2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于潜在特征选择性集成建模的二噁英排放浓度软测量

汤健 乔俊飞 郭子豪

汤健, 乔俊飞, 郭子豪. 基于潜在特征选择性集成建模的二噁英排放浓度软测量. 自动化学报, 2022, 48(1): 223−238 doi: 10.16383/j.aas.c190254
引用本文: 汤健, 乔俊飞, 郭子豪. 基于潜在特征选择性集成建模的二噁英排放浓度软测量. 自动化学报, 2022, 48(1): 223−238 doi: 10.16383/j.aas.c190254
Tang Jian, Qiao Jun-Fei, Guo Zi-Hao. Dioxin emission concentration soft measurement based on multi-source latent feature selective ensemble modeling for municipal solid waste incineration process. Acta Automatica Sinica, 2022, 48(1): 223−238 doi: 10.16383/j.aas.c190254
Citation: Tang Jian, Qiao Jun-Fei, Guo Zi-Hao. Dioxin emission concentration soft measurement based on multi-source latent feature selective ensemble modeling for municipal solid waste incineration process. Acta Automatica Sinica, 2022, 48(1): 223−238 doi: 10.16383/j.aas.c190254

基于潜在特征选择性集成建模的二噁英排放浓度软测量

doi: 10.16383/j.aas.c190254
基金项目: 国家自然科学基金 (62073006, 62021003), 北京市自然科学基金 (4212032, 4192009), 科学技术部国家重点研发计划(2018YFC1900800-5), 矿冶过程自动控制技术国家(北京市)重点实验室(BGRIMM-KZSKL-2020-02)资助
详细信息
    作者简介:

    汤健:北京工业大学教授. 主要研究方向为小样本数据建模, 城市固废处理过程智能控制. 本文通信作者. E-mail: freeflytang@bjut.edu.cn

    乔俊飞:北京工业大学信息学部教授. 主要研究方向为污水处理过程智能控制, 神经网络结构设计与优化. E-mail: junfeq@bjut.edu.cn

    郭子豪:北京工业大学信息学部硕士研究生. 主要研究方向为高维小样本数据的特征建模, 固废处理过程难测参数软测量. E-mail: miller94@163.com

Dioxin Emission Concentration Soft Measurement Based on Multi-source Latent Feature Selective Ensemble Modeling for Municipal Solid Waste Incineration Process

Funds: Supported by National Natural Science Foundation of China (62073006, 62021003),Beijing Natural Science Foundation (4212032,4192009), National Key Research and Development Program of the Ministry of Science and Technology (2018YFC1900800-5), and Beijing Key Laboratory of Process Automation in Mining and Metallurgy (BGRIMM-KZSKL-2020-02)
More Information
    Author Bio:

    TANG Jian Professor at Beijing University of Technology. His research interest covers small sample data modeling and intelligent control of municipal solid waste treatment process. Corresponding author of this paper

    QIAO Jun-Fei Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control of wastewater treatment process, and structure design and optimization of neural networks

    GUO Zi-Hao Master student at the Faculty of Information Technology, Beijing University of Technology. His research interest covers feature modeling of high-dimensional small sample data and soft measurement of difficulty-to-measure parameters in municipal solid waste treatment process

  • 摘要: 二噁英(Dioxin,DXN)是导致城市固废焚烧(Municipal solid waste incineration, MSWI)建厂存在“邻避现象”的主要原因之一. 工业现场多采用离线化验手段检测DXN浓度, 难以满足污染物减排控制的需求. 针对上述问题, 本文提出了基于潜在特征选择性集成(Selective ensemble, SEN)建模的DXN排放浓度软测量方法. 首先, 采用主元分析(Principal component analysis, PCA)分别提取依据工艺阶段子系统及全流程系统过程变量的潜在特征, 并依据预设贡献率阈值进行特征初选; 接着, 采用互信息(Mutual information, MI)度量初选特征与DXN间的相关性, 并自适应确定再选的上下限及阈值; 最后, 采用具有超参数自适应选择机制的最小二乘−支持向量机(Least squares — support vector machine, LS-SVM)算法建立多源特征的候选子模型, 基于分支定界(Branch and bound, BB)优化和预测误差信息熵加权算法进行集成子模型的优化选择和加权组合, 进而得到软测量模型. 基于某MSWI焚烧厂DXN检测数据仿真验证了所提方法的有效性.
    1)  收稿日期 2019-03-27 录用日期 2019-06-27 Manuscript received March 27, 2019; accepted June 27, 2019 国家自然科学基金 (62073006, 62021003), 北京市自然科学基金 (4212032, 4192009), 科学技术部国家重点研发计划(2018YFC1900800-5), 矿冶过程自动控制技术国家(北京市)重点实验室(BGRIMM-KZSKL-2020-02)资助 Supported by National Natural Science Foundation of China (62073006, 62021003), Beijing Natural Science Foundation (4212032, 4192009), National Key Research and Development Program of the Ministry of Science and Technology (2018YFC1900800-5),
    2)  and Beijing Key Laboratory of Process Automation in Mining and Metallurgy (BGRIMM-KZSKL-2020-02) 本文责任编委 刘艳军 Recommended by Associate Editor LIU Yan-Jun 1. 北京工业大学信息学部 北京 100124 2. 计算智能与智能系统北京市重点实验室 北京 100124 1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124 2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124
  • 图  1  基于DXN视角的MSWI过程描述

    Fig.  1  MSWI process description based on DXN perspective

    图  2  基于潜在特征SEN建模的DXN排放浓度软测量策略

    Fig.  2  Soft sensing strategy of DXN emission concentration based on latent feature SEN modeling

    图  3  不同功能子系统的前6个PC的累积贡献率

    Fig.  3  Cumulative contribution rate of the first six PCs of different functional subsystems

    图  4  全部子系统及MSWI全流程系统的初选潜在特征与DXN间的MI值

    Fig.  4  MI value between DXN and primary potential characteristics of all subsystems and MSWI whole process systems

    图  5  子模型超参数自适应寻优的第1次和第2次的曲线

    Fig.  5  Curves of the 1st and 2nd curves for adaptive hyperparametric optimization of submodels

    表  1  本文中的公式符号及其说明汇总表

    Table  1  Summary of formula symbols and their explanations in this paper

    符号含义符号含义
    ${ {{\boldsymbol{y}}} }$DXN 排放浓度软测量模型的真值${\boldsymbol{\hat y} }$DXN排放浓度软测量模型的预测输出
    $N$建模样本数量$M$输入过程变量数量
    ${ {{\boldsymbol{X}}} }$MSWI 全流程系统的输入数据${\boldsymbol{X} }_{}^i$第$i$个子系统的输入数据
    ${ {{\boldsymbol{I}} - 1} }$MSWI 全流程系统划分子系统个数$M_{}^i$第$i$个子系统包含的过程变量个数
    ${ {{\boldsymbol{Z}}} }_{ {\rm{FeAll} } }^i$第$i$个子系统的过程变量采用PCA提取的全部潜在特征$M_{{\rm{FeAll}}}^i$第$i$个子系统的过程变量采用PCA提取的全部潜在特征的数量
    ${ {{\boldsymbol{Z}}} }_{ {\rm{FeSe1st} } }^i$第$i$个子系统的初选潜在特征${\theta _{{\rm{Contri}}}}$对全部潜在特征进行初选的设定阈值
    $M_{{\rm{FeSe1st}}}^i$第$i$个子系统初选潜在特征的数量$M_{{\rm{FeSe2nd}}}^i$第$i$个子系统再选潜在特征的数量
    ${ {{\boldsymbol{Z}}} }_{ {\rm{FeSe2nd} } }^i$第$i$个子系统的再选潜在特征${\theta _{{\rm{MI}}}}$再选潜在特征的选择阈值${\theta _{{\rm{MI}}}}$
    ($K_{{\rm{er}}}^i$, $R_{{\rm{eg}}}^i$)第$i$个子模型的核参数和正则化参数 , 即超参数对$i$第$i$个子模型的预测输出
    ${ {{\boldsymbol{t}}} }_{m_{ {\rm{FeAll} } }^i}^i$第$i$个子系统的第$m_{ {\rm{FeAll} } }^i$个主元的得分向量${ {{\boldsymbol{p}}} }_{m_{ {\rm{FeAll} } }^i}^ii$第$i$个子系统的第$m_{ {\rm{FeAll} } }^i$个主元的载荷向量
    ${ {{\boldsymbol{T}}} }_{}^i$第$i$个子系统的得分矩阵${\boldsymbol{P}}^i $第$i$个子系统的载荷矩阵
    $\lambda _{m_{{\rm{FeAll}}}^i}^i$第$i$个子系统的第$m_{ {\rm{FeAll} } }^i$个载荷向量${\boldsymbol{p} }_{m_{ {\rm{FeAll} } }^i}^i$相对应的特征值$\theta _{m_{{\rm{FeAll}}}^i}^i$第$i$个子系统的第$m_{ {\rm{FeAll} } }^i$个潜在特征的贡献率
    $\xi _{m_{{\rm{FeAll}}}^i}^i$第$i$个子系统的第$m_{ {\rm{FeAll} } }^i$个潜在特征是否被选中的标记值$\xi _{{\rm{MI}}}^{m_{{\rm{FeSelst}}}^i}$第$i$个子系统的初选潜在特征${\boldsymbol{z} }_{m_{ {\rm{FeSelst} } }^i}^i$与DXN排放浓度间的MI值
    $\theta _{{\rm{Contri}}}^{{\rm{Uplimit}}}$潜在特征再选阈值的上限值$\theta _{{\rm{Contri}}}^{{\rm{Downlimit}}}$潜在特征再选阈值的下限值
    $\theta _{{\rm{Contri}}}^{{\rm{Step}}}$潜在特征再选阈值的固定步长$\beta _{m_{{\rm{FeSe1st}}}^i}^i$第$i$个子系统的第$m_{ {\rm{FeSe1st} } }^i$个初选潜在特征是否被选中的标记值
    ${ { {{\boldsymbol{w}}} }^i}$第$i$个子模型的权重系数${b^i}$第$i$个子模型的偏置系数
    ${{\bf{\beta }}^i}$第$i$个子模型的拉格朗日算子向量${{\bf{\zeta }}^i}$第$i$个子模型的预测误差向量
    $M_{{\rm{para}}}^{}$候选超参数矩阵$\{ K_{{\rm{er}}}^i,R_{{\rm{eg}}}^i\} $第$i$个子模型在$M_{{\rm{para}}}^{}$中自适应选择的超参数对
    $K$候选核参数数量$R$候选惩罚参数数量
    $J = K \times R$超参数矩阵中的超参数对的数量$\begin{array}{l}\{ {(K_{{\rm{er}}}^{{\rm{initial}}})^i}, {(R_{{\rm{eg}}}^{{\rm{initial}}})^i}\}\end{array}$第$i$个子模型在采用网格搜索策略在矩阵$M_{{\rm{para}}}^{}$中初选的超参数对
    ${({ {{\boldsymbol{K}}} }_{ {\rm{er} } }^{ {\rm{vector} } })^i}$依据初选超参数对计算的新候选核参数向量${({ {{\boldsymbol{R}}} }_{ {\rm{eg} } }^{ {\rm{vector} } })^i}$依据初选超参数对计算的新候选惩罚参数向量
    ${N_{{\rm{ker}}}}$新候选核参数的数量${N_{{\rm{reg}}}}$新候选惩罚参数的数量
    $k_{{\rm{supara}}}^{{\rm{down}}}$,$k_{{\rm{supara}}}^{{\rm{up}}}$确定超参数向量的收缩和扩放因子${f^i}( \cdot )$第$i$个子模型
    ${f^{{i_{{\rm{sel}}}}}}( \cdot )$第${i_{ {\rm{sel} } } }$个集成子模型$w_{{i_{{\rm{sel}}}}}^{}$第${i_{ {\rm{sel} } } }$个集成子模型的加权系数
    ${\hat y_{{i_{{\rm{sel}}}}}}$第${i_{ {\rm{sel} } } }$个集成子模型的预测值$K_{{\rm{er}}}^{{i_{{\rm{sel}}}}}$,$R_{{\rm{eg}}}^{{i_{{\rm{sel}}}}}$第${i_{ {\rm{sel} } } }$个集成子模型的超参数
    ${(\hat y_{{i_{{\rm{sel}}}}}^{})_n}$第$n$个样本基于第${i_{ {\rm{sel} } } }$个集成子模型的预测值${(e_{{i_{{\rm{sel}}}}}^{})_n}$第$n$个样本基于第${i_{ {\rm{sel} } } }$个集成子模型的相对预测误差
    $E_{{i_{{\rm{sel}}}}}^{}$第${i_{ {\rm{sel} } } }$个集成子模型的预测误差信息熵
    下载: 导出CSV

    表  2  初选潜在特征的数量及其贡献率

    Table  2  Number of the primary selected latent feature and their contribution ratio

    子系统代号IncineratorBoilerFlue gasSteamStackCommonMSWI
    特征编号129.9070.9954.5763.3442.9146.3343.58
    221.7512.6610.4216.5618.0614.1013.40
    311.146.0588.9017.69117.308.6538.761
    46.9525.0147.1463.90612.656.7985.921
    56.6353.0365.0412.0307.2114.4834.822
    65.0751.3564.2691.5331.8544.2213.246
    73.7923.2371.1843.5013.071
    83.2082.5841.0072.8422.919
    92.7841.1902.1162.444
    101.8461.4942.138
    111.5141.2561.911
    121.2831.1641.731
    131.1291.481
    141.344
    151.068
    初选潜在特征数量1369561215
    原始过程变量数量791419536115286
    下载: 导出CSV

    表  3  全部子系统及MSWI全流程系统初选潜在特征MI值的极值统计表

    Table  3  Extremum statistical table of potential characteristic MI values for primary selection latent feature of all Subsystems and MSWI whole process system

    子系统最大值集合 最小值集合
    MI 值贡献率 (%)PC 编号MI 值贡献率 (%)PC 编号
    Incinerator0.85591.51411 0.681429.901
    Boiler0.80193.03650.552770.991
    Flue gas0.831610.4220.608454.571
    Steam0.82497.69130.605963.341
    Stack0.806717.3030.718242.911
    Common0.86134.22160.540046.331
    MSWI0.78824.82250.442943.581
    下载: 导出CSV

    表  4  再选潜在特征数量和MI值统计表

    Table  4  Statistical table of re-selected latent feature's number and MI value

    子系统数量MI值
    Incinerator50.79520.82670.82580.85590.8088
    Boiler20.80190.7952
    Flue gas10.8316
    Steam30.82490.80220.8019
    Stack20.79520.8067
    Common60.80190.86130.80880.79040.83830.8316
    MSWI10.7882
    下载: 导出CSV

    表  5  不同建模方法统计结果

    Table  5  Statistical results of different modeling methods

    方法过程变量数量加权方法RMSE参数 (LV/PC) $( K_{ {\rm{er} } }^{},R_{ {\rm{eg} } }^{})$备注
    文献 [22]120.08869 ± 0.3000(—) (—)单模型, RWNN
    文献 [24]80.02695(—) (21, 21)单模型, SVM
    文献 [37]6AWF0.02306(—) (0.1, 1; 400, 6400; 12800,
    25600; 51200, 102400)
    SEN, 基于多核参数
    PLS2860.01790(13) (—)单模型, MSWI系统
    PCA-LS-SVM2860.01563(18) (36240, 83904)单模型, MSWI系统
    集成建模 (EN)286PLS0.01420(5, 2, 1, 3, 2, 6, 1) (109, 109; 10000,
    25.75; 5.950, 0.0595; 30.70, 2.080;
    5.950, 0.5950; 1520800, 22816;
    1362400, 158.5)
    PCA-MI-LSSVM子模型, EN,
    全部子模型
    AWF0.01851
    Entropy0.01625
    选择性集成建模(SEN) (本文方法)286 (104)BB-AWF0.01348(5, 1, 2) (109, 109; 5.950, 0.0595; 5.950, 0.5950)PCA-MI-LSSVM子模型, SEN, Incinerator, Flue gas,
    Stack共3个子模型
    BB-Entropy0.01332
    下载: 导出CSV
  • [1] 柴天佑. 复杂工业过程运行优化与反馈控制[J]. 自动化学报, 2013, 39(11): 1744-1757.

    Chai Tian-You. Operational optimization and feedback control for complex industrial processes. Acta Automatica Sinica, 2013, 39(11): 1744-1757
    [2] Chai T Y, Ding J L, Yu G, Wang H. Integrated optimization for the automation systems of mineral processing. IEEE Transactions on Automation Science & Engineering, 2014, 11(4): 965-982.
    [3] Chai T Y, Qin S J, Wang H. Optimal operational control for complex industrial processes. Annu. Rev. Control, 2014, 38(1): 81-92. doi: 10.1016/j.arcontrol.2014.03.005
    [4] Arafat H A, Jijakli K, Ahsan A. Environmental performance and energy recovery potential of five processes for municipal solid waste treatment. Journal of Cleaner Production, 2015, 105: 233-240. doi: 10.1016/j.jclepro.2013.11.071
    [5] Yuanan H, Hefa C, Shu T. The growing importance of waste-to-energy (WTE) incineration in China's anthropogenic mercury emissions: Emission inventories and reduction strategies. Renewable and Sustainable Energy Reviews, 2018, 97: 119-137. doi: 10.1016/j.rser.2018.08.026
    [6] Huang T, Zhou L, Liu L, Xia M. Ultrasound-enhanced electrokinetic remediation for removal of Zn, Pb, Cu and Cd in municipal solid waste incineration fly ashes. Waste Management, 2018, 75: 226-235. doi: 10.1016/j.wasman.2018.01.029
    [7] Jones P H, Degerlache J, Marti E, Mischer G, Scherrer M C, Bontinck W J, Niessen H J. The global exposure of man to dioxins - a perspective on industrial-waste incineration. Chemosphere, 1993, 26: 1491-1497. doi: 10.1016/0045-6535(93)90216-R
    [8] Li X, Zhang C, Li Y, Zhi Q. The Status of Municipal Solid Waste Incineration (MSWI) in China and its Clean Development. Energy Procedia, 2016, 104: 498-503. doi: 10.1016/j.egypro.2016.12.084
    [9] Phillips K, Longhurst P J, Wagland S T. Assessing the perception and reality of arguments against thermal waste treatment plants in terms of property prices. Waste Management. 2014, 34(1): 219-225. doi: 10.1016/j.wasman.2013.08.018
    [10] Zhang H J, Ni Y W, Chen J P, Zhang Q. Influence of variation in the operating conditions on PCDD/F distribution in a full-scale MSW incinerator. Chemosphere, 2008, 70(4): 721-730. doi: 10.1016/j.chemosphere.2007.06.054
    [11] Mukherjee A, Debnath B, Ghosh S K. A review on technologies of removal of dioxins and furans from incinerator flue gas. Procedia Environmental Sciences, 2016, 35: 528-540. doi: 10.1016/j.proenv.2016.07.037
    [12] Stanmore B R. Modeling the formation of PCDD/F in solid waste incinerators. Chemosphere, 2002, 47: 565-773. doi: 10.1016/S0045-6535(02)00005-X
    [13] 乔俊飞, 郭子豪, 汤健. 面向城市固废焚烧过程的二噁英排放浓度检测方法综述. 自动化学报, 2020, 46(6): 1063−1089

    Qiao Jun-Fei, Guo Zi-Hao, Tang Jian. Dioxin emission concentration measurement approaches for municipal solid wastes incineration process: A survey. Acta Automatica Sinica, 2020, 46(6): 1063−1089
    [14] Pandelova M, Lenoir D, Schramm K W. Correlation between PCDD/F, PCB and PCBz in coal/waste combustion Influence of various inhibitors. Chemosphere, 2006, 62: 1196-1205. doi: 10.1016/j.chemosphere.2005.07.068
    [15] Gullett B K, Oudejans L, Tabor D, Touati A, Ryan S. Near-real-time combustion monitoring for PCDD/PCDF indicators by GC-REMPI-TOFMS. Environmental Engineering Science, 2012, 46: 923-928.
    [16] Wang W, Chai T Y, Yu W, Wang H, Su C Y. Modeling component concentrations of sodium aluminate solution via hammerstein recurrent neural networks. IEEE Transactions on Control Systems Technology, 2012, 20(4): 971−982
    [17] Tang J, Chai T Y, Yu W, Zhao L J. Modeling load parameters of ball mill in grinding process based on selective ensemble multisensor information. IEEE Transactions on Automation Science & Engineering, 2013, 10(3): 726-740.
    [18] Li D C, Liu C W. Extending attribute information for small data set classication. IEEE Transactions on Knowledge and Data Engineering, 2010, 24(3): 452-464
    [19] 汤健, 乔俊飞, 柴天佑, 刘卓, 吴志伟. 基于虚拟样本生成技术的多组分机械信号建模. 自动化学报, 2018, 44(9): 1569-1590.

    Tang Jian, Qiao Jun-Fei, Chai Tian-You, Liu Zhuo, Wu Zhi-Wei. Modeling Multiple Components Mechanical Signals by Means of Virtual Sample Generation Technique. Acta Automatica Sinica, 2018, 44(9): 1569-1590.
    [20] Chang N B, Huang S H. Statistical modelling for the prediction and control of PCDDs and PCDFs emissions from municipal solid waste incinerators. Waste Management & Research, 1995, 13: 379-400.
    [21] Chang N B, Chen W C. Prediction of PCDDs/PCDFs emissions from municipal incinerators by genetic programming and neural network modeling. Waste Management & Research, 2000, 18(4): 41-351.
    [22] Bunsan S, Chen W Y, Chen H W, Chuang Y H, Grisdanurak N. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks. Chemosphere, 2013, 92: 258-264. doi: 10.1016/j.chemosphere.2013.01.083
    [23] Gomes T A F, Prud êncio R B C, Soares C, Rossi A L D, Carvalho A. Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing, 2012, 75(1): 3-13. doi: 10.1016/j.neucom.2011.07.005
    [24] 肖晓东, 卢加伟, 海景, 等. 垃圾焚烧烟气中二噁英类浓度的支持向量回归预测. 可再生能源, 2017, 35(8): 1107-1114

    Xiao Xiao-Dong, Lu Jia-Wei, Hai Jing. Prediction of dioxin emissions in flue gas from waste incineration based on support vector regression. Renewable Energy Resources, 2017, 35(8): 1107-1114.
    [25] Tang J, Chai T Y, Yu W, Zhao L J. Feature extraction and selection based on vibration spectrum with application to estimate the load parameters of ball mill in grinding process. Control Engineering Practice, 2012, 20(10): 991-1004. doi: 10.1016/j.conengprac.2012.03.020
    [26] Soares C. A hybrid meta-learning architecture for multi-objective optimization of SVM parameters. Neurocomputing, 2014, 143(143): 27-43.
    [27] Yu G, Chai T Y, Luo X C. Multiobjective production planning optimization using hybrid evolutionary algorithms for mineral processing. IEEE Transact. Evolut. Comput. 2011, 15(4): 487-514. doi: 10.1109/TEVC.2010.2073472
    [28] Yin S, Yin J. Tuning kernel parameters for SVM based on expected square distance ratio. Information Sciences, 2016, 370-371: 92-102. doi: 10.1016/j.ins.2016.07.047
    [29] Tang J, liu Z, Zhang J, Wu Z W, Chai T Y, Yu W. Kernel latent feature adaptive extraction and selection method for multi-component non-stationary signal of industrial mechanical device, Neurocomputing, 2016, 216(C): 296-309.
    [30] 汤健, 田福庆, 贾美英. 基于频谱数据驱动的旋转机械设备负荷软测量. 北京: 国防工业出版社, 2015.

    Tang Jian, Tian Fu-Qing, Jia Mei-Ying. Soft Measurement of Rotating Machinery Equipment Load Based on Spectrum Data Drive. Beijing: National Defense Industry Press, 2015.
    [31] Brown G, Wyatt J, Harris R, Yao X. Diversity creation methods: a survey and categorisation. Information Fusion, 2005, 6: 5-20 doi: 10.1016/j.inffus.2004.04.004
    [32] Tang J, Chai T Y, Yu W, Liu Z, Zhou X J. A Comparative study that measures ball mill load parameters through different single-scale and multi-scale frequency spectra-based approaches, IEEE Transactions on Industrial Informatics. 2016, 12(6): 2008-2019. doi: 10.1109/TII.2016.2586419
    [33] Zhou Z H, Wu J, Tang W, Ensembling neural networks: many could be better than all, Artificial Intelligence, 2002, 137(1-2): 239-263. doi: 10.1016/S0004-3702(02)00190-X
    [34] Ma G, Wang Y, Wu L. Subspace ensemble learning via totally-corrective boosting for gait recognition. Neurocomputing, 2017, 224: 119-127. doi: 10.1016/j.neucom.2016.10.047
    [35] Tang J, Qiao J, Wu Z W, et al. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features. Mechanical Systems and Signal Processing, 2018, 99: 142-168. doi: 10.1016/j.ymssp.2017.06.008
    [36] Soares S, Antunes C H, Rui Ara újo. Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development. Neurocomputing, 2013, 121(18): 498-511.
    [37] 汤健, 乔俊飞. 基于选择性集成核学习算法的固废焚烧过程二噁英排放浓度软测量, 化工学报, 2019, 70(2): 696−706

    Tang Jian, Qiao Jun-Fei. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm, Journal of Chemical Industry and Engineering (China), 2019, 70(2): 696−706
    [38] Tang J, Chai T, Liu Z, et al. Selective ensemble modeling based on nonlinear frequency spectral feature extraction for predicting load parameter in ball mills. Chinese Journal of Chemical Engineering, 2015, 23(12): 2020-2028. doi: 10.1016/j.cjche.2015.10.006
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  923
  • HTML全文浏览量:  198
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 录用日期:  2019-06-27
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回