[1]
|
Wang F, Chen B, Lin C, Li X H. Distributed adaptive neural control for stochastic nonlinear multiagent systems. IEEE Transactions on Cybernetics, 2017, 47(7):1795-1803 doi: 10.1109/TCYB.2016.2623898
|
[2]
|
Wang F, Liu Z, Zhang Y, Chen B. Distributed adaptive coordination control for uncertain nonlinear multi-agent systems with dead-zone input. Journal of the Franklin Institute, 2016, 353(10):2270-2289. doi: 10.1016/j.jfranklin.2016.04.002
|
[3]
|
Zhang Y H, Liang H J, Ma H, Zhou Q, Yu Z D. Distributed adaptive consensus tracking control for nonlinear multi-agent systems with state constraints. Applied Mathematics and Computation, 2018, 326:16-32 doi: 10.1016/j.amc.2017.12.038
|
[4]
|
Zhang H W, Lewis F L. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica, 2012, 48(7):1432-1439 doi: 10.1016/j.automatica.2012.05.008
|
[5]
|
赵俊, 刘国平.非完整性约束的平面多智能体位置时变一致性控制.自动化学报, 2017, 43(7):1169-1177 http://www.aas.net.cn/CN/abstract/abstract19090.shtmlZhao Jun, Liu Guo-Ping. Position time-varying consensus control for multiple planar agents with non-holonomic constraint. Acta Automatica Sinica, 2017, 43(7):1169-1177 http://www.aas.net.cn/CN/abstract/abstract19090.shtml
|
[6]
|
Wang A J, Liao X F, He H B. Event-triggered differentially private average consensus for multi-agent network. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1):75-83 http://d.old.wanfangdata.com.cn/Periodical/zdhxb-ywb201901006
|
[7]
|
Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Transactions on Automatic Control, 2009, 54(2):293-307 doi: 10.1109/TAC.2008.2010897
|
[8]
|
Li T S, Zhao R, Chen C L P, Fang L Y, Liu C. Finite-time formation control of under-actuated ships using nonlinear sliding mode control. IEEE Transactions on Cybernetics, 2018, 48(11):3243-3253 doi: 10.1109/TCYB.2018.2794968
|
[9]
|
Cheng Y, Ugrinovskii V. Event-triggered leader-following tracking control for multivariable multi-agent systems. Automatica, 2016, 70:204-210 doi: 10.1016/j.automatica.2016.04.003
|
[10]
|
Ding D R, Wang Z D, Shen B, Wei G L. Event-triggered consensus control for discrete-time stochastic multi-agent systems:the input-to-state stability in probability. Automatica, 2015, 62:284-291 doi: 10.1016/j.automatica.2015.09.037
|
[11]
|
杨若涵, 张皓, 严怀成.基于事件触发的拓扑切换异构多智能体协同输出调节.自动化学报, 2017, 43(3):472-477 http://www.aas.net.cn/CN/abstract/abstract19025.shtmlYang Ruo-Han, Zhang Hao, Yan Huai-Cheng. Event-triggered cooperative output regulation of heterogeneous multi-agent systems with switching topology. Acta Automatica Sinica, 2017, 43(3):472-477 http://www.aas.net.cn/CN/abstract/abstract19025.shtml
|
[12]
|
Yu M, Yan C, Xie D M, Xie G M. Event-triggered tracking consensus with packet losses and time-varying delays. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2):165-173 doi: 10.1109/JAS.2016.7451104
|
[13]
|
Borgers D P, Heemels W P M H. Event-separation properties of event-triggered control systems. IEEE Transactions on Automatic Control, 2014, 59(10):2644-2656 doi: 10.1109/TAC.2014.2325272
|
[14]
|
Xing L T, Wen C Y, Liu Z T, Su H Y, Cai J P. Event-triggered adaptive control for a class of uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2017, 62(4):2071-2076 doi: 10.1109/TAC.2016.2594204
|
[15]
|
Liu Y J, Tong S C. Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica, 2017, 76:143-152 doi: 10.1016/j.automatica.2016.10.011
|
[16]
|
Liu Y J, Lu S M, Tong S C, Chen X K, Chen C L P, Li D J. Adaptive control-based barrier Lyapunov functions for a class of stochastic nonlinear systems with full state constraints. Automatica, 2018, 87:83-93 doi: 10.1016/j.automatica.2017.07.028
|
[17]
|
Bechlioulis C P, Rovithakis G A. A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica, 2014, 50(4):1217-1226 doi: 10.1016/j.automatica.2014.02.020
|
[18]
|
Li Y M, Tong S C, Liu L, Feng G. Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica, 2017, 80:225-231 doi: 10.1016/j.automatica.2017.02.005
|
[19]
|
Zhou Q, Li H Y, Wang L J, Lu R Q. Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(10):1747-1758 doi: 10.1109/TSMC.2017.2738155
|
[20]
|
Li Y M, Tong S C. Adaptive fuzzy control with prescribed performance for block-triangular-structured nonlinear systems. IEEE Transactions on Fuzzy Systems, 2018, 26(3):1153-1163 doi: 10.1109/TFUZZ.2017.2710950
|
[21]
|
Li Y M, Tong S C. Adaptive neural networks prescribed performance control design for switched interconnected uncertain nonlinear systems. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(7):3059-3068 http://www.ncbi.nlm.nih.gov/pubmed/28678722
|
[22]
|
Zhang H W, Lewis F L, Qu Z H. Lyapunov, adaptive, and optimal design techniques for cooperative systems on directed communication graphs. IEEE Transactions on Industrial Electronics, 2012, 59(7):3026-3041 doi: 10.1109/TIE.2011.2160140
|
[23]
|
Yang C G, Ge S S, Xiang C, Chai T Y, Lee T H. Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach. IEEE Transactions on Neural Networks, 2008, 19(11):1873-1886 doi: 10.1109/TNN.2008.2003290
|
[24]
|
Chen M, Shao S Y, Jiang B. Adaptive neural control of uncertain nonlinear systems using disturbance observer. IEEE Transactions on Cybernetics, 2017, 47(10):3110-3123 doi: 10.1109/TCYB.2017.2667680
|
[25]
|
Bai W W, Zhou Q, Li T S, Li H Y. Adaptive reinforcement learning NN control for uncertain nonlinear system with input saturation, IEEE Transactions on Cybernetics, 2019. DOI: 10.1109/TCYB.2019.2921057
|
[26]
|
Sun Y M, Chen B, Lin C, Wang H H, Zhou S W. Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Information Sciences, 2016, 369:748-764 doi: 10.1016/j.ins.2016.06.010
|
[27]
|
Ren B B, Ge S S, Tee K P, Lee T H. Adaptive neural control for output feedback nonlinear systems using a Barrier Lyapunov function. IEEE Transactions on Neural Networks, 2010, 21(8):1339-1345 doi: 10.1109/TNN.2010.2047115
|
[28]
|
Li T S, Wang D, Feng G, Tong S C. A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(3):915-927 doi: 10.1109/TSMCB.2009.2033563
|