2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于相关向量机的高速列车牵引系统剩余寿命预测

王秀丽 姜斌 陆宁云

王秀丽, 姜斌, 陆宁云. 基于相关向量机的高速列车牵引系统剩余寿命预测. 自动化学报, 2019, 45(12): 2303−2311 doi: 10.16383/j.aas.c190204
引用本文: 王秀丽, 姜斌, 陆宁云. 基于相关向量机的高速列车牵引系统剩余寿命预测. 自动化学报, 2019, 45(12): 2303−2311 doi: 10.16383/j.aas.c190204
Wang Xiu-Li, Jiang Bin, Lu Ning-Yun. Relevance vector machine based remaining useful life prediction for traction systems of high-speed trains. Acta Automatica Sinica, 2019, 45(12): 2303−2311 doi: 10.16383/j.aas.c190204
Citation: Wang Xiu-Li, Jiang Bin, Lu Ning-Yun. Relevance vector machine based remaining useful life prediction for traction systems of high-speed trains. Acta Automatica Sinica, 2019, 45(12): 2303−2311 doi: 10.16383/j.aas.c190204

基于相关向量机的高速列车牵引系统剩余寿命预测

doi: 10.16383/j.aas.c190204
基金项目: 国家自然科学基金(61490703, 61873122, 61922042), 江苏高校优势学科建设工程资助项目, 南京航空航天大学博士生短期访学项目(180401DF03)资助
详细信息
    作者简介:

    王秀丽:南京航空航天大学自动化学院博士研究生. 主要研究方向为基于数据驱动的故障预测及其应用. E-mail: xiuliwang@nuaa.edu.cn

    姜斌:南京航空航天大学自动化学院教授. 主要研究方向为智能故障诊断与容错控制及其应用. 本文通信作者. E-mail: binjiang@nuaa.edu.cn

    陆宁云:南京航空航天大学自动化学院教授. 主要研究方向为基于数据驱动的故障诊断与预测及其应用. E-mail: luningyun@nuaa.edu.cn

Relevance Vector Machine Based Remaining Useful Life Prediction for Traction Systems of High-speed Trains

Funds: Supported by National Natural Science Foundation of China (61490703, 61873122, 61922042), Priority Academic Program Development of Jiangsu Higher Education Institutions, and Doctoral Student Short-term Visit Project of Nanjing University of Aeronautics and Astronautics (180401DF03)
  • 摘要: 高速列车牵引系统在运行过程中总是受到诸多不确定因素的影响, 例如, 由于列车的负载、运行环境及元器件的老化引起的不确定性, 不确定因素不可避免地影响牵引系统剩余寿命的预测精度. 为了提高不确定情景下剩余寿命预测的准确性, 本文首先采用改进的相关向量机(Relevance vector machine, RVM)方法, 建立鲁棒性能良好的多步回归模型, 由于t分布比常用的高斯分布更具有鲁棒性, 通过权重和随机误差服从t分布而非高斯分布, 改进了相关向量机回归模型, 随后将超参数的先验一并融入似然函数, 通过最大化似然函数估计未知的超参数, 此外, 利用首达时间方法从概率角度对剩余寿命进行了预测, 最后通过牵引系统中电容器退化的案例, 与传统的相关向量机方法、自回归方法和支持向量机方法进行对比, 验证了所提算法的有效性.
  • 图  1  中间直流环节结构简图

    Fig.  1  The structure diagram of intermediate DC link

    图  2  上下端电压从平稳过程到退化过程直至停机的演变趋势

    Fig.  2  The voltages evolution from the stationary process to the degradation process

    图  3  上下端电压在支撑电容器退化过程中的平均幅值

    Fig.  3  The mean amplitude of the upper and lower voltages during the capacitors' degradation

    图  4  建模过程中的预测值与真实值进行比较

    Fig.  4  The comparison between predicted values and the actual values in the modeling process

    图  5  剩余寿命预测值与真实值对比图

    Fig.  5  The RUL comparison between the predicted values and the actual values

    图  6  高斯分布与$ t $分布拟合效果对比图

    Fig.  6  The fitting comparison between the Gaussian distribution and the $ t $ distribution

    表  1  退化趋势模型中的参数取值

    Table  1  The parameter values in the degradation model

    SVMRVM改进RVM
    核函数径向基高斯高斯
    $ \alpha_i $/$ 1.0\times 10^{12} $$ 1.2\times 10^{-6} $
    $ \beta $/$ 2.47\times 10^{-4} $$ 6.62\times 10^{-4} $
    下载: 导出CSV

    表  2  剩余寿命均方根误差(RMSE)及相对平均偏差(RAD)比较

    Table  2  The RMSE and RAD comparison of RUL between different methods

    ARSVMRVM改进RVM
    RMSE (min)1.68603.56542.39051.4586
    RAD (%)29.680235.890020.346811.3533
    下载: 导出CSV
  • [1] 姜斌, 吴云凯, 陆宁云, 冒泽慧. 高速列车牵引系统故障诊断与预测技术综述. 控制与决策, 2018, 33(5): 841−855

    1 Jiang Bin, Wu Yun-Kai, Lu Ning-Yun, Mao Ze-Hui. Review of fault diagnosis and prognosis techniques for high-speed railway traction system. Control and Decision, 2018, 33(5): 841−855
    [2] 2 Shang J, Chen M Y, Ji H Q, Zhou D H. Recursive transformed component statistical analysis for incipient fault detection. Automatica, 2017, 80: 313−327 doi: 10.1016/j.automatica.2017.02.028
    [3] 3 Lei Y G, Qiao Z J, Xu X F, Liu J, Niu S T. An underdamped stochastic resonance method with stable-state matching for incipient fault diagnosis of rolling element bearings. Mechanical Systems and Signal Processing, 2017, 94: 148−164 doi: 10.1016/j.ymssp.2017.02.041
    [4] 周东华, 纪洪泉, 何潇. 高速列车信息控制系统的故障诊断技术. 自动化学报, 2018, 44(7): 1153−1164

    4 Zhou Dong-Hua, Ji Hong-Quan, He Xiao. Fault diagnosis techniques for the information control system of high-speed trains. Acta Automatica Sinica, 2018, 44(7): 1153−1164
    [5] 5 Tobon-Mejia D A, Medjaher K, Zerhouni N, Tripot, G. A data-driven failure prognostics method based on mixture of Gaussians hidden Markov models. IEEE Transactions on Reliability, 2012, 61(2): 491−503 doi: 10.1109/TR.2012.2194177
    [6] 6 Haque M S, Choi S, Baek J. Auxiliary particle filtering-based estimation of remaining useful life of IGBT. IEEE Transactions on Industrial Electronics, 2018, 65(3): 2693−2703 doi: 10.1109/TIE.2017.2740856
    [7] 7 Tseng S T, Balakrishnan N, Tsai C C. Optimal step-stress accelerated degradation test plan for gamma degradation processes. IEEE Transactions on Reliability, 2009, 58(4): 611−618 doi: 10.1109/TR.2009.2033734
    [8] 8 Zhai Q, Ye Z S. RUL prediction of deteriorating products using an adaptive wiener process model. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2911−2921 doi: 10.1109/TII.2017.2684821
    [9] 9 Si X S, Wang W B, Hu C H, Zhou D H. Remaining useful life estimation-a review on the statistical data driven approaches. European Journal of Operational Research, 2011, 213(1): 1−14 doi: 10.1016/j.ejor.2010.11.018
    [10] 10 Lu N Y, Yao Y, Gao F R. Two-dimensional dynamic PCA for batch process monitoring. AIChE Journal, 2005, 51(12): 3300−3304 doi: 10.1002/aic.10568
    [11] 11 Zhao C H, Gao F R. Online fault prognosis with relative deviation analysis and vector autoregressive modeling. Chemical Engineering Science, 2015, 138(22): 531−543
    [12] 12 Zhao C H, Gao F R. Critical-to-fault-degradation variable analysis and direction extraction for online fault prognostic. IEEE Transactions on Control Systems Technology, 2017, 25(3): 842−854 doi: 10.1109/TCST.2016.2576018
    [13] 13 Li Y, Lu N Y, Wang X L, Jiang B. Islanding fault detection based on data-driven approach with active developed reactive power variation. Neurocomputing, 2019, 337(14): 97−109
    [14] 14 Pham H T, Yang B S, Nguyen T T. Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and support vector machine. Mechanical Systems and Signal Processing, 2012, 32: 320−330 doi: 10.1016/j.ymssp.2012.02.015
    [15] 15 Huang H Z, Wang H K, Li Y F, Zhang L L, Liu Z L. Support vector machine based estimation of remaining useful life: current research status and future trends. Journal of Mechanical Science and Technology, 2015, 29(1): 151−163 doi: 10.1007/s12206-014-1222-z
    [16] 16 Tipping M E. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001, 1(3): 211−44
    [17] 17 Yu H Y, Wu Z H, Chen D W, Ma X L. Probabilistic prediction of bus headway using relevance vector machine regression. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7): 1772−1781 doi: 10.1109/TITS.2016.2620483
    [18] 18 Wu Y M, Breaz E, Gao F, Miraoui A. A modified relevance vector machine for PEM fuel-cell stack aging prediction. IEEE Transactions on Industry Applications, 2016, 52(3): 2573−2581 doi: 10.1109/TIA.2016.2524402
    [19] 19 Saha B, Goebel K, Poll S, Christophersen J. Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Transactions on Instrumentation and Measurement, 2009, 58(2): 291−296 doi: 10.1109/TIM.2008.2005965
    [20] 20 Widodo A, Kim, E Y, Son J D, Yang B S, Tan A C, Gu D S, Choid B K, Mathew J. Fault diagnosis of low speed bearing based on relevance vector machine and support vector machine. Expert Systems with Applications, 2009, 36(3): 7252−7261 doi: 10.1016/j.eswa.2008.09.033
    [21] 21 Zio E, Di Maio F. Fatigue crack growth estimation by relevance vector machine. Expert Systems with Applications, 2012, 39(12): 10681−10692 doi: 10.1016/j.eswa.2012.02.199
    [22] 22 Widodo A, Yang B S. Application of relevance vector machine and survival probability to machine degradation assessment. Expert Systems with Applications, 2011, 38(3): 2592−2599 doi: 10.1016/j.eswa.2010.08.049
    [23] Wang X L, Jiang B, Lu N Y. Adaptive relevant vector machine based RUL prediction under uncertain conditions. ISA Transactions, 2018, DOI: 10.1016/j.isatra. 2018.11.024
    [24] 24 Yang C H, Yang C, Peng T, Yang X Y, Gui W H. A fault-injection strategy for traction drive control systems. IEEE Transactions on Industrial Electronics, 2017, 64(7): 5719−5727 doi: 10.1109/TIE.2017.2674610
    [25] 25 Yang X Y, Yang C H, Peng T, Chen Z W, Liu B, Gui W H. Hardware-in-the-loop fault injection for traction control system. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(2): 696−706 doi: 10.1109/JESTPE.2018.2794339
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  2131
  • HTML全文浏览量:  634
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-20
  • 录用日期:  2019-09-02
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回