2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速列车非线性系统的分数阶有限时间控制器设计

戈萌 宋琦 胡鑫睿

戈萌,  宋琦,  胡鑫睿.  高速列车非线性系统的分数阶有限时间控制器设计.  自动化学报,  2021,  47(7): 1672−1678 doi: 10.16383/j.aas.c190208
引用本文: 戈萌,  宋琦,  胡鑫睿.  高速列车非线性系统的分数阶有限时间控制器设计.  自动化学报,  2021,  47(7): 1672−1678 doi: 10.16383/j.aas.c190208
Ge Meng,  Song Qi,  Hu Xin-Rui.  Design of a fractional-order finite-time controller for high-speed train with uncertain model and actuator failures.  Acta Automatica Sinica,  2021,  47(7): 1672−1678 doi: 10.16383/j.aas.c190208
Citation: Ge Meng,  Song Qi,  Hu Xin-Rui.  Design of a fractional-order finite-time controller for high-speed train with uncertain model and actuator failures.  Acta Automatica Sinica,  2021,  47(7): 1672−1678 doi: 10.16383/j.aas.c190208

高速列车非线性系统的分数阶有限时间控制器设计

doi: 10.16383/j.aas.c190208
基金项目: 中央高校基本科研业务费专项资金(2021JBM030), 国家自然科学基金(61503021)资助
详细信息
    作者简介:

    戈萌:北京交通大学电子信息工程学院硕士研究生. 主要研究方向为分数阶控制、有限时间控制以及交通系统. E-mail: 17120222@bjtu.edu.cn

    宋琦:北京交通大学轨道交通控制与安全国家重点实验室副教授. 2014年获得北京交通大学博士学位. 主要研究方向为人工智能与交通系统. 本文通信作者. E-mail: qsong@bjtu.edu.cn

    胡鑫睿:北京交通大学电子信息工程学院硕士研究生. 主要研究方向为交通系统与人工智能. E-mail: 17120231@bjtu.edu.cn

Design of a Fractional-order Finite-time Controller for High-speed Train With Uncertain Model and Actuator Failures

Funds: Supported by Fundamental Research Funds for the Central Universities (2021JBM030) and National Natural Science Foundation of China (61503021)
More Information
    Author Bio:

    GE Meng Master student at the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. Her research interest covers transportation systems and intelligent control method

    SONG Qi Received the Ph.D. degree from Beijing Jiaotong University, in 2014. She was a Visiting Researcher at California Institute of Technology, Pasadena, CA, USA, from 2011 to 2013. She is currently with the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. Her research interest covers artificial intelligence and transportation systems. Corresponding author this paper

    HU Xin-Rui Master student at the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. Her research interest covers transportation systems and artificial intelligence

  • 摘要:

    针对具有输入非线性, 不确定的气动阻力, 未知的车间力, 外部扰动以及未知的执行器故障等特征的高速列车非线性系统, 结合分数阶稳定性原理以及有限时间控制理论, 本文设计了一种分数阶有限时间控制器以实现高速列车更快速且更高精度的跟踪控制. 该控制器能够直接补偿高速列车的不确定性和非线性以及执行器故障而不需任何“试错”过程, 且稳定时间可由控制参数的不同选择来调整. 仿真研究验证了所设计控制器的有效性和优越性.

  • 图  1  基于分数阶与传统PID控制器的跟踪过程和误差

    Fig.  1  The tracking process and errors of the fractional-order or PID controller

    图  2  分数阶控制器在$ t\in(0,200) $的跟踪过程和误差

    Fig.  2  The tracking process and errors of the designed controller in $ t\in(0,200) $

    表  1  列车相关参数

    Table  1  Parameters of the vehicles

    变量参数含义仿真值
    $\varrho_i$第$i$节车厢的旋转质量系数$\varrho_i\in[0.08,0.11]$
    $m_i$第$i$节车厢的总体质量$m_i = (50+\Delta m_i)\quad\Delta m_i\in[-6,13]$
    $a_{0i},a_{1i},a_{2i}$第$i$节车厢的阻力系数$a_{0i}\in[50,85],\quad a_{1i}\in[30,100],\quad a_{2i} = [0.1,6.5]$
    $\Lambda$牵引/制动分配矩阵$\Lambda ={\rm{ diag} }\{0.5, 0.3, 0.5, 0.3, 0.6, 0.4, 0.6, 0.4\}$
    $r$分数阶阶次$0<r = r_1/r_2<1$且$r_2$为奇数
    $h$执行器健康参数$h2$, $h5$, $h6$
    下载: 导出CSV
  • [1] Lin X, Dong H R, Yao X M, Chai B G. Adaptive active faulttolerant controller design for high-speed trains subject to unknown actuator faults. Vehile System Dynamic, 2018, 56(11): 1717−1733 doi: 10.1080/00423114.2018.1430836
    [2] Song Q, Song Y D. Data-based fault-tolerant control of high-speed trains with traction/braking notch nonlinearities and actuator failures. IEEE Transactions on Neural Networks, 2011, 22(12): 2250−2261 doi: 10.1109/TNN.2011.2175451
    [3] Tang H Y, Wang Q Y, Feng X Y. Robust stochastic control for high-speed trains with nonlinearity, parametric uncertainty, and multiple time-varying delays. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(4): 1027−1037 doi: 10.1109/TITS.2018.2812000
    [4] Mao Z H, Tao G, Jiang B, Yan X G. Adaptive actuator compensation of position tracking for high-speed trains with disturbances. IEEE Transactions Vehicular Technology, 2018, 67(7): 5706−5717
    [5] Hu Q L, Shao X D. Smooth finite-time faulttolerant attitude tracking control for rigid spacecraft. Aerospace Science and Technology, 2016, 55(2016): 144−157
    [6] Amato F, Ambrosino R, Ariola M, Cosentino C, De Tommasi G. Finite-Time Stability and Control. London: Springer Verlag, 2014. 1−9
    [7] Cheng P, Gao Z F, Qian M S, Lin J X, Active fault tolerant control design for uav using nonsingular fast terminal sliding mode approach. In: Proceedings of the 30th Chinese Control and Decision Conference. Shenyang, China: IEEE, 2018. 292−297
    [8] Boukattaya M, Mezghani N, Damak T. Adaptive nonsingular fast terminal slidingmode control for the tracking problem of uncertain dynamical systems. ISA Transactions, 2018, 77(2018): 1−19
    [9] Chen Y Q, Ionescu C. Special issue: Applied fractional calculus in modelling, analysis and design of control systems. International Journal of Control, 2017, 90(6): 1155−1156 doi: 10.1080/00207179.2017.1315242
    [10] Chen Y Q, Petras I, Xue D Y. Fractional order control—A tutorial. In: Proceedings of the 2009 American Control Conference. St. Louis, USA: IEEE, 2009. 1397−1411
    [11] Podlubny I. Geometric and physical interpretation of fractional integration and fractional differentiation. Fractional Calculus and Applied Analysis, 2001, 5(4): 230−237
    [12] Al-Saggaf U M, Mehedi I M, Mansouri R. Rotary flexible joint control by fractional order controllers. International Journal of Control Automation and Systems, 2017, 15(59): 1−9
    [13] Angel L, Viola J. Fractional order PID for tracking control of a parallel robotic manipulator type delta. ISA Transactions, 2018, 79(2018): 172−188
    [14] Wang B, Ding J L, Wu F J, Zhu D L. Robust finite-time control of fractional-order nonlinear systems via frequency distributed model. Nonlinear Dynamics, 2016, 85(4): 2133−2142 doi: 10.1007/s11071-016-2819-9
    [15] Liang J X, Wu B W, Wang Y E, Niu B, Xie X J. Input-output finite-time stability of fractional-order positive switched systems. Circuits, Systems, and Signal Processing, 2019, 38(4): 1619−1638 doi: 10.1007/s00034-018-0942-1
    [16] Li D Y, Li P, Cai W C, Ma X P, Liu B, Dong H H. Neural adaptive fault tolerant control for high speed trains considering actuation notches and antiskid constraints. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1706−1718
    [17] Yu S H, Yu X H, Shirinzadeh B, Man Z H. Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica, 2005, 41(11): 1957−1964 doi: 10.1016/j.automatica.2005.07.001
    [18] Zhao Y G, Wang Y Z, Liu Z B. Finite time stability analysis for nonlinear fractional order differential systems. In: Proceedings of the 32nd Chinese Control Conference. Xi′an, China: IEEE, 2013. 487−492
    [19] Yang H J, Liu J K. An adaptive RBF neural network control method for a class of nonlinear systems. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 457−462 doi: 10.1109/JAS.2017.7510820
  • 加载中
图(2) / 表(1)
计量
  • 文章访问数:  918
  • HTML全文浏览量:  273
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 录用日期:  2019-07-30
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回