2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于透视投影下空间光照一致性分析的图像拼接篡改检测

张旭 胡晰远 陈晨 彭思龙

刘秀翀, 王占山. 系统H∞范数计算:Lyapunov函数的直接优化方法. 自动化学报, 2019, 45(8): 1606-1610. doi: 10.16383/j.aas.c180619
引用本文: 张旭, 胡晰远, 陈晨, 彭思龙. 基于透视投影下空间光照一致性分析的图像拼接篡改检测. 自动化学报, 2019, 45(10): 1857-1869. doi: 10.16383/j.aas.c190202
LIU Xiu-Chong, WANG Zhan-Shan. Calculation of the System H∞ Norm: a Lyapunov Function Optimization Method. ACTA AUTOMATICA SINICA, 2019, 45(8): 1606-1610. doi: 10.16383/j.aas.c180619
Citation: ZHANG Xu, HU Xi-Yuan, CHEN Chen, PENG Si-Long. Image Splicing Detection Based on Spatial Lighting Consistency Analysis Under Perspective Projection. ACTA AUTOMATICA SINICA, 2019, 45(10): 1857-1869. doi: 10.16383/j.aas.c190202

基于透视投影下空间光照一致性分析的图像拼接篡改检测

doi: 10.16383/j.aas.c190202
基金项目: 

现场物证溯源技术国家工程实验室开放课题 2017NELKFKT02

国家重点研发计划 2018YFC0807306

详细信息
    作者简介:

    张旭  中国科学院自动化研究所博士研究生.主要研究方向为图像视频处理, 图像视频取证, 人脸图像取证.E-mail:zhangxu2013@ia.ac.cn

    陈晨  中国科学院自动化研究所助理研究员.2013年获得丹麦哥本哈根大学计算机科学博士学位.主要研究方向为机器学习, 模式识别, 医学图像分析.E-mail:chen.chen@ia.ac.cn

    彭思龙  中国科学院自动化研究所研究员.1998年获得中国科学院数学所博士学位.主要研究方向为小波分析及其在图像处理中的应用, 信号处理.E-mail:silong.peng@ia.ac.cn

    通讯作者:

    胡晰远  中国科学院自动化研究所副研究员.2011年获得中国科学院自动化研究所博士学位.主要研究方向为自适应信号处理, 数字图像处理和压缩.本文通信作者.E-mail:xiyuan.hu@ia.ac.cn

Image Splicing Detection Based on Spatial Lighting Consistency Analysis Under Perspective Projection

Funds: 

Open Project of National Engineering Laboratory for Forensic Science 2017NELKFKT02

National Key Research and Development Project 2018YFC0807306

More Information
    Author Bio:

    Ph. D. candidate at the Institute of Automation, Chinese Academy of Sciences. His research interest covers image and video processing, image and video forensics, and face image forensics

    Assistant professor at the Institute of Automation, Chinese Academy of Sciences. She received her Ph. D. degree in computer science from University of Copenhagen, Denmark in 2013. Her research interest covers machine learning, pattern recognition, and medical image analysis

    Professor at the Institute of Automation, Chinese Academy of Sciences. He received his Ph. D. degree from the Institute of Mathematics, Chinese Academy of Sciences in 1998. His research interest covers wavelet analysis and its application in image processing, and signal processing

    Corresponding author: HU Xi-Yuan Associate professor at the Institute of Automation, Chinese Academy of Sciences. He received his Ph. D. degree from the Institute of Automation, Chinese Academy of Sciences in 2011. His research interest covers adaptive signal processing, digital image processing and compression. Corresponding author of this paper
  • 摘要: 将一个人的头像剪切并拼接到另一张照片中,是一种常见的图像篡改手段.如果将该合成照片用于敲诈勒索,会对社会带来严重危害.因此,用来检测图像篡改的图像取证技术具有重大意义.由于不同照片成像环境不同,拼接时很难做到不同人脸的光照绝对一致,因此可以通过光照是否一致检测篡改.以往光照估计方法基于平行投影的假设,利用照片投影光照进行光照一致性分析.实际上,相机针孔模型是透视投影,从而导致上述检测方法出现误差.针对这一问题,本文提出一种透视投影下物体空间光照估计算法,将各人脸姿态统一到相机坐标系下,估计各人脸相对于相机坐标系的空间光照,然后分析空间光照一致性.另外,根据人脸空间光照一致性约束可以优化出相机参数,并得到该参数下的等效焦距、人脸空间位置及重新透视投影的图像等空间信息.本文将空间光照的一致性和上述空间信息的合理性作为依据,对人脸图像进行拼接篡改检测.实验结果表明,相比于传统方法基于平行投影光照进行光照一致性分析,采用本文提出的方法得到的空间光照进行光照一致性分析具有更高的准确度,结合相关信息进行照片空间合理性分析的篡改检测方法具有更强的说服力.
  • $ H_{\infty} $控制理论主要研究抑制干扰和不确定性问题[1].在$ H_{\infty} $控制理论中, 传递函数(或系统)的$ H_{\infty} $范数是一项重要的性能指标, 用于度量扰动输入对系统输出的影响, 反映了闭环系统的抗扰能力.在$ H_{\infty} $控制理论研究中, 长期存在一个挑战性议题:是否能够直接给出关于$ H_{\infty} $范数的通用解析表达式, 进而避免针对线性矩阵不等式(Linear matrix inequality, LMI)约束条件的繁琐的$ H_{\infty} $范数近似寻优方案.

    在20世纪80年代, $ H_{\infty} $控制理论的研究由频域转换到时域, 开启了基于状态空间方程描述的系统鲁棒性能研究[2].总的来说, $ H_{\infty} $性能时域分析面临的核心问题是如何选择适当的李雅普诺夫函数.具体表现为基于李雅普诺夫方程[3-4]或参数化Riccati不等式[5]均难以得到用于精确分析系统$ H_{\infty} $性能的最优李雅普诺夫函数, 因此在早期的研究中结果的保守性是难以避免的.

    为精确求解$ H_{\infty} $范数, 有学者提出了有界实引理[6], 并将求解$ H_{\infty} $范数问题转化为时域状态空间的约束优化问题.基于有界实引理给出的LMI约束条件, $ H_{\infty} $范数能够被近似寻优[7-14].在LMI方法中, $ H_{\infty} $范数的寻优一般包含以下步骤:

    1) 给出一个充分大的初始$ H_{\infty} $范数估计$ \mit\gamma $;

    2) 解LMI问题;

    3) 递减$ H_{\infty} $范数估计$ \mit\gamma $, 直到获得满足LMI条件的最小$ H_{\infty} $范数估计$ \mit\gamma $.

    显然, 一旦最小$ H_{\infty} $范数估计得到, 则通过解LMI, 可以得到相应的近似最优李雅普诺夫函数.不难发现, LMI方法存在一定不足, 表现为:

    1) 对于每一个给定的$ \mit\gamma $, LMI条件需要被重复求解, 直到找到最小的$ H_{\infty} $范数估计, 过程过于繁琐;

    2) 这种试凑逼近方法无法揭示系统结构和参数对$ H_{\infty} $性能的影响, 在一定程度上限制了控制器精细设计的研究.

    为了克服目前关于$ H_{\infty} $范数问题研究的不足, 一个可替换的方法是直接优化李雅普诺夫函数, 进而得到关于$ H_{\infty} $范数的通用解析表达式.目前, 针对系统具体性能, 难以找到李雅普诺夫函数设计的充要条件, 因此这方面的研究并不多见.事实上, 在分析系统具体性能时, 存在最优的李雅普诺夫函数, 并且这一最优李雅普诺夫函数与系统结构和参数存在内在关系[15].因此本文尝试寻找一种李雅普诺夫函数的直接优化途径, 进而实现$ H_{\infty} $性能的精确分析.

    由于多数高阶系统在一定的条件下可以近似(或分解)为二阶系统来研究, 并且二阶系统的分析方法是分析高阶系统的基础[16], 因此为有效展现最优李雅普诺夫函数与系统结构和参数存在内在关系, 本文针对一类二阶系统的$ H_{\infty} $范数问题, 构造和优化李雅普诺夫函数, 进而得到$ H_{\infty} $范数的通用解析表达式.本文的研究避免了LMI方法中繁琐的近似寻优过程, 并展示了系统矩阵特征值的实部和虚部对$ H_{\infty} $性能的影响.本文结构如下:第1节分析$ H_{\infty} $范数问题; 第2节分析Riccati不等式中李雅普诺夫函数的选择对求解$ H_{\infty} $范数的影响; 第3节展现李雅普诺夫函数的直接优化方法, 并给出$ H_{\infty} $范数的通用解析表达式; 第4节给出算例, 验证李雅普诺夫函数直接优化方法的有效性.

    系统描述为

    $ \begin{align} \dot{\boldsymbol{ x}} = A {\boldsymbol{ x}}+ {\boldsymbol{ w}} \end{align} $

    (1)

    其中, $ {\boldsymbol{ x}} \in \textbf{R}^{2} $, $ A $为Hurwitz矩阵, $ A $的特征值为复数, $ {\boldsymbol{ w}} $为扰动输入, $ \|{\boldsymbol{ w}}\| \leq \delta $, $ \delta $为常数, $ \|{\boldsymbol{ w}}\| = (\Sigma^{2}_{i = 1}w^{2}_{i})^{\frac{1}{2}} $.

    研究的问题是如何得到系统(1)的状态上界.在数学意义上, 这一问题可转化为关于输入–输出系统的$ H_{\infty} $范数问题, 其中系统描述为

    $ \begin{align} \begin{cases} \dot{\boldsymbol{ x}} = A {\boldsymbol{ x}} + {\boldsymbol{ w}} \\ {\boldsymbol{ y}} = {\boldsymbol{ x}} \end{cases} \end{align} $

    (2)

    在$ H_{\infty} $控制理论中, 系统的$ H_{\infty} $范数定义为$ S $右半平面上解析的有理函数阵的最大奇异值.在标量函数中就是幅频特性的极大值, 代表了系统对峰值有界信号的传递特性.

    令李雅普诺夫函数为$ V = {\boldsymbol{ x}}^{\rm T}P{\boldsymbol{ x}} $, $ \gamma $为系统(2)的$ H_{\infty} $范数, 即$ \mit\gamma = \|G\|_{\infty} $, 其中$ G(s) = (sI-A)^{-1} $为系统(2)的传递函数.根据有界实引理, 可得

    $ \begin{align} \left[ \begin{array}{ccc} PA+A^{\rm{T}}P & P & I \\ P & -\gamma^{2} I & 0_{2\times 2} \\ I & 0_{2\times 2} & -I \\ \end{array} \right] < 0 \end{align} $

    (3)

    LMI方法是寻找式(3)中$ \mit\gamma $的最小值$ \mit\gamma_{\rm{min}} $.由于李雅普诺夫函数$ V = {\boldsymbol{ x}}^{\rm T}P {\boldsymbol{ x}} $可以任意构造, 因此对于每一个给定的$ \mit\gamma $, 需要重复求解LMI, 以判断式(3)的存在性, 直到$ \mit\gamma_{\rm{min}} $被找到.显然, 在LMI方法中复杂的优化过程是不可避免的.事实上, $ \mit\gamma_{\rm{min}} $与最优的$ P $矩阵是一一对应的.如果能够直接给出最优的$ P $矩阵, 则$ \mit\gamma_{\rm{min}} $的表达式就能够得到, 进而避免LMI方法中复杂的优化过程.本文的工作是尝试提供一种新的途径来直接给出$ \mit\gamma_{\rm{min}} $的表达式.

    根据特征值和奇异值分解原理, 可以得到下面的特性.

    特性1. 对于系统(2)中特征矩阵$ A $, 存在可逆矩阵$ T $, 满足

    $ \begin{align} D = -TAT^{-1} = \left[ \begin{array}{cc} \lambda & \nu \\ -\nu & \lambda \\ \end{array} \right] \end{align} $

    (4)

    其中, $ T = \Theta_{T1} \times \text{diag}\{t_{1}, t_{2}\} \times \Theta_{T2} $, $ \Theta_{T1} $和$ \Theta_{T2} $为正交矩阵, $ t_{2} \geq t_{1} > 0 $, $ \lambda > 0 $, $ \nu > 0 $. $ \text{diag}\{t_{1}, t_{2}\} $表示对角元素为$ t_{1} $, $ t_{2} $的对角阵.

    令$ \alpha = {t_{2}}/{t_{1}} \geq 1 $, $ {\boldsymbol{ y}} = \Theta_{T2} \times {\boldsymbol{ x}} $, $ {\boldsymbol{ {\Delta}}} = \Theta_{T2}\times{\boldsymbol{ w}} $.由式(2)和特性1, 得

    $ \begin{align} \begin{cases} \dot{\boldsymbol{ y}} = E {\boldsymbol{ y}} + B {\boldsymbol{ {\Delta}}} \\ {\boldsymbol{ x}} = C {\boldsymbol{ y}} \end{cases} \end{align} $

    (5)

    其中, $ B = I $为单位阵, $ C = \Theta_{T2}^{-1} $, $ E = - \left[ {array}{cc} \lambda & \alpha \nu \\ -\frac{1}{\alpha}\nu & \lambda \\ {array} \right], $并且系统(2)和(5)具有相同的$ H_{\infty} $范数.

    根据文献[5]中引理2.1, 可以得到下面的特性.

    特性2. 对于系统(5), 存在正定矩阵$ X $, 满足Riccati不等式

    $ \begin{align} E^{\rm T}X+XE+(1+\varepsilon)C^{\rm T}C+ \rho^{-2} XBB^{\rm T}X \leq 0 \end{align} $

    (6)

    其中, $ \gamma < \rho $, $ \gamma = \|G\|_{\infty} $为系统$ H_{\infty} $范数, $ \varepsilon $为趋于零的正数.

    注1. 应用Riccati不等式一般会得到具有很强保守性的结果, 但这种保守性并不是Riccati不等式本身导致的.研究表明:基于李雅普诺夫函数的准确选择, 可以将特性2中Riccati不等式转化为等式, 进而精确给出$ H_{\infty} $范数.因此, 导致这种保守性的原因是:在应用Riccati不等式时, 目前尚没有有效的方法找到最优的李雅普诺夫函数.这正是本文研究李雅普诺夫函数构造(或优化)的动机.

    $ \begin{align} \Upsilon = \, &K^{-1} \Theta \begin{bmatrix} \lambda & -\frac{1}{\alpha} \nu \\ \alpha \nu & \lambda \end{bmatrix}\Theta^{\rm T}\; + \nonumber \\&\Theta \begin{bmatrix} \lambda & \alpha \nu \\ -\frac{1}{\alpha} \nu & \lambda \\ \end{bmatrix} \Theta^{\rm T}K^{-1} - K^{-1}K^{-1} \end{align} $

    (7)

    其中, $ \alpha \geq 1 $,

    $ \begin{align} K = \iota \left[ \begin{array}{cc} 1 & 0 \\ 0 & k \\ \end{array} \right], \;\;\;\; \Theta = \left[ \begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \\ \end{array} \right] \end{align} $

    (8)

    $ \iota >0 $, $ k \geq 1 $, $ 0 \leq \theta \leq {\pi}/{4} $.

    由式(8)构造的李雅普诺夫函数分解了"放缩"和"旋转"作用.这种功能的分解使李雅普诺夫函数的参数优化具有了可行性.

    定理1. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足

    $ \begin{align} \gamma < \rho_{\rm{min}} = \left[\sqrt{\lambda_{\rm{min}}(\Upsilon)} \right]^{-1} \end{align} $

    (9)

    其中, $ \lambda_{\rm{min}}(\Upsilon) $为矩阵$ \Upsilon $的最小特征值.

    证明. 令$ X = \Theta^{\rm T} K \Theta $, 其中, $ K $和$ \Theta $由式(8)给出.根据特性2和式(7), 得

    $ \begin{align} \rho^{-2} I \leq \Upsilon - \varepsilon K^{-1}K^{-1} \end{align} $

    (10)

    则$ \rho^{-2} \leq \lambda_{\rm{min}}(\Upsilon- \varepsilon K^{-1}K^{-1}) $, 由于$ \gamma < \rho $, 并且$ \varepsilon $为趋于零的正数, 则式(9)成立.

    注2. 根据定理1, 可以优化李雅普诺夫函数的参数, 以最大化$ \lambda_{\rm{min}}(\Upsilon) $, 进而精确估计系统$ H_{\infty} $范数.因此, 定理1给出了一种新的途径以得到系统的$ H_{\infty} $范数.

    考查式(7)给出的矩阵$ \Upsilon $.由式(7)和式(8), 可得

    $ \begin{align} \Upsilon = \frac{1}{\iota} \left[ \begin{array}{cc} 2\lambda + \beta \nu - \frac{1}{\iota} & \frac{1}{k} \sigma \nu \\ \frac{1}{k} \sigma \nu & \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \\ \end{array} \right] \end{align} $

    (11)

    其中,

    $ \begin{align} \beta = &\ \left(\alpha-\frac{1}{\alpha}\right) \sin 2\theta \end{align} $

    (12)

    $ \begin{align} \sigma = &\, \left[\alpha- (\alpha-\frac{1}{\alpha}) \sin^{2} \theta \right] -k \left[\frac{1}{\alpha} + (\alpha-\frac{1}{\alpha}) \sin^{2} \theta \right] = \\ &\ \frac{1}{2}(1-k)(\alpha+\frac{1}{\alpha}) +\frac{1}{2}(1+k) (\alpha-\frac{1}{\alpha}) \cos 2\theta \end{align} $

    (13)

    根据式(11), 以最大化$ \lambda_{\rm{min}}(\Upsilon) $为目标, 将给出一种李雅普诺夫函数的优化方法.

    $ \begin{align} \Upsilon_{1} = \Theta^{-1} \Upsilon \Theta, \; \; Y_{1} = X^{-1} \end{align} $

    (14)

    则由式(7)和$ X = \Theta^{\rm T}K\Theta $, 得

    $ \begin{align} \Upsilon_{1} = EE^{\rm T}-(E+Y_{1})(E+Y_{1})^{\rm T} \end{align} $

    (15)

    $ \begin{align} &EE^{\rm T} = \Theta_{1}^{\rm T} \Lambda \Theta_{1}, \quad \Upsilon_{2} = \Theta_{1} \Upsilon_{1} \Theta_{1}^{\rm T} \end{align} $

    (16)

    $ \begin{align} &E_{1} = \Theta_{1} E \Theta_{1}^{\rm T}, \qquad Y_{2} = \Theta_{1} Y_{1} \Theta_{1}^{\rm T} \end{align} $

    (17)

    其中, $ \Lambda = {\rm diag}\{\sigma_{1}, \sigma_{2}\} $, $ \sigma_{1} \geq \sigma_{2} $, 则

    $ \begin{align} \Upsilon_{2} = \Lambda - (E_{1}+Y_{2})(E_{1}+Y_{2})^{\rm T} \end{align} $

    (18)

    $ \begin{align} E_{1} = E_{R}+E_{J}, \; \; Y_{3} = E_{R}+Y_{2} \end{align} $

    (19)

    其中, $ E_{R}^{\rm T} = E_{R} $, $ E_{J} = -E_{J}^{\rm T} $, 则

    $ \begin{align} \Upsilon_{2} = \Lambda - (E_{J}+Y_{3})(E_{J}+Y_{3})^{\rm T} \end{align} $

    (20)

    $ \begin{align} Y_{3} = \left[ \begin{array}{cc} y_{1} & y_{3} \\ y_{3} & y_{2} \\ \end{array} \right], \; \; E_{J} = \left[ \begin{array}{cc} 0 & a \\ -a & 0 \\ \end{array} \right] \end{align} $

    (21)

    则根据$ \Lambda = \text{diag}\{\sigma_{1}, \sigma_{2}\} $, 有$ \sigma_{1} \geq \sigma_{2} $,

    $ \begin{align} \Upsilon_{2} = & \left[ \begin{array}{cc} \sigma_{1}-(y_{3}+a)^{2}-y_{1}^{2} \\ -(y_{1}+y_{2})y_{3}-(y_{2}-y_{1})a \\ \end{array}\right.\\ &\qquad\qquad\qquad \left. \begin{array}{cc} & -(y_{1}+y_{2})y_{3}-(y_{2}-y_{1})a \\ & \sigma_{2} -(y_{3}-a)^{2}-y_{2}^{2} \\ \end{array} \right] \end{align} $

    (22)

    根据式(14), (16), (21), (22)和定理1, 存在$ Y_{3} $, 使$ \lambda_{\rm{min}}(\Upsilon_{2}) $ $ > $ $ 0 $, 即$ \Upsilon_{2} $正定.因此根据式(22), 为了最大化$ \Upsilon_{2} $的最小特征值, 应使下面两个条件成立.

    1) $ (y_{1}+y_{2})y_{3}+ (y_{2}-y_{1})a = 0 $ (例如$ y_{2} = 0 $, $ y_{3} = a $; 或$ y_{1} = y_{2} = 0 $).

    2) $ \Upsilon_{2} $的特征值相等(例如$ y_{1}^{2} = \sigma_{1}-\sigma_{2}-4a^{2} $; 或$ y_{3} $ $ = $ $ (\sigma_{1}-\sigma_{2})/{4a} $).

    注意, $ \sqrt{\sigma_{2}} $为$ E $的最小奇异值, 因此$ \gamma \geq {1}/{\sqrt{\sigma_{2}}} $.令

    $ \begin{align} \lambda_{1} = \frac{1}{\iota}\left( 2\lambda + \beta \nu - \frac{1}{\iota} \right), \; \; \lambda_{2} = \frac{1}{\iota}\left[ \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \right] \end{align} $

    (23)

    基于以上分析, 并根据式(9), (11), (14), (16)和(23), 为了最大化$ \Upsilon $的最小特征值, 李雅普诺夫函数的优化策略设计为$ \sigma = 0 $和$ \lambda_{1} = \lambda_{2} $.

    基于所给李雅普诺夫函数优化策略, 进一步优化李雅普诺夫函数参数.

    定理2. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足

    $ \begin{align} \gamma < \rho(k, \iota) = \left[\min(\lambda_{1}, \lambda_{2}) \right]^{-\frac{1}{2}} \end{align} $

    (24)

    其中, $ \lambda_{1} $和$ \lambda_{2} $由式(23)给出, 式(23)中$ \beta $由下式给出.

    $ \begin{align} \beta = \frac{2}{k+1}\sqrt{\left(k \alpha-\frac{1}{\alpha}\right)\left(\alpha- \frac{k}{\alpha}\right)} \end{align} $

    (25)

    证明. 考查式(11)给出的矩阵$ \Upsilon $.令$ \sigma = 0 $, 则

    $ \begin{align} \cos 2\theta = \frac{(k-1)(\alpha+\frac{1}{\alpha})}{(k+1)(\alpha-\frac{1}{\alpha})} \end{align} $

    (26)

    因此根据式(11), (12), (23)和$ 0 \leq \theta \leq {\pi}/{4} $, 矩阵$ \Upsilon $的特征值为$ \lambda_{1} $和$ \lambda_{2} $, 其中$ \beta $由式(25)给出.根据定理1, 可得式(24).

    注3. 基于李雅普诺夫函数参数矩阵$ \Theta $的优化策略, 定理2进一步给出系统$ H_{\infty} $范数的估计., 同时奠定了进一步优化李雅普诺夫函数参数$ k $和$ \iota $的基础.

    定理3. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足

    $ \begin{align} \gamma < \rho(k) = \begin{cases} \frac{1}{\lambda}, & \text{若}\; \alpha = 1\\ \left[ f(k)\right]^{-\frac{1}{2}}, & \text{若}\; \alpha >1 \end{cases} \end{align} $

    (27)

    其中,

    $ \begin{align} f(k) = \frac{4k}{(k+1)^{2}} \left[ \lambda^{2} + \nu^{2} - \frac{k \nu^{2}}{(k-1)^{2}} \left(\alpha-\frac{1}{\alpha}\right)^{2} \right] \end{align} $

    (28)

    证明. 考查式(23)给出的矩阵$ \Upsilon $的特征值为$ \lambda_{1} $和$ \lambda_{2} $.令$ \lambda_{1} = \lambda_{2} $, 即

    $ \begin{align} 2\lambda + \beta \nu - \frac{1}{\iota} = \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \end{align} $

    (29)

    其中, $ \beta $由式(25)给出, $ \alpha \geq 1 $.

    当$ \alpha > 1 $时, 由式(25)和式(29)可知$ k \neq 1 $, 并且得

    $ \begin{align} \frac{1}{\iota} = \frac{2k \lambda}{k+1}+\frac{2k \nu}{k^{2}-1} \sqrt{\left(k \alpha- \frac{1}{\alpha}\right)\left(\alpha-\frac{k}{\alpha}\right)} \end{align} $

    (30)

    当$ \alpha = 1 $时, 由式(25)可知$ (k-1)^{2} \leq 0 $, 即$ k = 1 $.则根据式(23), (25), (29), $ \lambda_{1} = \lambda_{2} = \frac{1}{\iota} (2 \lambda-\frac{1}{\iota}) $.当$ \iota = \lambda $时, 得$ \max (\lambda_{1}) = \lambda^{2} $.

    基于以上分析, 并根据定理2和式(23), (25), (29)以及(30), 可得结论.

    注4. 通过给出李雅普诺夫函数参数$ \iota $的优化策略, 定理3进一步给出系统$ H_{\infty} $范数的估计.根据定理3, 可以直接优化李雅普诺夫函数参数$ k $, 进而得到系统$ H_{\infty} $范数的精确估计.

    注5. 注意, 当$ \alpha > 1 $时, $ k \neq 1 $.因此定理3通过分别讨论$ \alpha > 1 $和$ \alpha = 1 $两种情况, 解决了$ f(k) $的奇异问题.

    $ \begin{align} \kappa = k + \frac{1}{k} > 2 \end{align} $

    (31)

    则由式(28), 得

    $ \begin{align} f(\kappa) = \frac{4(\lambda^{2} + \nu^{2})}{\kappa+2} - \frac{4\nu^{2}}{\kappa^{2}-4} \times \left(\alpha-\frac{1}{\alpha}\right)^{2} \end{align} $

    (32)

    定理4. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足

    $ \begin{align} \gamma < \rho_{\text{opt}} = \begin{cases} \frac{1}{\lambda}, & \text{若}\; \alpha = 1\\ \frac{1}{2\lambda}\sqrt{\alpha^{2}+\frac{1}{\alpha^{2}}+2}, &\text{若}\; \kappa_{0} \geq \alpha^{2}+\frac{1}{\alpha^{2}}\\ \left[ f(\kappa_{0})\right]^{-\frac{1}{2}}, &\text{若}\; \kappa_{0} < \alpha^{2}+\frac{1}{\alpha^{2}} \end{cases} \end{align} $

    (33)

    其中

    $ \begin{align} &f(\kappa_{0}) = \frac{4(\lambda^{2} + \nu^{2})}{\kappa_{0}+2} - \frac{4\nu^{2}}{\kappa_{0}^{2}-4} \times \left(\alpha-\frac{1}{\alpha}\right)^{2} \end{align} $

    (34)

    $ \begin{align} &\kappa_{0} = 2 + \frac{\nu^{2} (\alpha-\frac{1}{\alpha})^{2}}{\lambda^{2} + \nu^{2}} \times \left[ 1+\sqrt{1+ \frac{4(\lambda^{2} + \nu^{2})}{\nu^{2} (\alpha-\frac{1}{\alpha})^{2}}} \right] \end{align} $

    (35)

    证明. 由式(32), 得

    $ \begin{align} f'(\kappa) = \frac{{\rm d} f(\kappa)}{{\rm d} \kappa} = -\frac{4(\lambda^{2} + \nu^{2})}{(\kappa+2)^{2}} +\frac{8(\alpha-\frac{1}{\alpha})^{2} \nu^{2} \kappa}{(\kappa+2)^{2}(\kappa-2)^{2}} \end{align} $

    (36)

    令$ f'(\kappa) = 0 $, 即

    $ \begin{align} \kappa^{2} - \left[ 4+ \frac{2(\alpha-\frac{1}{\alpha})^{2} \nu^{2}}{\lambda^{2} + \nu^{2}} \right] \kappa +4 = 0 \end{align} $

    (37)

    根据$ \kappa >2 $和式(35), 得$ \kappa = \kappa_{0} $.

    根据式(35) $ \sim $ (37), 得

    $ \begin{align} \lim \limits_{\varsigma \rightarrow 0} \frac{f'(\kappa_{0} + \varsigma)-f'(\kappa_{0})}{\varsigma} <0 \end{align} $

    (38)

    因此, 在$ 2 < \kappa < \infty $的条件下, $ \max f(\kappa) = f(\kappa_{0}) $, 如图 1 (a)1 (b)所示.

    图 1  函数分析
    Fig. 1  Function analysis

    注意, 定理2中李雅普诺夫函数参数矩阵$ \Theta $的优化策略为$ \sigma = 0 $, 则由式(13), 可得$ k \leq \alpha^{2} $.由于$ k >1 $, 因此根据式(31), 得

    $ \begin{align} \Omega = \left\{ \kappa \in \textbf{R} | 2 < \kappa \leq \alpha^{2}+\frac{1}{\alpha^{2}} \right\} \end{align} $

    (39)

    根据图 1 (a)1 (b), 得

    $ \begin{align} \max \limits_{k \in \Omega} f(\kappa) = \begin{cases} \frac{4\lambda^{2}}{\alpha^{2}+\frac{1}{\alpha^{2}}+2}, &\text{若}\; \kappa_{0} \geq \alpha^{2}+\frac{1}{\alpha^{2}}\\ f(\kappa_{0}), & \text{若}\; \kappa_{0} < \alpha^{2}+\frac{1}{\alpha^{2}} \end{cases} \end{align} $

    (40)

    因此由定理3可得结论.

    注6. 通过对李雅普诺夫函数参数的直接优化, 定理4给出了系统$ H_{\infty} $范数上界的优化结果.应用定理4, 可以给出系统$ H_{\infty} $范数的精确估计.

    注7. 不同于LMI方法, 本文提出的李雅普诺夫函数直接优化方法分析了李雅普诺夫函数的构造对系统性能分析的影响, 充分利用系统结构和参数以优化李雅普诺夫函数的设计.与LMI方法相比, 李雅普诺夫函数直接优化方法能够直接给出系统$ H_{\infty} $范数的精确结果, 进而避免了复杂的数值优化过程.因此本文的工作提供了一种新的途径以更为方便地分析系统动态性能.

    考查系统

    $ \begin{align} \dot{\boldsymbol{ x}} = -\left[ \begin{array}{cc} 1.25 & 1.25 \\ -1.25 & 2.75 \\ \end{array} \right]{\boldsymbol{ x}}+ {\boldsymbol{ w}} \end{align} $

    (41)

    其中, $ {\boldsymbol{ w}} $为扰动输入, $ \|{\boldsymbol{ w}}\| \leq 1 $, $ {\boldsymbol{ x}} $为状态输出.根据式(5), 得

    $ \begin{align} \begin{cases} \dot{\boldsymbol{ y}} = - \left[ \begin{array}{cc} 2 & 2 \\ -0.5 & 2 \\ \end{array} \right] {\boldsymbol{ y}} + {\boldsymbol{ {\Delta}}} \\ {\boldsymbol{ x}} = \frac{\sqrt{2}}{2} \left[ \begin{array}{cc} 1 & -1 \\ 1 & 1 \\ \end{array} \right] {\boldsymbol{ y}} \end{cases} \end{align} $

    (42)

    因此, $ \lambda = 2 $, $ \nu = 1 $, $ \alpha = 2 $.

    由式(34), 得$ \kappa_{0} = 3.8651< \alpha^{2}+\frac{1}{\alpha^{2}} = 4.25 $.则根据定理4, 得$ \gamma < \rho_{\text{opt}} = 0.622 $.因此$ \gamma \approx 0.622 $.应用MATLAB中$ H_{\infty} $范数求解函数hinfnorm (sys, 0.0000001)可得相同的结果.因此提出的李雅普诺夫函数直接优化方法能精确给出系统$ H_{\infty} $范数.

    表 1进一步给出在不同参数条件下系统(5)的$ H_{\infty} $范数.表 1表明, 针对式(5)给出的具有不同参数的系统, 提出的李雅普诺夫函数直接优化方法都能精确给出系统$ H_{\infty} $范数.

    表 1  $H_{\infty}$范数分析($\alpha = 2$)
    Table 1  $H_{\infty}$ norm analysis ($\alpha = 2$)
    $\lambda$ $\nu$ MATLAB 定理4 稳态误差$\|A^{-1}\|$ 状态上界
    2 6 0.626 0.626 0.307 0.626
    2 4 0.626 0.626 0.419 0.626
    2 2 0.626 0.626 0.588 0.626
    2 1.2 0.626 0.626 0.626 0.626
    2 1 0.622 0.622 0.622 0.622
    2 0 0.501 0.501 0.501 0.501
    下载: 导出CSV 
    | 显示表格

    在$ \alpha $和系统特征值实部$ \lambda $确定(即$ \alpha = 2 $, $ \lambda = 2 $)的条件下, 表 1给出的结果表明, 随着系统特征值虚部$ \nu $变化, $ H_{\infty} $范数的变化具有一定规律性, 表现为:

    1) 当$ \nu = \nu^{*} = 1.2 $ (即$ \kappa_{0} = \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数为$ \max \|A^{-1}\| $;

    2) 当$ \nu < \nu^{*} $ (即$ \kappa_{0} < \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数与稳态指标$ \|A^{-1}\| $一致;

    3) 当$ \nu > \nu^{*} $ (即$ \kappa_{0} > \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数为固定值(即$ H_{\infty} $范数的值与$ \nu $无关), 并且根据定理4, $ H_{\infty} $范数的表达式非常简洁.

    由式(1), (3), (41), 得

    $ \begin{align} \begin{bmatrix} -P \begin{bmatrix} 1.25 & 1.25 \\ -1.25 & 2.75 \\ \end{bmatrix} -\small{ \begin{bmatrix} 1.25 & -1.25 \\ 1.25 & 2.75 \\ \end{bmatrix}}P & P & I \\ P & -\gamma^{2} I & 0_{2\times 2} \\ I & 0_{2\times 2} & -I \end{bmatrix} < 0 \end{align} $

    (43)

    采用LMI方法求解$ H_{\infty} $范数的步骤为:

    1) 选择足够大的$ \gamma $, 如$ \gamma = 10 $;

    2) 应用MATLAB中LMI工具求解式(43), 可得$ P $存在;

    3) 减小$ \gamma $取值, 如$ \gamma = 1 $, 应用LMI工具求解式(43), 可得$ P $存在;

    4) 当$ \gamma = 0.622 $时, 应用LMI工具求解式(43), 可得$ P $存在;

    5) 当$ \gamma = 0.621 $时, 应用LMI工具求解(43), 可得$ P $不存在.

    基于以上步骤, LMI方法可给出$ H_{\infty} = 0.622 $.这一结果与定理4得到的结果一致, 如表 1所示.

    事实上, LMI方法需要对$ \gamma $进行遍历寻找.当选$ \gamma $的间隔较大时, 保守的结果不可避免.与之相比, 本文的方法具有明显的优越性.

    本文针对$ H_{\infty} $控制理论研究中难以精确求解系统$ H_{\infty} $范数的问题, 提出了一种李雅普诺夫函数的直接优化方法.通过优化Riccati不等式中的李雅普诺夫函数, 给出了$ H_{\infty} $范数的通用解析表达式, 进而提供了一个有效的途径以直接和精确求解系统$ H_{\infty} $范数.研究结果具有以下特点:

    1) 与LMI方法相比, 本文所提方法避免了复杂的数值优化过程, 使求解系统$ H_{\infty} $范数简化.

    2) 与早期关于李雅普诺夫方程和Riccati不等式的研究相比, 本文所提方法避免了由于李雅普诺夫函数选择的随意性导致的保守结果.

    3) 本文所提方法能够展现系统矩阵特征值的实部和虚部对$ H_{\infty} $性能的影响, 为进一步精确(定量)控制系统$ H_{\infty} $性能提供借鉴.

    在进一步的工作中, 将研究含有时滞及非线性项的系统.


  • 本文责任编委 黄庆明
  • 图  1  被质疑造假的日本人质视频截图

    Fig.  1  The photo of Japanese hostages which is considered as a spliced image

    图  2  光照模型和光照估计原理图

    Fig.  2  The principle of Illumination model and lighting estimation

    图  3  平行投影和透视投影对光照估计的影响示意图

    Fig.  3  The influences of the projection methods on the lighting estimation

    图  4  人脸透视形变程度随人脸到相机距离变化的情况

    Fig.  4  The influences of the distance from the face to the camera on the facial perspective distortion

    图  5  算法流程图

    Fig.  5  The workflow of the proposed method

    图  6  固定人脸和相机光心, 人脸的照片姿态就保持不变, 不随相机焦距变化和姿态旋转而变化

    Fig.  6  The poses of the face in the photo remain the same once the face and the optical center are fixed

    图  7  Rodrigues旋转公式的示意图

    Fig.  7  The principle of Rodrigues$'$ rotation formula

    图  8  等效焦距示意图

    Fig.  8  The illustration of equivalent focal length

    图  9  晴天下拍摄的一个足球队的真实照片

    Fig.  9  A pristine photo of a football team taken on a sunny day to verify our proposed approach

    图  11  图 9中18名队员的三维人脸模型和投影光照渲染球, 以及三组通过不同人脸估计的透视参数对应的人脸空间姿态、空间光照渲染球及重新投影的人脸透视模型对比

    Fig.  11  The 3D face models and projected lighting of the 18 players in Fig. 9, and three groups of spatial pose, spatial lighting and re-projected face model under the estimated perspective parameters using three different pairs of faces

    图  10  图 9中任意两人优化的等效焦距及其和真实焦距的误差, 投影光照差别及空间光照差别

    Fig.  10  The maps of $\hat{F}_{eqij}$, $\hat{F}_{eqij}-F_{eq}$, $d(\boldsymbol{l}_{pij})$, $d(\boldsymbol{l}_{sij})$ between any two person in Fig. 9

    图  12  根据人脸(6, 11)、(3, 12)、(5, 10)优化得到的参数估计出在人脸空间分布(上方为正视图, 下方为俯视图)

    Fig.  12  The estimated spatial poses of 18 human faces according to the optimized parameters of human faces (6, 11), (3, 12) and (5, 10), respectively (The first row is the face view, and the second row is the top view of the faces)

    图  13  对DSO-1数据集中的四幅样本图像的检测结果. (a)$\sim$(d)分别是对拼接图像正确检测, 对原始图像错误报警, 对原始图像正确检测, 对拼接图像错误检测

    Fig.  13  The detection results of our method on four sample images in the DSO-1 dataset. (a) $\sim$ (d) are respectively a correct detection for splicing image, a false alarm for pristine image, a correct detection for pristine image and a miss detection for splicing image

    图  14  图 1中日本人质的分析示意图

    Fig.  14  The analysis of the Japanese captives$'$ photo in Fig. 1

    表  1  实验中各案例相关参数列表及判断意见

    Table  1  Comparisons of relevant parameters and corresponding judgment opinions of each case in the experiment

    人脸组合 $d(\boldsymbol{l}_{pij})$ 意见1 $d(\boldsymbol{l}_{sij})$ 意见2 $F_{eq}$ (mm)/理论焦距 $D_{HH}\, {\rm (m)}/D_{OH}$ (m) $I_{re}$ 意见3 实际
    图 10(6, 11) 0.0219 不一致 0.0001 一致 29.3/中 0.50合理/4.00合理 接近 合理 真实
    图 10(3, 12) 0.3508 不一致 0.3009 不一致 5/中 0.18过近/1.00过近 严重 不合理 篡改
    图 10(5, 10) 0.0063 一致 0.0098 一致 115/中 1.00过远/15.00过远 接近 不合理 真实
    图 14(a) 0.2463 不一致 0.2371 不一致 125/中 2.00过远/20.00过远 接近 不合理 篡改
    图 14(b) 0.0093 一致 0.0065 一致 94/短 0.60过远/18.00过远 接近 不合理 真实
    图 14(c) 0.0635 不一致 0.0167 一致 20.2/中 0.24合理/1.00合理 接近 合理 真实
    图 14(d) 0.1065 不一致 0.0361 不一致 34/中 0.69合理/1.70合理 接近 合理 篡改
    图 1 0.1327 不一致 0.0755 不一致 44/中 1.20过远/3.00合理 接近 合理 待检
    下载: 导出CSV
  • [1] Rossler A, Cozzolino D, Verdoliva L, Riess C, Thies J, Niessner M. FaceForensics++: learning to detect manipulated facial images. arXiv preprint, 2019. arXiv: 1901.08971
    [2] Farid H. Creating and Detecting Doctored and Virtual Images: Implications to the Child Pornography Prevention Act. Technical Report TR2004-518, Department of Computer Science, Dartmouth College, USA, 2004.
    [3] Farid H. A survey of image forgery detection. IEEE Signal Processing Magazine, 2009, 26(2): 16-25
    [4] Popescu A C, Farid H. Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on Signal Processing, 2005, 53(2): 758-767 doi: 10.1109/TSP.2004.839932
    [5] Luo W, Huang J, Qiu G. JPEG error analysis and its applications to digital image forensics. IEEE Transactions on Information Forensics and Security, 2010, 5(3): 480-491 doi: 10.1109/TIFS.2010.2051426
    [6] Gou H, Swaminathan A, Wu M. Noise features for image tampering detection and steganalysis. In: Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, TX, USA: IEEE, 2007. 97-100 https://ieeexplore.ieee.org/document/4379530
    [7] Zhou P, Han X, Morariu V I, Davis L S. Learning rich features for image manipulation detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. 1053-1061 https://www.researchgate.net/publication/325143175_Learning_Rich_Features_for_Image_Manipulation_Detection
    [8] Gloe T, Franz E, Winkler A. Forensics for flatbed scanners. In: Proceedings of SPIE 6505, Security, Steganography, and Watermarking of Multimedia Contents IX. California, USA: International Society for Optics and Photonics, 2007. 650511
    [9] Kakar P, Sudha N, Ser W. Exposing digital image forgeries by detecting discrepancies in motion blur. IEEE Transactions on Multimedia, 2011, 13(3): 443-452 doi: 10.1109/TMM.2011.2121056
    [10] Farid H, Bravo M J. Image forensic analyses that elude the human visual system. In: Proceedings of SPIE 7541, Media Forensics and Security Ⅱ. California, USA: International Society for Optics and Photonics, 2010. 754106 doi: 10.1117/12.837788
    [11] Peng B, Wang W, Dong J, Tan T. Image forensics based on planar contact constraints of 3D objects. IEEE Transactions on Information Forensics and Security, 2018, 13(2): 377-392 doi: 10.1109/TIFS.2017.2752728
    [12] Carvalho T J D, Riess C, Angelopoulou E, Pedrini H, Rocha A D R. Exposing digital image forgeries by illumination color classification. IEEE Transactions on Information Forensics and Security, 2014, 18(6): 1182-1194 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003806817
    [13] Johnson M K, Farid H. Exposing digital forgeries through specular highlights on the eye. In: Proceedings of International Workshop on Information Hiding. Berlin, Heidelberg, Germany: Springer, 2007. 311-325 doi: 10.1007/978-3-540-77370-2_21
    [14] Liu Q, Cao X, Chao D, Guo X. Identifying image composites through shadow matte consistency. IEEE Transactions on Information Forensics and Security, 2011, 6(3): 1111-1122 doi: 10.1109/TIFS.2011.2139209
    [15] Kee E, O0Brien J F, Farid H. Exposing photo manipulation with inconsistent shadows. ACM Transactions on Graphics, 2013, 32(3): 28 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=33fd7688600a6dd746ed39aa3727a855
    [16] Kee E, O0Brien J F, Farid H. Exposing photo manipulation from shading and shadows. ACM Transactions on Graphics, 2014, 33(5): 1-21 https://www.mendeley.com/catalogue/exposing-photo-manipulation-shading-shadows/
    [17] Johnson M K, Farid H. Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the 7th workshop on Multimedia and security. NewYork, NY, USA: ACM Press, 2005. 1-10 https://www.mendeley.com/catalogue/exposing-digital-forgeries-detecting-inconsistencies-lighting/
    [18] Carvalho T, Farid H, Kee E R. Exposing photo manipulation from user-guided 3d lighting analysis. In: Proceedings of SPIE Symposium on Electronic Imaging. California, USA: International Society for Optics and Photonics, 2015. 940902
    [19] Johnson M K, Farid H. Exposing digital forgeries in complex lighting environments. IEEE Transactions on Information Forensics and Security, 2007, 2(3): 450-461 doi: 10.1109/TIFS.2007.903848
    [20] Kee E, Farid H. Exposing digital forgeries from 3-D lighting environments. In: Proceedings of IEEE International Workshop on Information Forensics and Security. Seattle, USA: IEEE, 2010. 1-6
    [21] Peng B, Wang W, Dong J, Tan T. Optimized 3D lighting environment estimation for image forgery detection. IEEE Transactions on Information Forensics and Security, 2017, 12(2): 479-494 doi: 10.1109/TIFS.2016.2623589
    [22] 孙鹏, 郎宇博, 樊舒, 沈喆, 彭思龙, 刘磊.图像拼接篡改的自动色温距离分类检验方法.自动化学报, 2018, 44(7): 171-182 http://www.aas.net.cn/CN/abstract/abstract19318.shtml

    Sun Peng, Lang Yu-Bo, Fan Shu, Shen Zhe, Peng Si-Long, Liu Lei. Detection of image splicing manipulation by automated classification of color temperature distance. Acta Automatica Sinica, 2018, 44(7): 171-182 http://www.aas.net.cn/CN/abstract/abstract19318.shtml
    [23] 朱叶, 申铉京, 陈海鹏.基于彩色LBP的隐蔽性复制–粘贴篡改盲鉴别算法.自动化学报, 2017, 43(3): 390-397 http://www.aas.net.cn/CN/abstract/abstract19017.shtml

    Zhu Ye, Shen Xuan-Jing, Chen Hai-Peng. Covert copy-move forgery detection based on color LBP. Acta Automatica Sinica, 2017, 43(3): 390-397 http://www.aas.net.cn/CN/abstract/abstract19017.shtml
    [24] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques. NewYork, USA: ACM, 1999. 187-194
    [25] Zhu X, Lei Z, Yan J, Yi D, Li S Z. High-fidelity pose and expression normalization for face recognition in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 787-796
    [26] King D E. Dlib-ml: a machine learning toolkit. Journal of Machine Learning Research, 2009, 10(Jul): 1755-1758 https://core.ac.uk/display/21155954
    [27] Phong B T. Illumination for computer generated pictures. Communications of the Acm, 1975, 18(6): 311-317 doi: 10.1145/360825.360839
    [28] Ramamoorthi R, Hanrahan P. On the relationship between radiance and iIrradiance: determining the illumination from images of a convex lambertian object. Journal of the Optical Society of America A, 2001, 18(10): 2448-2459 doi: 10.1364/JOSAA.18.002448
    [29] Basri R, Jacobs D. Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 218-233 doi: 10.1109/TPAMI.2003.1177153
    [30] Zhang Z. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334 doi: 10.1109/34.888718
    [31] Zhou W, Kambhamettu C. Estimation of illuminant direction and intensity of multiple light sources. In: Proceedings of European conference on computer vision. Berlin, Heidelberg, Germany: Springer, 2002. 206-220
  • 期刊类型引用(3)

    1. 吕芳芳,楼旭阳,叶倩. 具有死区非线性输入的柔性臂自适应边界控制. 扬州大学学报(自然科学版). 2024(05): 16-24 . 百度学术
    2. 谢志勇,朱娟芬,胡小平. 考虑间隙特性的双机械臂模糊自适应鲁棒控制. 现代制造工程. 2022(02): 52-58 . 百度学术
    3. 马永浩,张爽,何修宇,刘志杰. 基于连续反演算法的时滞补偿控制综述. 工程科学学报. 2022(06): 1053-1061 . 百度学术

    其他类型引用(5)

  • 加载中
  • 图(14) / 表(1)
    计量
    • 文章访问数:  1552
    • HTML全文浏览量:  452
    • PDF下载量:  136
    • 被引次数: 8
    出版历程
    • 收稿日期:  2019-03-20
    • 录用日期:  2019-04-23
    • 刊出日期:  2019-10-20

    目录

    /

    返回文章
    返回