2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于边指针搜索及区域划分的三角剖分算法

张俊 田慧敏

张俊, 田慧敏.一种基于边指针搜索及区域划分的三角剖分算法.自动化学报, 2021, 47(1): 100-107 doi: 10.16383/j.aas.c190155
引用本文: 张俊, 田慧敏.一种基于边指针搜索及区域划分的三角剖分算法.自动化学报, 2021, 47(1): 100-107 doi: 10.16383/j.aas.c190155
Zhang Jun, Tian Hui-Min. A triangulation algorithm based on edge-pointer search and region-division. Acta Automatica Sinica, 2021, 47(1): 100-107 doi: 10.16383/j.aas.c190155
Citation: Zhang Jun, Tian Hui-Min. A triangulation algorithm based on edge-pointer search and region-division. Acta Automatica Sinica, 2021, 47(1): 100-107 doi: 10.16383/j.aas.c190155

一种基于边指针搜索及区域划分的三角剖分算法

doi: 10.16383/j.aas.c190155
基金项目: 

国家自然科学基金 61571466

详细信息
    作者简介:

    张俊  中南大学自动化学院教授. 2004年获得日本东北大学机械智能工学博士学位.主要研究方向为三维图形芯片即处理器软件, 图形图像处理加速FPGA设计, 电机驱动控制器FPGA设计, SOC系统集成芯片.E-mail: zhangjun1000@hotmail.com

    通讯作者:

    田慧敏  中南大学计算机学院硕士研究生.主要研究方向为三维点云数据处理, 计算机视觉.本文通信作者.E-mail: thuimin2018@126.com

A Triangulation Algorithm Based on Edge-pointer Search and Region-division

Funds: 

National Natural Science Foundation of China 61571466

More Information
    Author Bio:

    ZHANG Jun   Professor at the School of Automation, Central South University. He received his Ph. D. degree in Mechanical Intelligence Engineering from Tohoku University, Japan in 2004. His research interest covers 3D graphics chip and processor software, graphics image processing accelerated FPGA design, motor drive controller FPGA design, and SOC system integrated chip

    Corresponding author: TIAN Hui-Min  Master student at the School of Computer Science and Engineering, Central South University. Her research interest covers 3D point cloud data processing, and computer vision. Corresponding author of this paper
  • 摘要: 针对大规模数据处理时Delaunay三角剖分过于耗时的问题, 本文提出了一种基于边指针搜索及区域划分的三角剖分算法.基于边指针设计了一种能够反映三角形之间位置关系的数据结构, 并优化了目标三角形的搜索路径.基于该数据结构, 利用区域划分进一步降低目标三角形的搜索深度.超级三角形所在的正方形被划分成具有相同尺寸的区域, 目标三角形的搜索从插入点所在的区域的入口三角形开始, 这大大缩小了目标三角形的搜索范围.实验证明, 与传统的Delaunay三角剖分算法相比, 该算法的效率显著提升.
    Recommended by Associate Editor LIU Yan-Jun
    1)  本文责任编委 刘艳军
  • 图  1  三角形数据结构

    Fig.  1  Data structure of triangle

    图  2  点与三角形位置关系判断

    Fig.  2  Judgment of positional relationship between point and triangle

    图  3  点$V$的目标三角形的搜索路径

    Fig.  3  Search path for target triangle of point $V$

    图  4  结构体关系图

    Fig.  4  Structure diagram

    图  5  搜索点$V$的目标三角形

    Fig.  5  Searching for target triangle of point $V$

    图  6  入口三角形及边指针的更新

    Fig.  6  Update of entry triangle and edge-pointer

    图  7  执行时间比较

    Fig.  7  Comparison of run time

    表  1  基于边指针及区域划分的算法数据结构

    Table  1  Data structure of algorithm based on edge-pointer and region-division

    Structure
    POINT $ x $ $ y $ entry_flag
    EDGE $ V_1 $ $ V_2 $
    TRIANGLE $ V_1 $, $ V_2 $, $ V_3 $ *$ p_1 $, *$ p_2 $, *$ p_3 $ entry $ X, Y $
    REGION valid *entrytri
    下载: 导出CSV

    表  2  算法的执行时间(s)

    Table  2  Running time of algorithms (s)

    散点数量 2万 3.5万 5万 7万 10万
    TD 113.515 298.687 756.656 1 943.39 3 972.81
    CGAL 1.719 3.074 4.281 6.265 8.594
    EPD 0.563 1.547 2.562 3.218 6.172
    EPRDD 0.117 0.234 0.325 0.531 0.813
    下载: 导出CSV

    表  3  算法的平均搜索深度

    Table  3  Average search depth of algorithms

    散点数量 2万 3.5万 5万 7万 10万
    TD 10 003 17 543 24 989 34 893 49 854
    EPD 108 229 233 247 278
    EPRDD 8 11 13 15 18
    下载: 导出CSV
  • [1] 陈加, 张玉麒, 宋鹏, 魏艳涛, 王煜.深度学习在基于单幅图像的物体三维重建中的应用.自动化学报, 2019, 45(4): 657-668 doi: 10.16383/j.aas.2018.c180236

    Chen Jia, Zhang Yu-Qi, Song Peng, Wei Yan-Tao, Wang Yu. Application of deep learning to 3D object reconstruction from a single image. Acta Automatica Sinica, 2019, 45(4): 657-668 doi: 10.16383/j.aas.2018.c180236
    [2] 薛俊诗, 易辉, 吴止锾, 陈向宁.一种基于场景图分割的混合式多视图三维重建方法.自动化学报, 2020, 46(4): 782-795 doi: 10.16383/j.aas.c180155

    Xue Jun-Shi, Yi Hui, Wu Zhi-Huan, Chen Xiang-Ning. A hybrid multi-View 3D reconstruction method based on scene graph partition. Acta Automatica Sinica, 2020, 46(4): 782-795 doi: 10.16383/j.aas.c180155
    [3] 刘剑, 白迪.基于特征匹配的三维点云配准算法.光学学报, 2018, 38(12): 240-247 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201812029.htm

    Liu Jian, Bai Di. 3D point cloud registration algorithm based on feature matching. Acta Optica Sinica, 2018, 38(12): 240-247 https://www.cnki.com.cn/Article/CJFDTOTAL-GXXB201812029.htm
    [4] 刘海强, 余建波.二维局部均值分解算法.计算机辅助设计与图形学学报, 2018, 30(10): 1859-1869 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201810010.htm

    Liu Hai-Qiang, Yu Jian-Bo. A bidimensional local mean decomposition algorithm. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(10): 1859-1869 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201810010.htm
    [5] 闫自庚, 蒋建国, 郭丹.基于SURF特征和Delaunay三角网格的图像匹配.自动化学报, 2014, 40(6): 1216-1222 doi: 10.3724/SP.J.1004.2014.01216

    Yan Zi-Geng, Jiang Jian-Guo, Guo Dan. Image matching based on SURF feature and Delaunay triangular meshes. Acta Automatica Sinica, 2014, 40(6): 1216-1222 doi: 10.3724/SP.J.1004.2014.01216
    [6] 刘琴琴.平面域Delaunay三角网点定位算法研究综述.电子设计工程, 2017, 25(1): 47-51 https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201701012.htm

    Liu Qin-Qin. Overview of point location algorithm of Delaunay triangulation on plane domain. Electronic Design Engineering, 2017, 25(1): 47-51 https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201701012.htm
    [7] Lin J, Chen R, Yang C, Shu Z, Wang C, Lin Y, et al. Distributed and parallel Delaunay triangulation construction with balanced binary-tree model in cloud. In: Proceedings of 15th International Symposium on Parallel and Distributed Computing. Fuzhou, China: IEEE, 2017. 107-113
    [8] Lin J, Chen R, Wu L, Shu Z, Yang C. Adaptive parallel Delaunay triangulation construction with dynamic pruned binary tree model in Cloud. Concurrency & Computation Practice & Experience, 2017, 29(8): e4175
    [9] Bowyer A. Computing Dirichlet tessellations. The Computer Journal, 1981, 24(2): 162-166 doi: 10.1093/comjnl/24.2.162
    [10] Watson D F. Computing the N-Dimensional Delaunay tessellation with application to Voronoi polytopes. The Computer Journal, 1981, 24(2): 167-172 doi: 10.1093/comjnl/24.2.167
    [11] Lawson C L. Software for $C^1$ surface interpolation. Mathematical Software, 1977: 161-194
    [12] Liu J F, Yan J H, Lo S H. A new insertion sequence for incremental Delaunay triangulation. Acta Mechanica Sinica, 2013, 29(1): 99-109 doi: 10.1007/s10409-013-0001-x
    [13] Lo S H. Delaunay triangulation of non-uniform point distributions by means of multi-grid insertion. Finite Elements in Analysis & Design, 2013, 63(4): 8-22
    [14] Su T, Wang W, Lv Z, Wu W, Li X. Rapid Delaunay triangulation for randomly distributed point cloud data using adaptive Hilbert curve. Computers & Graphics, 2016, 54: 65-74
    [15] Zalik B, Kolingerova I. An incremental construction algorithm for Delaunay triangulation using the nearest-point paradigm. International Journal of Geographical Information Science, 2003, 17(2): 119-138 doi: 10.1080/713811749
    [16] Zadravec M, Zalik B. An almost distribution-independent incremental Delaunay triangulation algorithm. Visual Computer, 2005, 21(6): 384-396 doi: 10.1007/s00371-005-0293-3
    [17] Xi J H, Zuo S C. An improved algorithm based on incremental insertion in delaunay triangulation. Applied Mechanics and Materials, 2013, 397-400: 1691-1694 doi: 10.4028/www.scientific.net/AMM.397-400.1691
    [18] Kohout J, Kolingerova I. Parallel Delaunay triangulation based on circum-circle criterion. In: Proceedings of the 19th Spring Conference on Computer Graphics. Slovakia: ACM, 2003. 73-81
    [19] Rong G, Tan T S, Cao T T, Stephanus. Computing two-dimensional Delaunay triangulation using graphics hardware. In: Proceedings of the 2008 Symposium on Interactive 3D Graphics and Games. California, USA: ACM, 2008. 89-97
    [20] Cuong N, Philip J R. TIPP: Parallel delaunay triangulation for large-scale datasets. In: Proceedings of the 30th International Conference on Scientific and Statistical Database Management. Bolzano, Italy: ACM, 2018. 1-12
    [21] Lo S H. Parallel Delaunay triangulation——application to two dimensions. Finite Elements in Analysis & Design, 2012, 62: 37-48
    [22] 杨昊禹, 刘利, 张诚, 于灏.面向并行的动态增量式Delaunay三角剖分算法.计算机科学与探索, 即将出版

    Yang Haoyu, Liu Li, Zhang Cheng, Yu Hao. Parallelism-oriented dynamic incremental Delaunay triangulation algorithm. Journal of Frontiers of Computer Science and Technology, to be published
    [23] 李国庆, 马凤山, 邓清海.基于凸多边形的Delaunay三角剖分.工程地质计算机应用, 2007(2): 8-10 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDJ200702002.htm

    Li Guo-Qing, Ma Feng-Shan, Deng Qing-Hai. Delaunay triangulation based on convex polygons. Engineering Geology Computer Application, 2007(2): 8-10 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDJ200702002.htm
    [24] Graham R L. An efficient algorithm for determining the convex hull of a finite planar set. Information Processing Letters, 1972, 1(4): 132-133 doi: 10.1016/0020-0190(72)90045-2
    [25] 崔国华, 洪帆, 余祥宣.确定平面点集凸包的一类最优算法.计算机学报, 1997, 20(4): 330-334 doi: 10.3321/j.issn:0254-4164.1997.04.006

    Cui Guo-Hua, Hong Fan, Yu Xiang-Xuan. A class of optimal algorithms for determining the convex hull of a set of nodes in a plane. Chinese Journal of Computers, 1997, 20(4): 330-334 doi: 10.3321/j.issn:0254-4164.1997.04.006
    [26] 刘斌, 王涛.一种高效的平面点集凸包递归算法.自动化学报, 2012, 38(8): 1375-1379 doi: 10.3724/SP.J.1004.2012.01375

    Liu Bin, Wang Tao. An efficient convex hull algorithm for pPlanar point set based on recursive method. Acta Automatica Sinica, 2012, 38(8): 1375-1379 doi: 10.3724/SP.J.1004.2012.01375
    [27] 贾晓林, 吴立新, 王彦兵.二维Delaunay三角网局部更新:点插入与点删除.地理与地理信息科学, 2004, 20(5): 28-31 doi: 10.3969/j.issn.1672-0504.2004.05.007

    Jia Xiao-Lin, Wu Li-Xin, Wang Yan-Bing. Two dimensional local updating for Delaunay TIN: point insertion and point deletion. Geography and Geo-Information Science, 2004, 20(5): 28-31 doi: 10.3969/j.issn.1672-0504.2004.05.007
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  921
  • HTML全文浏览量:  168
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-13
  • 录用日期:  2019-05-23
  • 刊出日期:  2021-01-29

目录

    /

    返回文章
    返回