-time consensus of multi-agent systems with input delay and uncertain disturbances via event-triggered control. Information Sciences, 2019, 480: 261−272 doi: 10.1016/j.ins.2018.12.037
    [20] Hong H F, Yu W W, Yu X H, Wen G H, Alsaedi A. Fixed-time connectivity-preserving distributed average tracking for multi-agent systems. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64(10): 1192−1196 doi: 10.1109/TCSII.2017.2661380
    [21] Shang Y L. Fixed-time group consensus for multi-agent systems with non-linear dynamics and uncertainties. IET Control Theory & Applications, 2017, 12(3): 395−404
    [22] Yang H Y, Zhang Z X, Zhang S Y. Consensus of second-order multi-agent systems with exogenous disturbances. International Journal of Robust and Nonlinear Control, 2011, 21(9): 945−956 doi: 10.1002/rnc.1631
    [23] Zuo Z Y, Han Q L, Ning B D, Ge X H, Zhang X M. An overview of recent advances in fixed-time cooperative control of multiagent systems. IEEE Transactions on Industrial Informatics, 2018, 14(6): 2322−2334 doi: 10.1109/TII.2018.2817248
    [24] Ni K J, Liu L, Liu C X, Liu J. Fixed-time leader-following consensus for second-order multiagent systems with input delay. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8635−8646 doi: 10.1109/TIE.2017.2701775
    [25] Wei X Y, Yu W W, Wang H, Yao Y Y, Mei F. An observer-based fixed-time consensus control for second-order multi-agent systems with disturbances. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(2): 247−251 doi: 10.1109/TCSII.2018.2831922
    [26] Inoue S, Hirano M, Kijima K, Takashina J. A practical calculation method of ship maneuvering motion. International Shipbuilding Progress, 1981, 28(325): 207−222 doi: 10.3233/ISP-1981-2832502
    [27] Zuo Z Y, Tie L. A new class of finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Control, 2014, 87(2): 363−370 doi: 10.1080/00207179.2013.834484
    [28] Zuo Z Y, Tie L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. International Journal of Systems Science, 2016, 47(6): 1366−1375 doi: 10.1080/00207721.2014.925608
  • 加载中
图(7)
计量
  • 文章访问数:  1424
  • HTML全文浏览量:  543
  • PDF下载量:  487
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-07
  • 录用日期:  2020-01-09
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回