2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FPSO的电力巡检机器人的广义二型模糊逻辑控制

吴庆 赵涛 佃松宜 郭锐 李胜川 方红帏 韩吉霞

吴庆, 赵涛, 佃松宜, 郭锐, 李胜川, 方红帏, 韩吉霞. 基于FPSO的电力巡检机器人的广义二型模糊逻辑控制. 自动化学报, 2022, 48(6): 1482−1492 doi: 10.16383/j.aas.c190306
引用本文: 吴庆, 赵涛, 佃松宜, 郭锐, 李胜川, 方红帏, 韩吉霞. 基于FPSO的电力巡检机器人的广义二型模糊逻辑控制. 自动化学报, 2022, 48(6): 1482−1492 doi: 10.16383/j.aas.c190306
Wu Qing, Zhao Tao, Dian Song-Yi, Guo Rui, Li Sheng-Chuan, Fang Hong-Wei, Han Ji-Xia. General type-2 fuzzy logic control for a power-line inspection robot based on FPSO. Acta Automatica Sinica, 2022, 48(6): 1482−1492 doi: 10.16383/j.aas.c190306
Citation: Wu Qing, Zhao Tao, Dian Song-Yi, Guo Rui, Li Sheng-Chuan, Fang Hong-Wei, Han Ji-Xia. General type-2 fuzzy logic control for a power-line inspection robot based on FPSO. Acta Automatica Sinica, 2022, 48(6): 1482−1492 doi: 10.16383/j.aas.c190306

基于FPSO的电力巡检机器人的广义二型模糊逻辑控制

doi: 10.16383/j.aas.c190306
基金项目: 国家重点研发计划(2018YFB1307401), 国家自然科学基金(61703291)资助
详细信息
    作者简介:

    吴庆:四川大学控制工程专业硕士研究生. 主要研究方向为模糊控制及其应用. E-mail: 2017223035223@stu.scu.edu.cn

    赵涛:四川大学电气工程学院副教授. 2010年获得西南交通大学学士学位. 2015年获得西南交通大学博士学位. 主要研究方向为二型模糊集理论和系统设计, 粗糙集和智能控制. 本文通信作者. E-mail: zhaotaozhaogang@126.com

    佃松宜:四川大学电气工程学院教授. 分别于1996和2002年获得四川大学学士和硕士学位. 2009年获得日本东本大学博士学位. 主要研究方向为先进控制理论和智能信号处理, 电力电子系统及其控制, 运动控制和机器人控制. E-mail: scudiansy@scu.edu.cn

    郭锐:国家电网山东电力公司教授级高级工程师. 分别于2001, 2003和2007年获得哈尔滨工业大学机械工程专业学士, 硕士和博士学位. 主要研究方向为先进控制理论和电力工业智能机器人. E-mail: guoruihit@gmail.com

    李胜川:国网辽宁省电力有限公司电力科学研究院教授级高级工程师. 1991年毕业于哈尔滨工业大学. 主要研究方向为变电站设备的运行和维护以及人工智能在电网中的应用. E-mail: lnlsc@163.com

    方红帏:四川大学控制理论与控制工程专业硕士研究生. 主要研究方向为模糊控制和自适应动态规划及其应用. E-mail: weihongfang528@163.com

    韩吉霞:四川大学控制理论与控制工程专业硕士研究生. 主要研究方向为模糊控制和滑模控制及其应用. E-mail: jixiahan@126.com

General Type-2 Fuzzy Logic Control for a Power-line Inspection Robot Based on FPSO

Funds: Supported by National Key Research and Development Program of China (2018YFB1307401) and Nationl Natural Science Foundation of China (61703291)
More Information
    Author Bio:

    WU Qing Master student in control engineering at Sichuan University. His research interest covers fuzzy control, intelligent control and their applications

    ZHAO Tao Associate professor at the College of Electrical Engineering, Sichuan University. He received his bachelor degree in mathematics and applied mathematics and his Ph.D. degree in systems engineering from Southwest Jiaotong University, in 2010 and 2015, respectively. His research interest covers type-2 fuzzy set theory and system design, rough sets, and intelligent control. Corresponding author of this paper

    DIAN Song-Yi Professor at the College of Electrical Engineering, Sichuan University. He received his bachelor and master degrees of control engineering from Sichuan University in 1996 and 2002, respectively. He received his Ph.D. degree in nanomechanics engineering from Tohoku University, Japan in 2009. His research interest covers advanced control methods and intelligent signal processing, power-electronics system and its control, motion control, and robotic control

    GUO Rui Professor of engineering at the State Grid Shandong Electric Power Company. He received his bachelor, master, and Ph.D. degrees of mechanical engineering from Harbin Institute of Technology in 2001, 2003, and 2007, respectively. His research interest covers advanced control methods and intelligent robot for power industry

    LI Sheng-Chuan Professor of engineering at the Electric Power Research Institute of State Grid Liaoning Electric Power Co., Ltd.. He graduated from Harbin University of Technology in 1991. His research interest covers operation and maintenance of substation equipment and application of artificial intelligence in power grid

    FANG Hong-Wei Master student in control theory and control engineering at Sichuan University. His research interest covers fuzzy control, adaptive dynamic programming and their applications

    HAN Ji-Xia Master student in control theory and control engineering at Sichuan University. Her research interest covers fuzzy control, sliding mode control and their applications

  • 摘要: 针对电力巡检机器人(Power-line inspection robot, PLIR)的平衡调节问题, 设计了广义二型模糊逻辑控制器(General type-2 fuzzy logic controller, GT2FLC); 针对GT2FLC中隶属函数参数难以确定的问题, 通过模糊粒子群(Fuzzy particle swarm optimization, FPSO)算法来优化隶属函数参数. 将GT2FLC的控制性能与区间二型模糊逻辑控制器(Interval type-2 fuzzy logic controller, IT2FLC)和一型模糊逻辑控制器(Type-1 fuzzy logic controller, T1FLC) 的控制性能进行对比. 除此之外, 还考虑了外部干扰对三种控制器控制效果的影响. 仿真结果表明, GT2FLC具有更好的性能和处理不确定性的能力.
  • 图  1  PLIR模型

    Fig.  1  The model of PLIR

    图  2  广义二型模糊集

    Fig.  2  General type-2 fuzzy set

    图  3  不确定的迹

    Fig.  3  The footprint of uncertain

    图  4  Nite对应的隶属函数

    Fig.  4  The membership function for Nite

    图  5  Nfit对应的隶属函数

    Fig.  5  The membership function for Nfit

    图  6  PLIR平衡控制和优化原理图

    Fig.  6  The diagram of balance control and optimization for the PLIR

    图  7  FPSO算法流程图

    Fig.  7  The flow diagram of the FPSO algorithm

    图  8  优化前${{\tilde \theta }_1}$对应的FOU

    Fig.  8  The FOU for ${{\tilde \theta }_1}$ without optimization

    图  9  优化前${{{\dot{\tilde{\theta }}}}_{2}}$对应的FOU

    Fig.  9  FOU for ${{{\dot{\tilde{\theta }}}}_{2}}$ without optimization

    图  10  优化后${{\tilde \theta }_1}$对应的FOU

    Fig.  10  The FOU for ${{\tilde \theta }_1}$ with optimization

    图  11  优化后${{{\dot{\tilde{\theta }}}}_{2}}$对应的FOU

    Fig.  11  The FOU for ${{{\dot{\tilde{\theta }}}}_{2}}$ with optimization

    图  12  无干扰下$\theta_1$$\dot{\theta}_1$的响应

    Fig.  12  Responses of $\theta_1$ and $\dot{\theta}_1$ without disturbance

    图  13  无干扰下$\theta_2$$\dot{\theta}_2$的响应

    Fig.  13  Responses of $\theta_2$ and $\dot{\theta}_2$ without disturbance

    图  14  有干扰下$\theta_1$$\dot{\theta}_1$的响应

    Fig.  14  Responses of $\theta_1$ and $\dot {\theta}_1$ with disturbances

    图  15  有干扰下$\theta_2$$\dot{\theta}_2$的响应

    Fig.  15  Responses of $\theta_2$ and $\dot{\theta}_2$ with disturbances

    表  1  PLIR对应参数值

    Table  1  Values of parameters for the PLI robot

    参数 参数值   参数 参数值
    $m_1\, ({\rm{kg} })$ 63   $m_2\,({\rm{kg} })$ 27
    $h_1\,({\rm{m} })$ 0.18   $h_{20}\,({\rm{m} })$ 0.42
    $l \,({\rm{m} })$ 0.5   $h\,({\rm{m} })$ 0.5
    下载: 导出CSV

    表  2  FPSO惯性权重调整模糊规则表

    Table  2  The rulebase of adjustment for inertia weight in FPSO

    $\omega$ $Nite$
    NB NS ZO PS PB
    $Nfit$ NB ZO PS PS PB PB
    NS NS ZO PS PB PB
    ZO NS NS ZO PS PS
    PS NB NB NS ZO PS
    PB NB NB NS NS ZO
    下载: 导出CSV

    表  3  PLIR平衡调节模糊规则表

    Table  3  The rulebase of balance adjustment for the PLIR

    u2 ${{{\tilde \theta }_1}}$
    NB NS ZO PS PB
    ${{{\dot{\tilde{\theta }}}}_{1}}$ NB PB PB PS PS ZO
    NS PB PB PS ZO NS
    ZO PS PS ZO NS NS
    PS PS ZO NS NB NB
    PB ZO NS NS NB NB
    下载: 导出CSV

    表  4  无干扰下平均评价指标

    Table  4  Average evaluation index without disturbance

    控制器 ISE IAE ITAE
    T1FLC-PSO 0.02660 0.14820 0.08061
    IT2FLC-PSO 0.02655 0.14238 0.06800
    GT2FLC-PSO 0.02655 0.14290 0.06914
    T1FLC-FPSO 0.02656 0.14534 0.07417
    IT2FLC-FPSO 0.02653 0.14236 0.06732
    GT2FLC-FPSO 0.02654 0.14127 0.06536
    下载: 导出CSV

    表  5  有干扰下平均评价指标

    Table  5  Average evaluation index with disturbances

    控制器 ISE IAE ITAE
    T1FLC-PSO 0.07380 0.39140 1.76303
    IT2FLC-PSO 0.06907 0.37776 1.69851
    GT2FLC-PSO 0.06856 0.37537 1.68996
    T1FLC-FPSO 0.07376 0.38991 1.75956
    IT2FLC-FPSO 0.06875 0.37773 1.69275
    GT2FLC-FPSO 0.06857 0.37414 1.68423
    下载: 导出CSV
  • [1] Dian S, Chen L, Hoang S, Pu M, Liu J. Dynamic balance control based on an adaptive gain-scheduled backstepping scheme for power-line inspection robots[J]. IEEE/CAA Journal of Automatica Sinica, 2017: 198-208.
    [2] Fu S Y, Zuo Q, Hou Z G, Liang Z Z, Ta, M, Jing F S, Fu X L. Unsupervised learning of categories from sets of partially matching image features for power line inspection robot. In: Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China: IEEE, 2008. 2596−2603
    [3] Chen C, Wu G L, Wang Q, Hou X Z, Wang C J, Ye L J, et al. Design of the gripper for power lines inspection robot. In: Proceedings of the 11th World Congress on Intelligent Control and Automation, Shenyang, China: IEEE, 2014. 3340−3344
    [4] Katrasnik J, Pernus F, Likar B. A survey of mobile robots for distribution power line inspection[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 485-493. doi: 10.1109/TPWRD.2009.2035427
    [5] Montambault S, Pouliot N. Design and validation of a mobile robot for power line inspection and maintenance. In: Proceedings of the 6th International Conference on Field and Service, Berlin, Heidelberg, Germany: Springer, 2007.
    [6] Gulzar M A, Kumar K, Javed M A, M Sharif. High-voltage transmission line inspection robot. In: Proceedings of the 2018 International Conference on Engineering and Emerging Technologies (ICEET), Lahore, Pakistan: IEEE, 2018. 1−7
    [7] Almutairi N B, Zribi M. On the sliding mode control of a ball on a beam system[J]. Nonlinear dynamics, 2010, 59(1-2): 221. doi: 10.1007/s11071-009-9534-8
    [8] Ghommam J, Saad M. Backstepping-based cooperative and adaptive tracking control design for a group of underactuated AUVs in horizontal plan[J]. International Journal of Control, 2014, 87(5): 1076-1093. doi: 10.1080/00207179.2013.868605
    [9] Li Y, Liu L, Feng G. Robust adaptive output feedback control to a class of non-triangular stochastic nonlinear systems[J]. Automatica, 2018, 89: 325-332. doi: 10.1016/j.automatica.2017.12.020
    [10] Chang X H. Robust Nonfragile H1 Filtering of Fuzzy Systems With Linear Fractional Parametric Uncertainties[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(6): 1001-1011. doi: 10.1109/TFUZZ.2012.2187299
    [11] Xie X, Yue D, Peng C. Multi-instant observer design of discrete-time fuzzy systems: a ranking-based switching approach[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(5): 1281-1292. doi: 10.1109/TFUZZ.2016.2612260
    [12] Mamdani E H, Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller[J]. International journal of man-machine studies, 1975, 7(1): 1-13. doi: 10.1016/S0020-7373(75)80002-2
    [13] 王永富, 马冰心, 柴天 佑, 等. PEMFC 空气供给系统的二型自适应模糊建模与过氧比控 制[J]. 自动化学报, 2019, 45(5): 853-865.

    Wang Yong-Fu, Ma Bing-Xin, Chai Tian-You, Zhang XiaoYu. Type-2 Adaptive Fuzzy Modeling and Oxygen Excess Ratio Control for PEMFC Air Supply System[J]. Acta Automatica Sinica, 2019, 45(5): 853-865
    [14] Tanaka K. An Introduction to Fuzzy Logic for Practical Applications. New York: Springer, 1997.
    [15] Lee C C. Fuzzy logic in control systems: fuzzy logic controller. II[J]. IEEE Transactions on systems, man, and cybernetics, 1990, 20(2): 419-435. doi: 10.1109/21.52552
    [16] Rai N, Rai B. Control of fuzzy logic based PV-battery hybrid system for stand-alone DC applications. Journal of Electrical Systems and Information Technology, 2018, 5(2): 135-143
    [17] Mamdani E H. Application of fuzzy logic to approximate reasoning using linguistic synthesis. IEEE Transactions on Computers, 1997, 26(12): 1182−1191
    [18] Berenji H R, Khedkar P. Learning and tuning fuzzy logic controllers through reinforcements[J]. IEEE Transactions on neural networks, 1992, 3(5): 724-740. doi: 10.1109/72.159061
    [19] Li X J, Yang G H. Fault detection in finite frequency domain for Takagi-Sugeno fuzzy systems with sensor faults[J]. IEEE Transactions on Cybernetics, 2013, 44(8): 1446-1458.
    [20] Zhao T, Huang M, Dian S. Stability and stabilization of TS fuzzy systems with two additive time-varying delays[J]. Information Sciences, 2019, 494: 174-192. doi: 10.1016/j.ins.2019.04.057
    [21] Xie X, Yue D, Peng C. Relaxed Real-Time Scheduling Stabilization of Discrete-Time Takagi–Sugeno Fuzzy Systems via An Alterable-Weights-Based Ranking Switching Mechanism[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(6): 3808-3819. doi: 10.1109/TFUZZ.2018.2849701
    [22] Chang X H, Liu Q, Wang Y M, Xiong J. Fuzzy peak-to-peak filtering for networked nonlinear systems with multipath data packet dropouts[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(3): 436-446. doi: 10.1109/TFUZZ.2018.2859903
    [23] Liu Y J, Gong M, Tong S, Chen C P, Li D J. Adaptive fuzzy output feedback control for a class of nonlinear systems with full state constraints[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 2607-2617 doi: 10.1109/TFUZZ.2018.2798577
    [24] Mendel J M, John R I B. Type-2 fuzzy sets made simple[J]. IEEE Transactions on fuzzy systems, 2002, 10(2): 117-127. doi: 10.1109/91.995115
    [25] Liu F. An efficient centroid type-reduction strategy for general type-2 fuzzy logic system[J]. Information Sciences, 2008, 178(9): 2224-2236. doi: 10.1016/j.ins.2007.11.014
    [26] Zhai D, Mendel J M. Computing the centroid of a general type-2 fuzzy set by means of the centroid-flow algorithm[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(3): 401-422. doi: 10.1109/TFUZZ.2010.2103076
    [27] Wagner C, Hagras H. Toward general type-2 fuzzy logic systems based on zSlices[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(4): 637-660.10 doi: 10.1109/TFUZZ.2010.2045386
    [28] Zhao T, Liu J, Dian S. Finite-time control for interval type-2 fuzzy time-delay systems with norm-bounded uncertainties and limited communication capacity[J]. Information Sciences, 2019, 483: 153-173. doi: 10.1016/j.ins.2019.01.044
    [29] Zhao T, Dian S. State feedback control for interval type-2 fuzzy systems with time-varying delay and unreliable communication links[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 951-966. doi: 10.1109/TFUZZ.2017.2699947
    [30] Mendel J M, Liu F, Zhai D. α-Plane Representation for Type-2 Fuzzy Sets: Theory and Applications[J]. IEEE Transactions on Fuzzy Systems, 2009, 17(5): 1189-1207. doi: 10.1109/TFUZZ.2009.2024411
    [31] Caraveo C, Valdez F, Castillo O. A new meta-heuristics of optimization with dynamic adaptation of parameters using type-2 fuzzy logic for trajectory control of a mobile robot[J]. Algorithms, 2017, 10(3): 85. doi: 10.3390/a10030085
    [32] Lu X G, Liu M, Liu J X. Design and optimization of interval type-2 fuzzy logic controller for delta parallel robot trajectory control[J]. International Journal of Fuzzy Systems, 2017, 19(1): 190-206. doi: 10.1007/s40815-015-0131-3
    [33] Castillo O, Melin P. Optimization of type-2 fuzzy systems based on bio-inspired methods: A concise review[J]. Information Sciences, 2012, 205: 1-19. doi: 10.1016/j.ins.2012.04.003
    [34] Zhao T, Wu Q, Li S C, Guo R, Dian S, Jia H R. Optimization design of general Type-2 fuzzy logic controllers for an uncertain Power-line inspection robot. Journal of Intelligent & Fuzzy Systems, 2019, DOI: 10.3233/JIFS-182515.
    [35] Castillo O, Amador-Angulo L. A generalized type-2 fuzzy logic approach for dynamic parameter adaptation in bee colony optimization applied to fuzzy controller design[J]. Information Sciences, 2018, 460: 476-496.
    [36] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. In: Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan: IEEE, 1995. 39−43
    [37] Eberhart R C, Shi Y H. Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea: IEEE, 2001. 81−86
    [38] Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):256-279. doi: 10.1109/TEVC.2004.826067
    [39] Shi Y H, Eberhart R C. Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, Washington, DC, USA: IEEE, 1999. 3: 1945−1950
    [40] Xin J B, Chen G M, Hai Y B. A particle swarm optimizer with multi-stage linearly-decreasing inertia weight. In: Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China: IEEE, 2009. 505−508
    [41] Shi Y H, Eberhart R C. Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea: IEEE, 2001. 101−106
    [42] Craig J J. Introduction to Robotics: Mechanics and Control. Boston, MA, USA: Addison-Wesley, 1989.
    [43] Mendel J M. Uncertain Rule-based Fuzzy Systems ——Introduction and New Directions (2nd Edition). Springer International Publishing, 2017. 684
    [44] Wang L, Zheng S F, Wang X P, Fan L P. Fuzzy control of a double inverted pendulum based on information fusion. In: Proceedings of the 2010 International Conference on Intelligent Control and Information Processing, Dalian, China: IEEE, 2010. 327−331
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  288
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-17
  • 录用日期:  2019-06-24
  • 网络出版日期:  2022-01-12
  • 刊出日期:  2022-06-02

目录

    /

    返回文章
    返回