Hybrid Filter Based Expectation Maximization Algorithm for High-speed Train Modeling
-
摘要: 针对高速列车非线性单质点模型的特殊结构及含有隐含变量问题, 提出一种基于混合滤波的最大期望辨识方法. 借助递阶辨识理论, 将高铁列车状态空间模型分解为线性子系统模型和非线性子系统模型. 进而, 分别利用卡尔曼滤波和粒子滤波对速度和位移状态进行联合估计. 最后, 使用最大期望方法辨识高铁列车子系统模型参数, 解决了隐含变量辨识问题. 和传统方法相比, 本文所提出方法计算量小, 且具有较高的辨识精度. 仿真对比实验结果验证了该方法的有效性.Abstract: For the special high-speed train model structure with hidden variables in the form of the single mass-point, a hybrid filter based expectation maximization (EM) algorithm is proposed. By employing the hierarchical identification theory, the high-speed train state-space model is decomposed into a linear subsystem and a nonlinear subsystem. Furthermore, the Kalman filter and the particle filter are provided to estimate the velocity and displacement, respectively. Finally, the parameters of subsystems are identified by using the EM algorithm. Compared to the classical methods, the proposed algorithm can produce high accuracy estimation with less computational effort. The simulation results verify the effectiveness of the algorithm.
-
表 1 模型参数的估计(混合滤波方法)
Table 1 Parameters and their estimates (Hybrid filter)
$k$ $\bar{d}$ $\bar{d}a$ $\bar{d}b$ $\bar{d}c$ $\delta\ ({\text{%}})$ 5 0.00920012 0.00491263 0.00003991 0.00000098 0.33063 8 0.00920015 0.00492316 0.00003992 0.00000098 0.37553 10 0.00920314 0.00494321 0.00003991 0.00000097 0.59953 20 0.00920287 0.00494295 0.00003987 0.00000097 0.58897 30 0.00919972 0.00483822 0.00003846 0.00000099 0.74688 真值 0.00920000 0.00490000 0.00004000 0.00000100 表 2 模型参数的估计(拓展的卡尔曼滤波方法)
Table 2 Parameters and their estimates (Extended Kalman filter)
$k$ $\bar{d}$ $\bar{d}a$ $\bar{d}b$ $\bar{d}c$ $\delta ({\text{%}})$ 5 0.00921632 0.00548236 0.00003124 0.00000086 5.52150 8 0.00921594 0.00544469 0.00003262 0.00000089 5.19838 10 0.00921621 0.00545321 0.00003173 0.00000091 5.22873 20 0.00921845 0.00546151 0.00003292 0.00000091 5.39818 30 0.00921706 0.00545076 0.00003189 0.00000091 5.31865 真值 0.00920000 0.00490000 0.00004000 0.00000100 表 3 模型参数的估计(粒子滤波方法)
Table 3 Parameters and their estimates (Particle filter)
$k$ $\bar{d}$ $\bar{d}a$ $\bar{d}b$ $\bar{d}c$ $\delta\ ({\text{%}})$ 5 0.00917652 0.00502136 0.00003865 0.00000096 1.14182 8 0.00919138 0.00498754 0.00003973 0.00000098 0.82781 10 0.00919141 0.00498763 0.00004016 0.00000098 0.85850 20 0.00919136 0.00501627 0.00004098 0.00000096 1.02914 30 0.00919139 0.00490032 0.00004074 0.00000097 0.94999 真值 0.00920000 0.00490000 0.00004000 0.00000100 -
[1] 衷路生, 颜真, 杨辉, 齐叶鹏, 张坤鹏, 樊晓平. 数据驱动的高速列车子空间预测控制方法. 铁道学报, 2013, 35(4): 77−83 doi: 10.3969/j.issn.1001-8360.2013.04.0121 Zhong Lu-Sheng, Yan Zhen, Yang Hui, Zhang Kun-Peng, Fan Xiao-Ping. Predictive control of high-speed train based on data driven subspace approach. Journal of the China Railway Society, 2013, 35(4): 77−83 doi: 10.3969/j.issn.1001-8360.2013.04.012 [2] 2 Dong H R, lin X, Yao X M, Bai W Q, Ning B. Composite disturbance-observer-based control and H∞ control for high speed trains with actuator faults. Asian Journal of Control, 2018, 20(2): 735−745 doi: 10.1002/asjc.1590 [3] 王呈, 唐涛, 罗仁士. 基于UIO方法的列车自动驾驶信号故障检测研究. 铁道学报, 2013, 35(6): 48−52 doi: 10.3969/j.issn.1001-8360.2013.06.0083 Wang Cheng, Tang Tao, Luo Ren-Shi. ATO fault detection based on UIO method. Journal of the China Railway Society, 2013, 35(6): 48−52 doi: 10.3969/j.issn.1001-8360.2013.06.008 [4] 4 Zhuan X, Xia X. Cruise control scheduling of heavy haul trains. IEEE Transactions on Control Systems Technology, 2006, 33(1): 757−766 [5] 5 Xia X, Zhang J. Modeling and control of heavy haul trains. Control Systems IEEE, 2011, 31(4): 18−31 doi: 10.1109/MCS.2011.941403 [6] 6 Chou M, Xia X, Kayser C. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems. Control Engineering Practice, 2007, 15(4): 501−509 doi: 10.1016/j.conengprac.2006.09.006 [7] 7 Chen D W, Gao C H. Soft computing methods applied to train station parking in urban rail transit. Applied Soft Computing, 2012, 12(2): 759−767 doi: 10.1016/j.asoc.2011.10.016 [8] 辛斌, 白永强, 陈杰. 基于偏差消除最小二乘估计和Durbin方法的两阶段ARMAX参数辨识. 自动化学报, 2012, 38(3): 491−4968 Xin Bin, Bai Yong-Qiang, Chen Jie. Two-stage ARMAX parameter identification based on bias-eliminated least squares estimation and Durbin′s method. Acta Automatica Sinica, 2012, 38(3): 491−496 [9] 9 Chen J, Jiang B. Modified stochastic gradient parameter estimation algorithms for a nonlinear two-variable difference system. International Journal of Control, Automation, and Systems, 2016, 14(6): 1493−1500 doi: 10.1007/s12555-015-0185-x [10] 10 Wang C, Li K C. Aitken-based stochastic gradient algorithm for ARX models with time delay. Circuits Systems and Signal Processing, 2019, 38(6): 2863−2876 doi: 10.1007/s00034-018-0998-y [11] 11 Li J H, Zheng W X, Gu J P, Hua L. Parameter estimation algorithms for Hammerstein output error systems using Levenberg-Marquardt optimization method with varying interval measurements. Journal of the Franklin Institute, 2017, 354(1): 316−331 doi: 10.1016/j.jfranklin.2016.10.002 [12] 12 Xia H F, Yang Y Q, Ding F, Alsaedi A, Hayat T. Maximum likelihood-based recursive least-squares estimation for multivariable systems using the data filtering technique. International Journal of Systems Science, 2019, 50(6): 1121−1135 doi: 10.1080/00207721.2019.1590664 [13] 13 Yang X Q, Yin S. Robust global identification and output estimation for LPV dual-rate systems subjected to random output time-delays. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2876−2885 doi: 10.1109/TII.2017.2702754 [14] 14 Chen J, Huang B, Ding F, Gu Y. Variational Bayesian approach for ARX systems with missing observations and varying time-delays. Automatica, 2018, 94: 194−204 doi: 10.1016/j.automatica.2018.04.003 [15] 15 Xiong W L, Yang X Q, Ke L, Xu B G. EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data. Nonlinear Dynamics, 2015, 80(1): 329−339 [16] 16 Zhao Y J, Fatehi A, Huang B. Robust estimation of ARX models with time-varying time delays using variational Bayesian approach. IEEE Transactions on Cybernetics, 2018, 48(2): 532−542 doi: 10.1109/TCYB.2016.2646059 [17] 衷路生, 李兵, 龚锦红, 张永贤, 祝振敏. 高速列车非线性模型的极大似然辨识. 自动化学报, 2014, 40(12): 2950−295817 Zhong Lu-Sheng, Li Bing, Gong Jin-Hong, Zhang Yong-Xian, Zhu Zhen-Min. Maximum likelihood identification of nonlinear models for high-speed train. Acta Automatica Sinica, 2014, 40(12): 2950−2958 [18] Simon D. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. John Wiley & Sons, Inc., New Jersey, 2006. [19] 19 Simon D, Shmaliy Y S. Unified forms for Kalman and finite impulse response filtering and smoothing. Automatica, 2013, 49(6): 1892−1899 doi: 10.1016/j.automatica.2013.02.026 [20] 20 Chen J, Li J, Liu Y J. Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter. Journal of the Franklin Institute, 2017, 354(11): 4425−4437 doi: 10.1016/j.jfranklin.2017.04.003 [21] 顾晓清, 倪彤光, 张聪, 戴臣超, 王洪元. 结构辨识和参数优化协同学习的概率TSK模糊系统. 自动化学报, 2019. DOI 10.16383/j.aas.c180298Gu Xiao-Qing, Ni Tong-Guang, Zhang Cong, Dai Chen-Chao, Wang Hong-Yuan. Probabilistic TSK fuzzy system in the simulataneous learning of structure identification and parameter optimization. Acta Automatica Sinica, 2019. DOI 10.16383/j.aas.c180298