2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合滤波最大期望算法的高速列车建模

王呈 陈晶 荀径 李开成

王呈, 陈晶, 荀径, 李开成. 基于混合滤波最大期望算法的高速列车建模. 自动化学报, 2019, 45(12): 2260−2267 doi: 10.16383/j.aas.c190193
引用本文: 王呈, 陈晶, 荀径, 李开成. 基于混合滤波最大期望算法的高速列车建模. 自动化学报, 2019, 45(12): 2260−2267 doi: 10.16383/j.aas.c190193
Wang Cheng, Chen Jing, Xun Jing, Li Kai-Cheng. Hybrid filter based expectation maximization algorithm for high-speed train modeling. Acta Automatica Sinica, 2019, 45(12): 2260−2267 doi: 10.16383/j.aas.c190193
Citation: Wang Cheng, Chen Jing, Xun Jing, Li Kai-Cheng. Hybrid filter based expectation maximization algorithm for high-speed train modeling. Acta Automatica Sinica, 2019, 45(12): 2260−2267 doi: 10.16383/j.aas.c190193

基于混合滤波最大期望算法的高速列车建模

doi: 10.16383/j.aas.c190193
基金项目: 国家自然科学基金(61603156, 61973137), 高速铁路基础研究联合基金(U1734210), 北京交通大学教育基金会基金(9907006519)资助
详细信息
    作者简介:

    王呈:江南大学物联网工程学院副教授. 2014年获得北京交通大学交通信息工程及控制专业博士学位. 主要研究方向为先进列车控制技术, 非线性系统建模与控制, 机器学习与数据挖掘. 本文通信作者. E-mail: wangc@jiangnan.edu.cn

    陈晶:江南大学理学院副教授. 2013年获得江南大学控制理论与控制工程博士学位. 主要研究方向为系统辨识和过程控制. E-mail: chenjing1981929@126.com

    荀径:北京交通大学轨道交通控制与安全国家重点实验室副教授. 2012年获北京交通大学交通信息工程与控制博士学位. 主要研究方向为先进列车控制方法, 轨道交通优化问题, 交通流理论, 元胞自动机和加强学习. E-mail: jxun@bjtu.edu.cn

    李开成:北京交通大学轨道交通运行控制系统国家工程研究中心研究员. 主要研究方向为轨道交通列车运行控制, 智能控制技术及应用. E-mail: kchli@bjtu.edu.cn

Hybrid Filter Based Expectation Maximization Algorithm for High-speed Train Modeling

Funds: Supported by National Natural Science Foundation of China (61603156, 61973137), the Joint Fund for Basic Research of High Speed Railway (U1734210), and Beijing Jiaotong University Education Foundation (9907006519)
  • 摘要: 针对高速列车非线性单质点模型的特殊结构及含有隐含变量问题, 提出一种基于混合滤波的最大期望辨识方法. 借助递阶辨识理论, 将高铁列车状态空间模型分解为线性子系统模型和非线性子系统模型. 进而, 分别利用卡尔曼滤波和粒子滤波对速度和位移状态进行联合估计. 最后, 使用最大期望方法辨识高铁列车子系统模型参数, 解决了隐含变量辨识问题. 和传统方法相比, 本文所提出方法计算量小, 且具有较高的辨识精度. 仿真对比实验结果验证了该方法的有效性.
  • 图  1  参数误差$\tau$$k$变化曲线

    Fig.  1  Parameter estimation error $\tau$ versus $k$

    图  2  位移估计变化曲线($+$: 估计位移; $-$: 真实位移)

    Fig.  2  Displacement estimation curve

    图  3  速度估计变化曲线($+$: 估计速度; $-$: 真实速度)

    Fig.  3  Velocity estimation curve

    表  1  模型参数的估计(混合滤波方法)

    Table  1  Parameters and their estimates (Hybrid filter)

    $k$$\bar{d}$$\bar{d}a$$\bar{d}b$$\bar{d}c$$\delta\ ({\text{%}})$
    50.009200120.004912630.000039910.000000980.33063
    80.009200150.004923160.000039920.000000980.37553
    100.009203140.004943210.000039910.000000970.59953
    200.009202870.004942950.000039870.000000970.58897
    300.009199720.004838220.000038460.000000990.74688
    真值0.009200000.004900000.000040000.00000100
    下载: 导出CSV

    表  2  模型参数的估计(拓展的卡尔曼滤波方法)

    Table  2  Parameters and their estimates (Extended Kalman filter)

    $k$$\bar{d}$$\bar{d}a$$\bar{d}b$$\bar{d}c$$\delta ({\text{%}})$
    50.009216320.005482360.000031240.000000865.52150
    80.009215940.005444690.000032620.000000895.19838
    100.009216210.005453210.000031730.000000915.22873
    200.009218450.005461510.000032920.000000915.39818
    300.009217060.005450760.000031890.000000915.31865
    真值0.009200000.004900000.000040000.00000100
    下载: 导出CSV

    表  3  模型参数的估计(粒子滤波方法)

    Table  3  Parameters and their estimates (Particle filter)

    $k$$\bar{d}$$\bar{d}a$$\bar{d}b$$\bar{d}c$$\delta\ ({\text{%}})$
    50.009176520.005021360.000038650.000000961.14182
    80.009191380.004987540.000039730.000000980.82781
    100.009191410.004987630.000040160.000000980.85850
    200.009191360.005016270.000040980.000000961.02914
    300.009191390.004900320.000040740.000000970.94999
    真值0.009200000.004900000.000040000.00000100
    下载: 导出CSV
  • [1] 衷路生, 颜真, 杨辉, 齐叶鹏, 张坤鹏, 樊晓平. 数据驱动的高速列车子空间预测控制方法. 铁道学报, 2013, 35(4): 77−83 doi: 10.3969/j.issn.1001-8360.2013.04.012

    1 Zhong Lu-Sheng, Yan Zhen, Yang Hui, Zhang Kun-Peng, Fan Xiao-Ping. Predictive control of high-speed train based on data driven subspace approach. Journal of the China Railway Society, 2013, 35(4): 77−83 doi: 10.3969/j.issn.1001-8360.2013.04.012
    [2] 2 Dong H R, lin X, Yao X M, Bai W Q, Ning B. Composite disturbance-observer-based control and H control for high speed trains with actuator faults. Asian Journal of Control, 2018, 20(2): 735−745 doi: 10.1002/asjc.1590
    [3] 王呈, 唐涛, 罗仁士. 基于UIO方法的列车自动驾驶信号故障检测研究. 铁道学报, 2013, 35(6): 48−52 doi: 10.3969/j.issn.1001-8360.2013.06.008

    3 Wang Cheng, Tang Tao, Luo Ren-Shi. ATO fault detection based on UIO method. Journal of the China Railway Society, 2013, 35(6): 48−52 doi: 10.3969/j.issn.1001-8360.2013.06.008
    [4] 4 Zhuan X, Xia X. Cruise control scheduling of heavy haul trains. IEEE Transactions on Control Systems Technology, 2006, 33(1): 757−766
    [5] 5 Xia X, Zhang J. Modeling and control of heavy haul trains. Control Systems IEEE, 2011, 31(4): 18−31 doi: 10.1109/MCS.2011.941403
    [6] 6 Chou M, Xia X, Kayser C. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems. Control Engineering Practice, 2007, 15(4): 501−509 doi: 10.1016/j.conengprac.2006.09.006
    [7] 7 Chen D W, Gao C H. Soft computing methods applied to train station parking in urban rail transit. Applied Soft Computing, 2012, 12(2): 759−767 doi: 10.1016/j.asoc.2011.10.016
    [8] 辛斌, 白永强, 陈杰. 基于偏差消除最小二乘估计和Durbin方法的两阶段ARMAX参数辨识. 自动化学报, 2012, 38(3): 491−496

    8 Xin Bin, Bai Yong-Qiang, Chen Jie. Two-stage ARMAX parameter identification based on bias-eliminated least squares estimation and Durbin′s method. Acta Automatica Sinica, 2012, 38(3): 491−496
    [9] 9 Chen J, Jiang B. Modified stochastic gradient parameter estimation algorithms for a nonlinear two-variable difference system. International Journal of Control, Automation, and Systems, 2016, 14(6): 1493−1500 doi: 10.1007/s12555-015-0185-x
    [10] 10 Wang C, Li K C. Aitken-based stochastic gradient algorithm for ARX models with time delay. Circuits Systems and Signal Processing, 2019, 38(6): 2863−2876 doi: 10.1007/s00034-018-0998-y
    [11] 11 Li J H, Zheng W X, Gu J P, Hua L. Parameter estimation algorithms for Hammerstein output error systems using Levenberg-Marquardt optimization method with varying interval measurements. Journal of the Franklin Institute, 2017, 354(1): 316−331 doi: 10.1016/j.jfranklin.2016.10.002
    [12] 12 Xia H F, Yang Y Q, Ding F, Alsaedi A, Hayat T. Maximum likelihood-based recursive least-squares estimation for multivariable systems using the data filtering technique. International Journal of Systems Science, 2019, 50(6): 1121−1135 doi: 10.1080/00207721.2019.1590664
    [13] 13 Yang X Q, Yin S. Robust global identification and output estimation for LPV dual-rate systems subjected to random output time-delays. IEEE Transactions on Industrial Informatics, 2017, 13(6): 2876−2885 doi: 10.1109/TII.2017.2702754
    [14] 14 Chen J, Huang B, Ding F, Gu Y. Variational Bayesian approach for ARX systems with missing observations and varying time-delays. Automatica, 2018, 94: 194−204 doi: 10.1016/j.automatica.2018.04.003
    [15] 15 Xiong W L, Yang X Q, Ke L, Xu B G. EM algorithm-based identification of a class of nonlinear Wiener systems with missing output data. Nonlinear Dynamics, 2015, 80(1): 329−339
    [16] 16 Zhao Y J, Fatehi A, Huang B. Robust estimation of ARX models with time-varying time delays using variational Bayesian approach. IEEE Transactions on Cybernetics, 2018, 48(2): 532−542 doi: 10.1109/TCYB.2016.2646059
    [17] 衷路生, 李兵, 龚锦红, 张永贤, 祝振敏. 高速列车非线性模型的极大似然辨识. 自动化学报, 2014, 40(12): 2950−2958

    17 Zhong Lu-Sheng, Li Bing, Gong Jin-Hong, Zhang Yong-Xian, Zhu Zhen-Min. Maximum likelihood identification of nonlinear models for high-speed train. Acta Automatica Sinica, 2014, 40(12): 2950−2958
    [18] Simon D. Optimal State Estimation: Kalman, H, and Nonlinear Approaches. John Wiley & Sons, Inc., New Jersey, 2006.
    [19] 19 Simon D, Shmaliy Y S. Unified forms for Kalman and finite impulse response filtering and smoothing. Automatica, 2013, 49(6): 1892−1899 doi: 10.1016/j.automatica.2013.02.026
    [20] 20 Chen J, Li J, Liu Y J. Gradient iterative algorithm for dual-rate nonlinear systems based on a novel particle filter. Journal of the Franklin Institute, 2017, 354(11): 4425−4437 doi: 10.1016/j.jfranklin.2017.04.003
    [21] 顾晓清, 倪彤光, 张聪, 戴臣超, 王洪元. 结构辨识和参数优化协同学习的概率TSK模糊系统. 自动化学报, 2019. DOI 10.16383/j.aas.c180298

    Gu Xiao-Qing, Ni Tong-Guang, Zhang Cong, Dai Chen-Chao, Wang Hong-Yuan. Probabilistic TSK fuzzy system in the simulataneous learning of structure identification and parameter optimization. Acta Automatica Sinica, 2019. DOI 10.16383/j.aas.c180298
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  2559
  • HTML全文浏览量:  437
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 录用日期:  2019-08-15
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回