2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于垂直约束的激光扫描机构外参标定算法

熊峰 刘成菊 陈启军

熊峰, 刘成菊, 陈启军. 基于垂直约束的激光扫描机构外参标定算法. 自动化学报, 2021, 47(5): 1058−1066 doi: 10.16383/j.aas.c190264
引用本文: 熊峰, 刘成菊, 陈启军. 基于垂直约束的激光扫描机构外参标定算法. 自动化学报, 2021, 47(5): 1058−1066 doi: 10.16383/j.aas.c190264
Xiong Feng, Liu Cheng-Ju, Chen Qi-Jun. The external calibration algorithm for plane laser-scanning machanism based on vertical constraint. Acta Automatica Sinica, 2021, 47(5): 1058−1066 doi: 10.16383/j.aas.c190264
Citation: Xiong Feng, Liu Cheng-Ju, Chen Qi-Jun. The external calibration algorithm for plane laser-scanning machanism based on vertical constraint. Acta Automatica Sinica, 2021, 47(5): 1058−1066 doi: 10.16383/j.aas.c190264

基于垂直约束的激光扫描机构外参标定算法

doi: 10.16383/j.aas.c190264
基金项目: 国家自然科学基金重点项目(61573260, 61733013), 上海市科学技术委员会项目(18DZ1200804, 18DZ1206803)资助
详细信息
    作者简介:

    熊峰:同济大学电子与信息工程学院博士研究生. 2014年获得同济大学电子与信息工程学院学士学位. 主要研究方向为3D立体视觉, 机器人导航. E-mail: wozhiailuo@foxmail.com

    刘成菊:同济大学电子与信息工程学院教授. 2011年获得同济大学控制科学与工程系博士学位. 主要研究方向为双足机器人行走控制. 本文通信作者. E-mail: liuchengju@tongji.edu.cn

    陈启军:同济大学电子与信息工程学院教授. 1999年获得同济大学电气工程系博士学位. 主要研究方向为机器人与人工智能. E-mail: qjchen@tongji.edu.cn

The External Calibration Algorithm for Plane Laser-Scanning Machanism Based on Vertical Constraint

Funds: Supported by National Natural Science Foundation of China (61573260, 61733013) and Science and Technology Commission of Shanghai Municipality (18DZ1200804, 18DZ1206803)
More Information
    Author Bio:

    XIONG Feng Ph.D. candidate at the College of Electronic and Information Engineering, Tongji University. He received his bachelor degree from Tongji University in 2014. His research interest covers 3D stereovision and robot navigation

    LIU Cheng-Ju Professor at the College of Electronic and Information Engineering, Tongji University. She received her Ph.D. degree in control science and engineering from Tongji University in 2011. Her main research interest is biped robot walking control. Corresponding author of this paper

    CHEN Qi-Jun Professor at the College of Electronic and Information Engineering, Tongji University. He received his Ph.D. degree in electrical engineering from Tongji University in 1999. His research interest covers robotics and artificial intelligence

  • 摘要:

    为了解决人造特征点标定法中特征匹配不精确等缺陷, 本文针对二轴传动的高精度平面激光扫描机构提出了利用线特征的垂直约束进行外参标定的新算法. 不仅如此, 在该算法中为了简化建立标定方程的流程, 避免计算与标定目标无关的冗余中间量, 提出了一种快速确定标定方程参数的方法. 首先将扫描结果按待标定参数标准值转换至同一坐标系形成点云, 再提取其中的线特征; 接着根据线特征的垂直约束建立外参方程, 并根据线特征的测量值和实际值间的转换计算方程参数; 最终, 将多次测量得到的方程组求解转化为最优化问题, 并得到外参的数值解. 在对比实验中, 本算法比基于特征点的标定方法表现更好.

  • 图  1  激光探头与平面扫描机构

    Fig.  1  Laser and plane scaning mechanism

    图  2  棋盘标定板与特征点缺失

    Fig.  2  Chess calibration board and lack of feature points

    图  3  圆斑标定板与扫描结果的形状畸变

    Fig.  3  Spot calibration board and shape distortion of scanning result

    图  4  实际扫描机构

    Fig.  4  Real scanning mechanism

    图  5  标定板扫描与线特征提取过程

    Fig.  5  Scanning of calibration board and procedure of line feature extraction

    图  6  标定板旋转

    Fig.  6  Rotation of calibration board

    图  7  距离校验

    Fig.  7  Distance check

    图  8  使用棋盘格标定及扫描结果

    Fig.  8  Calibration with chessboard and scanning result

    表  1  测量结果

    Table  1  Measurement results

    直线 1 的方向向量直线 2 的方向向量
    $[0.99659, 0.03356,0.07539]$$[-0.04385,0.99904,0.00192]$
    $[-0.69945,0.71395,-0.03244]$$[0.71329,-0.03317,0.70008]$
    $[0.80461,0.58967,0.06998]$$[-0.58046,0.81253,-0.05343]$
    $[-0.61523,0.78755,-0.03541]$$[0.78759,0.61540,-0.03129]$
    $[0.79372,0.59944,0.10337]$$[-0.59260,0.80175,-0.07760]$
    $[0.87606,-0.47478,0.08426]$$[0.46701,0.88316,0.04391]$
    $[0.82421,-0.56561,0.02783]$$[0.56293,0.82555,-0.03971]$
    下载: 导出CSV

    表  2  算法比较

    Table  2  Comparision between algorithms

    比较指标基于角点基于圆心本文算法
    指标 1)否 (需单应性矩阵)否 (需坐标变换)
    指标 2)
    指标 3)无 (算法难以实践)0.94 %0.15 %
    下载: 导出CSV
  • [1] Zhang Q, Pless R. Extrinsic calibration of a camera and laser range finder (improves camera calibration). In: Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan: IEEE, 2004. 8: 2301−2306
    [2] Geiger A, Moosmann F, Mer C, Schuster B. Automatic camera and range sensor calibration using a single shot. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA: IEEE, 2012. 3936−3943
    [3] Zou C, He B W, Zhang L W, Zhang J W, Deng Z. An automatic calibration between an omni-directional camera and a laser rangefinder for dynamic scenes reconstruction. In: Proceeding of the 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO 2016, Qingdao, China: IEEE, 2016. 1528−1534
    [4] 胡钊政, 赵斌, 李娜, 夏克文. 基于虚拟三面体的摄像机与二维激光测距仪外参数最小解标定新算法. 自动化学报, 2015, 41(11): 1951−1960

    Hu Zhao-Zheng, Zhao Bin, Li Na, Xia Ke-Wen. Minimal solution to extrinsic calibration of camera and 2D laser rangefinder based on virtual trihedron. Acta Automatica Sinica, 2015, 41(11): 1951−1960
    [5] Atanacio-Jiménez G, González-Barbosa J J, Hurtado-Ramos J B, Ornelas-Rodríguez F J, Jiménez-Hernández H, García-Ramirez, T. LiDAR velodyne HDL-64E calibration using pattern planes. International Journal of Advanced Robotic Systems, 2011, 8(5): 70−82 doi: 10.5772/45709
    [6] Chen Z, Yang X P, Zhang C X, Jiang S F. Extrinsic calibration of a laser range finder and a camera based on the automatic detection of line feature. In: Proceedings of the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, CISP-BMEI 2016, Datong, China: IEEE, 2016. 448–453
    [7] Zhou L P, Deng Z D. A new algorithm for the extrinsic calibration of a 2D LIDAR and a camera. Measurement Science and Technology, 2014, 25(6): 065107
    [8] Gomez-Ojeda R, Briales J, Fernandez-Moral E, GonzalezJimenez J. Extrinsic calibration of a 2D laser-rangefinder and a camera based on scene corners. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation, Seattle, WA, USA: IEEE, 2015. 3611−3616
    [9] Liao Q H, Liu M, Tai L, Ye H Y. Extrinsic calibration of 3D range finder and camera without auxiliary object or human intervention [Online], available: https://arxiv.org/pdf/1703.04391.pdf, September 27, 2019
    [10] Gong Z, Wen C L, Wang C, Li J. A target-free automatic self-calibration approach for multibeam laser scanners. IEEE Transactions on Instrumentation and Measurement, 2018, 67(1): 238−240 doi: 10.1109/TIM.2017.2757148
    [11] 钱丽丹, 杨军伟. 基于精密运动的激光平面标定方法. 计算机工程, 2013, 39(4): 318−321 doi: 10.3969/j.issn.1000-3428.2013.04.073

    Qian Li-dan, Yang Jun-wei. Laser plane calibration method based on precise movement. Computer Engineering, 2013, 39(4): 318−321 doi: 10.3969/j.issn.1000-3428.2013.04.073
    [12] Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330−1334 doi: 10.1109/34.888718
    [13] 程金龙, 冯莹, 曹毓, 雷兵, 魏立安. 车载激光雷达外参数的标定方法. 光电工程, 2013, 40(12): 89−94 doi: 10.3969/j.issn.1003-501X.2013.12.015

    Cheng Jin-Long, Feng Ying, Cao Yu, Lei Bing, Wei Li-An. Extrinsic calibration method for multiple lidars mounted on mobile vehicle. Opto-Electronic Engineering, 2013, 40(12): 89−94 doi: 10.3969/j.issn.1003-501X.2013.12.015
    [14] Raguram R, Chum O, Pollefeys M, Matas J, Frahm J M. USAC: A universal framework for random sample consensus. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 2022−2038 doi: 10.1109/TPAMI.2012.257
    [15] Feng D H, Zhang X, Zhang X, Chu W Q. RANSAC-based spatial circle fitting algorithm and its application on motion range detection of a manipulator. Optical Technique, 2016, 42(2): 156−160
    [16] 俞毓锋, 赵卉菁. 基于相机与摇摆激光雷达融合的非结构化环境定位. 自动化学报, 2019, 45(9): 1791−1798

    Yu Yu-Feng, Zhao Hui-Jing. Off-road localization using monocular camera and nodding LiDAR. Acta Automatica Sinica, 2019, 45(9): 1791−1798
    [17] Boyd S, Vandenberghe L [著], 王书宁, 许鋆, 黄晓霖 [译]. 凸优化. 北京: 清华大学出版社, 2013.

    Boyd S, Vandenberghe L [Author], Wang Shu-Ning, Xu Yun, Huang Xiao-Lin [Translator]. Convex Optimization. Beijing: Tsinghua University Press, 2013.
    [18] 谢理想, 万刚, 曹雪峰, 王庆贺, 王龙. 基于凸优化改进的相机全局位置估计方法. 自动化学报, 2018, 44(3): 506−516

    Xie Li-Xiang, Wan Gang, Cao Xue-Feng, Wang Qing-He, Wang Long. An improved method for camera location estimation through convex optimization. Acta Automatica Sinica, 2018, 44(3): 506−516
    [19] 吴燕雄, 李峰, 刘芳, 程丽娜, 郭丽丽. 平滑度欧氏聚类算法分割点云数据. 测控技术, 2016, 44(3): 506−516

    Wu Yan-Xiong, Li Feng, Liu Fang, Cheng Li-Na, Guo Li-Li. Point cloud segmentation using euclidean cluster extraction algorithm with the smoothness. Measurement and Control Technology, 2016, 44(3): 506−516
    [20] Rusu R B, Cousins S. 3D is here: Point cloud library (PCL). In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China: IEEE, 2011. 1−4.
    [21] Li S H, Wang J X, Liang Z Q, Su L. Tree point clouds registration using an improved ICP algorithm based on kd-tree. In: Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China: IEEE, 2016. 4545−4548
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  362
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-29
  • 录用日期:  2019-09-24
  • 网络出版日期:  2021-05-21
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回