2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有对抗关系和时变拓扑的耦合离散系统有界双向同步

翟世东 刘佩 高辉

翟世东, 刘佩, 高辉. 具有对抗关系和时变拓扑的耦合离散系统有界双向同步. 自动化学报, 2022, 48(3): 909−916 doi: 10.16383/j.aas.c190251
引用本文: 翟世东, 刘佩, 高辉. 具有对抗关系和时变拓扑的耦合离散系统有界双向同步. 自动化学报, 2022, 48(3): 909−916 doi: 10.16383/j.aas.c190251
Zhai Shi-Dong, Liu Pei, Gao Hui. Bounded bipartite synchronization for coupled discrete systems under antagonistic interactions and time-varying topologies. Acta Automatica Sinica, 2022, 48(3): 909−916 doi: 10.16383/j.aas.c190251
Citation: Zhai Shi-Dong, Liu Pei, Gao Hui. Bounded bipartite synchronization for coupled discrete systems under antagonistic interactions and time-varying topologies. Acta Automatica Sinica, 2022, 48(3): 909−916 doi: 10.16383/j.aas.c190251

具有对抗关系和时变拓扑的耦合离散系统有界双向同步

doi: 10.16383/j.aas.c190251
基金项目: 国家自然科学基金(11502039), 重庆市自然科学基金(cstc2019jcyj-msxmX0109), 重庆市教委创新团队项目(CXTDX201601019)资助
详细信息
    作者简介:

    翟世东:重庆邮电大学自动化学院副教授. 2014年获得华中科技大学博士学位. 主要研究方向为非线性系统控制, 复杂网络动力学与控制. 本文通信作者. E-mail: zhaisd@cqupt.edu.cn

    刘佩:重庆邮电大学自动化学院硕士研究生. 2017年获得重庆邮电大学学士学位. 主要研究方向为复杂网络同步. E-mail: LP2017014@163.com

    高辉:重庆邮电大学自动化学院硕士研究生. 2018年获得陕西理工大学学士学位. 主要研究方向为复杂网络控制. E-mail: s180331089@stu.cqupt.edu.cn

Bounded Bipartite Synchronization for Coupled Discrete Systems Under Antagonistic Interactions and Time-varying Topologies

Funds: Supported by National Natural Science Foundation of China (11502039), Natural Science Foundation of Chongqing of China (cstc2019jcyj-msxmX0109), and Innovation Team Project of Chongqing Education Committee (CXTDX201601019)
More Information
    Author Bio:

    ZHAI Shi-Dong Associate professor at the School of Automation, Chongqing University of Posts and Telecommunications. He received his Ph.D. degree from Huazhong University of Science and Technology in 2014. His research interest covers nonlinear system control, and dynamics of complex network and control. Corresponding author of this paper

    LIU Pei Master student at the School of Automation, Chongqing University of Posts and Telecommunications. She received her bachelor degree from Chongqing University of Posts and Telecommunications in 2017. Her main research interest is synchronization of complex network

    GAO Hui Master student at the School of Automation, Chongqing University of Posts and Telecommunications. He received his bachelor degree from Shaanxi University of Technology in 2018. His main research interest is control of complex network

  • 摘要: 针对含有对抗关系和时变拓扑的耦合离散系统, 本文研究了这类系统有界双向同步问题(Bounded bipartite synchronization, BBS). 考虑了以下两种情形: 1)在某时刻所有个体不能划分为两个敌对阵营; 2)尽管在每一个时刻所有个体都可以被划分为两个敌对阵营, 但每个阵营中的成员随着时间的推移而改变. 对于以上两种情形, 耦合系统不能达到双向同步, 可以在一定条件下达到有界双向同步. 本文得到了使耦合离散系统达到有界双向同步的一些充分条件, 并通过一个数值例子验证了所得结论的有效性.
  • 图  1  无向图$G({E^i})$, $i = 1,2$

    Fig.  1  The undirected signed graph $G({E^i})$, $i = 1,2$

    图  2  无向图$G( {\bar {E}^i} )$, $i = 1,2$

    Fig.  2  The undirected signed graph $G( {\bar {E}^i} )$, $i = 1,2$

    图  3  四智能体网络在拓扑为图2、切换信号为$ \sigma (k) $时的时间演变过程

    Fig.  3  Time evolution of 4-agent network with topologies in Fig.2 and switching signal $ \sigma(k) $

    图  4  四智能体网络在拓扑为图1、切换信号为$ \sigma (k) $时的时间演变过程

    Fig.  4  Time evolution of 4-agent network with topologies in Fig.1 and switching signal $ \sigma(k) $

    图  5  四智能体网络在切换信号$ \sigma(k) $下的范数误差和终值

    Fig.  5  Norm error of the 4-agent network with switching signal $ \sigma(k) $

  • [1] Ren W, Beard R W. Distributed Consensus in Multi-Vehicle Cooperative Control. Berlin, Germany: Springer, 2008.
    [2] Mesbahi M, Egerstedt M. Graph Theoretic Methods in Multiagent Networks. USA: Princeton University Press, 2010.
    [3] 陈关荣. 复杂动态网络环境下控制理论遇到的问题与挑战. 自动化学报2013, 39(4): 312-321

    Chen Guan-Rong. Problems and challenges in control theory under complex dynamical network environments. Acta Automatica Sinica, 2013, 39(4): 312-321
    [4] 徐君, 张国良, 曾静, 孙巧, 羊帆. 具有时延和切换拓扑的高阶离散时间多智能体系统鲁棒保性能一致性. 自动化学报, 2019, 45(2): 360-373

    Xu Jun, Zhang Guo-Liang, Zeng Jing, Sun Qiao, Yang Fan. Robust guaranteed cost consensus for high-order discretetime multi-agent systems with switching topologies and time delays. Acta Automatica Sinica, 2019, 45(2): 360-373
    [5] Xu J, Zhang G, Zeng J, Du B, Jia X. Robust H consensus control for high-order discrete-time multi-agent systems with parameter uncertainties and external disturbances. Acta Automatica Sinica, 2017, 43(10): 1850-1857
    [6] Altaflni C. Dynamics of opinion forming in structurally balanced social networks. PLoS ONE 2012, 7(6): e38135 doi: 10.1371/journal.pone.0038135
    [7] Lee S H. Predator’s attack-induced phase-like transition in prey flock. Physics Letters A, 2006, 357(4): 270-274
    [8] Grossberg S. Competition, decision, and consensus. Journal of Mathematical Analysis and Applications, 1978, 66(2): 470-493 doi: 10.1016/0022-247X(78)90249-4
    [9] Chen C C, Wan Y H, Chung M C, Sun Y C. An efiective recommendation method for cold start new users using trust and distrust networks. Information Sciences, 2013, 224: 19- 36 doi: 10.1016/j.ins.2012.10.037
    [10] Altaflni C. Consensus problems on networks with antagonistic interactions. IEEE Transactions on Automatic Control, 2013, 58(4): 935-946 doi: 10.1109/TAC.2012.2224251
    [11] Valcher M E, Misra P. On the consensus and bipartite consensus in high-order multi-agent dynamical systems with antagonistic interactions. Systems & Control Letters, 2014, 66: 94-103
    [12] Zhang H W, Chen J. Bipartite consensus of linear multiagent systems over signed digraphs: An output feedback control approach. In: Proceeding of the 19th World Congress, Cape Town, South Africa: IFAC, 2014, 4681−4686
    [13] Hu J P, Zheng W X. Emergent collective behaviors on coopetition networks. Physics Letters A, 2014, 378(26): 1787-1796
    [14] Fan M C, Zhang H T, Wang M. Bipartite flocking for multiagent systems. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(9): 3313-3322 doi: 10.1016/j.cnsns.2013.10.009
    [15] Meng D, Du M, Jia Y. Interval bipartite consensus of networked agents associated with signed digraphs. IEEE Transactions on Automatic Control, 2016, 61(12): 3755-3770 doi: 10.1109/TAC.2016.2528539
    [16] Guo X, Lu J, Alsaedi A, Alsaedi F E. Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays. Physica A: Statistical Mechanics and its Applications, 2018, 495: 488-497 doi: 10.1016/j.physa.2017.12.078
    [17] Zhai S D, Li Q D. Bipartite synchronization in a network of nonlinear systems: a contraction approach. Journal of the Franklin Institute, 2016, 353(17): 4602-4619 doi: 10.1016/j.jfranklin.2016.08.017
    [18] Liu J, Chen X, Basar T, Belabbas M A. Exponential convergence of the discrete-and continuous-time Altaflni models. IEEE Transactions on Automatic Control, 2017, 62(12): 6168-6182 doi: 10.1109/TAC.2017.2700523
    [19] Liang J Q, Meng D Y. Quasi-interval bipartite consensus problems on discrete-time signed networks. In: Proceedings of the 2018 Chinese Intelligent Systems Conference. Singapore, Singapore: Springer, 2019. 11−20
    [20] Proskurnikov A V, Tempo R. A tutorial on modeling and analysis of dynamic social networks. Part I. Annual Reviews in Control, 2017, 43: 65-79
    [21] Proskurnikov A V, Tempo R. A tutorial on modeling and analysis of dynamic social networks. Part II. Annual Reviews in Control, 2018, 45: 166-190 doi: 10.1016/j.arcontrol.2018.03.005
    [22] Altaflni C, Lini G. Predictable dynamics of opinion forming for networks with antagonistic interactions. IEEE Transactions on Automatic Control, 2015, 60(2): 342-357 doi: 10.1109/TAC.2014.2343371
    [23] Zhai S D. Modulus synchronization in a network of nonlinear systems with antagonistic interactions and switching topologies. Communications in Nonlinear Science and Numerical Simulation, 2016, 33: 184-193 doi: 10.1016/j.cnsns.2015.09.010
    [24] Zhai S D, Li Q D. Pinning bipartite synchronization for coupled nonlinear systems with antagonistic interactions and switching topologies. Systems & Control Letters, 2016, 94: 127-132
    [25] Zhai S D, Liu P. Synchronization of coupled discrete systems with competitive interactions and time-varying topologies. In: Proceedings of the 37th Chinese Control Conference (CCC). Wuhan, China: IEEE, 2018. 6896-6901
    [26] Khalil H K. Nonlinear Systems. New Jersey: Prentice-Hall, 2002.
  • 加载中
图(5)
计量
  • 文章访问数:  1016
  • HTML全文浏览量:  247
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-26
  • 录用日期:  2019-08-08
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-03-25

目录

    /

    返回文章
    返回