Virtual Machine Performance Prediction Using Broad Learning System Based on Compression Factor
-
摘要: 在基于基础设施即服务的云服务模式下, 精准的虚拟机性能预测, 对于用户在众多资源提供商之间进行虚拟机租用策略的制定具有十分重要的意义. 针对基于宽度学习系统(Broad learning system, BLS)的预测模型存在许多降低虚拟机性能预测准确性和效率的冗余节点, 通过引入压缩因子, 构建基于压缩因子的宽度学习系统, 使预测结果更逼近输出样本, 能够减少BLS的冗余特征节点与增强节点, 从而加快BLS的网络收敛速度, 提高BLS的泛化性能.Abstract: In cloud service models which is based on IaaS, from the user's perspective, how to accurately predict performance of virtual machine is very important for making renting strategy of virtual machines between many physical servers. However, broad learning system (BLS) includes too many redundant feature nodes and enhancement nodes, resulting in decreased efficiency and accuracy of virtual machine performance prediction. Connecting compression factor to BLS, the paper builds intelligent prediction model of BLS based on compression factor (CF-BLS), and uses the model for predicting virtual machine performance.
-
表 1 回归数据集
Table 1 Datasets of regression
回归数据集 属性 训练数据 测试数据 Combined cycle power plant 4 4795 4773 Energy efficiency 8 468 300 Forest fires 13 259 258 Wine quality 12 2898 2000 -
[1] 李琳, 应时, 董波, 王蕊. 云环境中面向服务软件的演化部署优化方法. 中国科学: 信息科学, 2017, 47(6): 715-735 doi: 10.1360/N112016-00200Li Lin, Ying Shi, Dong Bo, Wang Rui. Evolutionary deployment optimization for service-oriented software in cloud. <i>SCIENTIA SINICA Informationis</i>, 2017, 47(6): 715-735 doi: 10.1360/N112016-00200 [2] 罗军舟, 杨明, 凌振, 吴文甲, 顾晓丹. 网络空间安全体系与关键技术. 中国科学: 信息科学, 2016, 46(8): 939-968 doi: 10.1360/N112016-00090Luo Jun-Zhou, Yang Ming, Ling Zhen, Wu Wen-Jia, Gu Xiao-Dan. Architecture and key technologies of cyberspace security. <i>SCIENTIA SINICA Informationis</i>, 2016, 46(8): 939-968 doi: 10.1360/N112016-00090 [3] 关兆雄, 庞维欣. 基于在线迁移的虚拟化资源整合研究. 自动化与仪器仪表, 2018, (3): 59-62Guan Zhao-Xiong, Pang Wei-Xin. Research on virtual resource integration based on online migration. <i>Automation & Instrumentation</i>, 2018, (3): 59-62 [4] 余勇, 车建华, 徐焕良, 蒋诚智. 负载类型相关的Xen虚拟机系统性能模型. 计算机科学, 2016, 43(11): 210-214 doi: 10.11896/j.issn.1002-137X.2016.11.041Yu Yong, Che Jian-Hua, Xu Huan-Liang, Jiang Cheng-Zhi. Workload type-dependent Xen virtual machine system performance models. <i>Computer Science</i>, 2016, 43(11): 210-214 doi: 10.11896/j.issn.1002-137X.2016.11.041 [5] 吕庆翰, 面向虚拟化的综合性能评测方法研究 [硕士学位论文], 华南理工大学, 中国, 2015.Lv Qing-Han. The Research about Virtualization Oriented Comprehensive Performance Evaluation Method [Master thesis], South China University of Technology, China, 2015. [6] 车建华, 虚拟计算系统性能与可用性评测方法研究 [博士学位论文], 浙江大学, 中国, 2010.Che Jian-Hua. Research on Performance and Availability Evaluation Methods of Virtualization Systems [Ph.D. dissertation], Zhejiang University, China, 2010. [7] 黎丰泽, 杨达, 周鹏, 武延军. 虚拟环境下虚拟机应用性能建模. 计算机系统应用, 2015, 24(9): 9-15 doi: 10.3969/j.issn.1003-3254.2015.09.002Li Feng-Ze, Yang Da, Zhou Peng, Wu Yan-Jun. Modeling application performance in a virtualized environment. <i>Computer Systems & Applications</i>, 2015, 24(9): 9-15 doi: 10.3969/j.issn.1003-3254.2015.09.002 [8] Xu J, Zhao M, Fortes J, Carpenter R, Yousif M. Autonomic resource management in virtualized data centers using fuzzy logic-based approaches. <i>Cluster Computing</i>, 2008, 11(3): 213-227 doi: 10.1007/s10586-008-0060-0 [9] Rao J, Bu X P, Xu C Z, Wang L Y, Yin G. VCONF: A reinforcement learning approach to virtual machines auto-configuration. In: Proceedings of the 6th International Conference on Autonomic Computing. Barcelona, Spain: ACM, 2009. 137−146 [10] 贝振东, 喻之斌, 熊文, 林栋, 张慧玲, 须成忠. 一种云计算系统中虚拟机的性能预测方法及系统, 中国 104536829A, 2015-04-22Bei Zhen-Dong, Yu Zhi-Bin, Xiong Wen, Lin Dong, Zhang Hui-Ling, Xu Cheng-Zhong. Performance Prediction Method and System for Virtual Machines in Cloud Computing System, CN Patent 104536829A, April 22, 2015 [11] 王娟, 张彬彬, 岳昆, 郝佳, 武浩. 基于随机森林回归的虚拟机性能预测方法, 中国 106897109A, 2017-06-27Wang Juan, Zhang Bin-Bin, Yue Kun, Hao Jia, Wu Hao. Virtual Machine Performance Prediction Method Based on Random Forest Regression, CN Patent 106897109A, June 27, 2017 [12] Chen C L P, Liu Z L. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. <i>IEEE Transactions on Neural Networks and Learning Systems</i>, 2018, 29(1): 10-24 doi: 10.1109/TNNLS.2017.2716952 [13] 郑云飞, 陈霸东. 基于最小p-范数的宽度学习系统. 模式识别与人工智能, 2019, 32(1): 51-57Zheng Yun-Fei, Chen Ba-Dong. Least p-norm based broad learning system. <i>Pattern Recognition and Artificial Intelligence</i>, 2019, 32(1): 51-57 [14] 贾晨, 刘华平, 续欣莹, 孙富春. 基于宽度学习方法的多模态信息融合. 智能系统学报, 2019, 14(1): 150-157Jia Chen, Liu Hua-Ping, Xu Xin-Ying, Sun Fu-Chun. Multi-modal information fusion based on broad learning method. <i>CAAI Transactions on Intelligent Systems</i>, 2019, 14(1): 150-157 [15] Pao Y H, Park G H, Sobajic D J. Learning and generalization characteristics of the random vector functional-link net. <i>Neurocomputing</i>, 1994, 6(2): 163-180 doi: 10.1016/0925-2312(94)90053-1 [16] 管皓, 薛向阳, 安志勇. 深度学习在视频目标跟踪中的应用进展与展望. 自动化学报, 2016, 42(6): 834-847Guan Hao, Xue Xiang-Yang, An Zhi-Yong. Advances on application of deep learning for video object tracking. <i>Acta Automatica Sinica</i>, 2016, 42(6): 834-847 [17] 刘巧元, 王玉茹, 张金玲, 殷明浩. 基于相关滤波器的视频跟踪方法研究进展. 自动化学报, 2019, 45(2): 265-275Liu Qiao-Yuan, Wang Yu-Ru, Zhang Jin-Ling, Yin Ming-Hao. Research progress of visual tracking methods based on correlation filter. <i>Acta Automatica Sinica</i>, 2019, 45(2): 265-275 [18] Feng S, Chen C L P. Fuzzy broad learning system: A novel neuro-fuzzy model for regression and classification. <i>IEEE Transactions on Cybernetics</i>, 2020, 50(2): 414-424 doi: 10.1109/TCYB.2018.2857815 [19] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. <i>IEEE Transactions on Neural Networks</i>, 2006, 17(4): 879-892 doi: 10.1109/TNN.2006.875977 [20] 张万栋, 李庆忠, 黎明, 武庆明. 基于最优误差自校正极限学习机的高频地波雷达RD谱图海面目标检测算法. 自动化学报, 2021, 47(1): 108-120Zhang Wan-Dong, LI Qing-Zhong, LI Ming, Wu Qing-Ming. Sea surface target detection for RD images of HFSWR based on optimized error self-adjustment extreme learning machine. <i>Acta Automatica Sinica</i>, 2021, 47(1): 108-120 [21] Tang J X, Deng C W, Huang G B. Extreme learning machine for multilayer perceptron. <i>IEEE Transactions on Neural Networks and Learning Systems</i>, 2016, 27(4): 809-821 doi: 10.1109/TNNLS.2015.2424995 [22] 焦李成, 赵进, 杨淑媛, 刘芳. 深度学习、优化与识别. 北京: 清华大学出版社, 2017. 123−125Jiao Li-Cheng, Zhao Jin, Yang Shu-Yuan, Liu Fang. Deep Learning, Optimization and Recognition. Beijing: Tsinghua University Press, 2017. 123−125 [23] Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules. In: Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc. , 2017. 3859−3869 [24] 王博. 凸增量极限学习机的逼近阶 [硕士学位论文], 西北大学, 中国, 2015.Wang Bo. The Approximation Order of Convex Incremental Extreme Learning Machine [Master thesis], Northwest University, China, 2015. [25] 田中大, 李树江, 王艳红, 王向东. 高斯过程回归补偿ARIMA的网络流量预测. 北京邮电大学学报, 2017, 40(6): 65-73Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Wang Xiang-Dong. Network traffic prediction based on ARIMA with Gaussian process regression compensation. <i>Journal of Beijing University of Posts and Telecommunications</i>, 2017, 40(6): 65-73 [26] Tian Z D, Li S J, Wang Y H, Sha Y. A prediction method based on wavelet transform and multiple models fusion for chaotic time series. <i>Chaos, Solitons & Fractals</i>, 2017, 98: 158-172 [27] Tian Z D, Ren Y, Wang G. Short-term wind speed prediction based on improved PSO algorithm optimized EM-ELM. <i>Energy Sources, Part A: Recovery, Utilization, and Environmental Effects</i>, 2019, 41(1): 26-46 doi: 10.1080/15567036.2018.1495782 [28] UCI datasets [Online], available: http://archive.ics.uci.edu/ml/datasets.php, April 10, 2019