2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

未建模动态增量补偿驱动的非线性PID控制及应用

张亚军 魏萃 柴天佑 卢绍文 崔东亮

刘玉发, 刘勇华, 苏春翌, 鲁仁全. 一类具有未知幂次的高阶不确定非线性系统的自适应控制. 自动化学报, 2022, 48(8): 2018−2027 doi: 10.16383/j.aas.c200893
引用本文: 张亚军, 魏萃, 柴天佑, 卢绍文, 崔东亮. 未建模动态增量补偿驱动的非线性PID控制及应用. 自动化学报, 2020, 46(6): 1145−1153 doi: 10.16383/j.aas.c190146
Liu Yu-Fa, Liu Yong-Hua, Su Chun-Yi, Lu Ren-Quan. Adaptive control for a class of high-order uncertain nonlinear systems with unknown powers. Acta Automatica Sinica, 2022, 48(8): 2018−2027 doi: 10.16383/j.aas.c200893
Citation: Zhang Ya-Jun, Wei Cui, Chai Tian-You, Lu Shao-Wen, Cui Dong-Liang. Un-modeled dynamics increment compensation driven nonlinear PID control and its application. Acta Automatica Sinica, 2020, 46(6): 1145−1153 doi: 10.16383/j.aas.c190146

未建模动态增量补偿驱动的非线性PID控制及应用

doi: 10.16383/j.aas.c190146
基金项目: 国家自然科学基金(61773107, 61603168, 61866021, 61890924, 61833004, 61991402, 61473107), 流程工业综合自动化国家重点实验室开放基金(PAL-N201808)资助
详细信息
    作者简介:

    张亚军:东北大学讲师. 主要研究方向为非线性模糊自适应控制理论, 广义预测控制, 多模型切换控制, 智能解耦控制, 数据驱动控制, 智能控制系统的大数据建模, 工业过程大数据建模及其应用.E-mail: yajunzhang@mail.neu.edu.cn

    魏萃:东北大学流程工业综合自动化国家重点实验室博士研究生. 主要研究方向为非线性控制, 机器人. 本文通信作者.E-mail: weicui@stumail.neu.edu.cn

    柴天佑:中国工程院院士, 东北大学教授. IEEE Fellow, IFAC Fellow, 欧亚科学院院士. 主要研究方向为自适应控制, 智能解耦控制, 流程工业综合自动化理论、方法与技术.E-mail: tychai@mail.neu.edu.cn

    卢绍文:东北大学流程工业综合自动化国家重点实验室教授. 主要研究方向为工业过程建模与仿真. 目前主要研究多尺度随机建模方法和可视化方法.E-mail: lusw@mail.neu.edu.cn

    崔东亮:东北大学讲师. 主要研究方向为多目标优化, 列车调度优化, 数据分析.E-mail: cuidongliang@mail.neu.edu.cn

Un-modeled Dynamics Increment Compensation Driven Nonlinear PID Control and Its Application

Funds: Supported by National Natural Science Foundation of China (61773107, 61603168, 61866021, 61890924, 61833004, 61991402, 61473107), and State Key Laboratory of Synthetical Automation for Process Industries (PAL-N201808)
  • 摘要: 针对一类具有强非线性、机理不清且动态特性随不同运行条件而变化的复杂过程, 将基于数据的建模技术与基于模型的控制策略相结合, 提出了未建模动态及其未知增量补偿驱动的非线性PID控制方法. 所提的算法将一步超前最优控制策略应用于PID控制器的参数设计, 并结合非线性补偿技术进行综合设计, 从理论上给出了PID控制器参数以及非线性补偿器设计的一般原则和方法, 为解决传统PID控制器参数难于整定的问题提供了方法和途径. 在此基础上, 分析了闭环系统的稳定性和收敛性. 最后, 将所提的控制算法进行数值仿真实验以及Pendubot系统平衡控制的对比实验, 实验结果表明, 在Pendubot的精确摩擦力模型未知的情况下, 所提算法能有效地消除系统未知时变不确定性的影响, 并尽可能地减少Pendubot摆角的波动, 将摆角控制在规定的目标值范围内.
  • 在工业生产和社会生活中, 存在着大量的复杂系统, 如非线性耦合机械系统[1]、超临界机组[2]等. 这些复杂系统线性化时通常包含了不可控模态, 给其控制器设计与分析带来了挑战. 在过去十几年里, 这类称之为高阶非线性系统的自适应控制问题吸引了很多研究者的关注. Lin等在文献[3-4]中提出了一种新的构造性设计框架−增加幂次积分法, 有效解决了高阶非线性系统的镇定与实际跟踪问题. 借助于这一方法, 文献[5-19]研究了不同条件下高阶不确定非线性系统的自适应控制问题, 取得了一系列研究成果. 值得指出的是, 上述绝大多数研究结果都要求系统的幂次信息完全已知. 然而, 在一些实际应用中, 由于控制系统本身与周围环境存在着各种不确定因素, 使得系统的幂次信息可能无法精确获取. 因此, 进一步探讨具有未知幂次的高阶非线性系统的控制器设计是很有意义并值得研究的问题.

    针对具有未知幂次的高阶非线性系统, 文献[20-21]采用改进的增加幂次积分法, 分别给出了状态反馈和输出反馈控制算法. 然而, 这些算法没有考虑系统函数的不确定性, 且需要假设系统的幂次上界信息已知. 文献[22]结合增加幂次积分技术和自适应控制方法, 解决了具有未知幂次和不确定参数的高阶非线性系统的自适应控制问题. 最近, 针对一类具有未知时变幂次的高阶非线性系统, 文献[23]利用障碍李雅普诺夫方法给出了满足全状态约束条件的自适应控制方案. 但文献[22-23]所提控制方案仍然要求系统幂次的上界已知. 为去除这一假设条件, 文献[24]采用增加幂次积分技术和逻辑切换方法, 设计了一种全局切换自适应镇定方案. 该方案的不足在于切换控制信号是非光滑的, 可能会引起抖振问题, 从而激发系统中的高频未建模动态. 为此, 文献[25]利用动态增益法, 提出了一种光滑自适应状态反馈控制器, 但这种控制器仅适用于相对阶为2的非线性系统.

    基于以上讨论, 本文研究了一类具有未知幂次的高阶不确定非线性系统的自适应跟踪控制问题. 结合积分反推技术和障碍李雅普诺夫函数, 提出了一种新颖的自适应状态反馈控制策略. 本文所得到的控制策略具有如下优点: 1) 采用对数型障碍李雅普诺夫函数[26-27]解决了系统幂次未知与模型不确定带来的技术难题; 2) 所提出的自适应控制策略中没有包含虚拟控制律的导数信息, 避免了积分反推法中的“计算膨胀”问题; 3) 所设计控制器能够确保闭环系统的所有信号一致有界. 最后, 仿真结果验证了本文理论结果的有效性.

    本文采用如下符号: $ {\bf{R}} $, ${\bf{R}}_{\geq{{0}}}$, ${\bf{R}}_{ > {{0}}}$分别表示实数、非负实数和正实数集合. $ {{\bf{R}}}^n $表示$ n $维实向量集合. $ {\rm{sign}}(s) $表示变量$ s $的符号函数. 对任意正常数$ q $, 定义$ [s]^q = {\rm{sign}}(s)|s|^q $. ${\bf{Q}}_{{\rm{odd}}}^{\ge 1}$ 表示分子和分母都是正奇整数的所有有理数的集合.

    考虑如下高阶不确定非线性系统

    $$ \begin{split} & \dot{x}_i = f_i(t,{\boldsymbol{x}},u)+g_i(t,{\boldsymbol{x}},u)[x_{i+1}]^{p_i}\\ &\qquad\qquad\qquad\;\;\;\;\quad i = 1,\cdots,n-1\\ &\dot{x}_n = f_n(t,{\boldsymbol{x}},u)+g_n(t,{\boldsymbol{x}},u)[u]^{p_n}\\& y = x_1 \end{split} $$ (1)

    其中, ${\boldsymbol{x}} = [x_1,\cdots,x_n]^{\rm{T}}\in {{\bf{R}}}^n$是系统的状态向量, 初始值${\boldsymbol{x}}(0) = [x_1(0),\cdots,x_n(0)]^{\rm{T}}$, $\bar{{\boldsymbol{x}}}_i = [x_1,\cdots,x_i]^{\rm{T}}\in {{\bf{R}}}^i$, $i = 1,\cdots,n$; $ u \in {{\bf{R}}} $$ y \in {{\bf{R}}} $分别是控制输入和系统输出; $ p_i\in {\bf{Q}}_{{\rm{odd}}}^{\ge 1} $, $i = 1,\cdots,n$是系统(1)的未知幂次. 系统函数$ f_i, g_i:{{\bf{R}}}_{\ge0}\times {{\bf{R}}}^n\times {{\bf{R}}}\rightarrow {{\bf{R}}} $, $i = 1,\cdots,n$$ t $上分段连续, 且关于$ {\boldsymbol{x}} $$ u $满足局部Lipschitz条件. 本文的控制目标是设计自适应控制器$ u $, 使得系统输出$ y $跟踪期望轨迹$ y_r $, 同时确保闭环系统的所有信号皆有界.

    注 1. 不同于文献[20-25]中的研究结果, 本文中系统幂次无需满足$ p_1\ge p_2\ge \cdots\ge p_n $.

    假设 1. 存在未知的连续函数$\bar{f}_{il}(\bar{{\boldsymbol{x}}}_i) : {{\bf{R}}}^{i}\rightarrow {{\bf{R}}}_{\geq0}$, $ \underline{g}_i(\bar{{\boldsymbol{x}}}_i): {{\bf{R}}}^{i}\rightarrow {{\bf{R}}}_{>0} $$ \bar{g}_i(\bar{{\boldsymbol{x}}}_i): {{\bf{R}}}^{i}\rightarrow {{\bf{R}}}_{>0} $, 满足

    $$ |f_i(t,{\boldsymbol{x}},u)|\le \sum\limits_{l = 1}^{j_i}|x_{i+1}|^{q_{il}}\bar{f}_{il}(\bar{{\boldsymbol{x}}}_i) $$ (2)
    $$ 0<\underline{g}_i(\bar{{\boldsymbol{x}}}_i)\le g_i(t,{\boldsymbol{x}},u)\le \bar{g}_i(\bar{{\boldsymbol{x}}}_i) $$ (3)

    其中, $i = 1,\cdots,n$, $l = 1,\cdots,j_i$, $ j_i $为有限正整数, $ q_{il} $为满足$ 0\le q_{i1}<q_{i2}<\cdots<q_{ij_i}<p_i $的正常数.

    注 2. 假设1表明了本文所提控制算法无需知晓系统函数$ g_i(t,{\boldsymbol{x}},u) $, $ f_i(t,{\boldsymbol{x}},u) $及相应的界函数$ \underline{g}_i(\bar{{\boldsymbol{x}}}_{i}) $, $ \bar{g}_i(\bar{{\boldsymbol{x}}}_{i}) $, $ \bar{f}_{il}(\bar{{\boldsymbol{x}}}_i) $的解析表达式.

    假设 2. 期望轨迹$ y_r $为连续可微函数, 且存在未知正常数$ B_r $, 满足

    $$ |y_r(t)|+|\dot{y}_r(t)|\le B_r,t\ge 0 $$ (4)

    引理 1[28]. 考虑初值问题

    $$ \dot{\boldsymbol{\eta}}_r(t) = h_r(t,{\boldsymbol{\eta}}_r),\; {\boldsymbol{\eta}}_r(0) = {\boldsymbol{\eta}}^0_r\in \Xi_r $$ (5)

    其中, $h_r:{{\bf{R}}}_{\ge0}\times \Xi_r\rightarrow {{\bf{R}}}^{{N}}$$ t $上分段连续, 且关于$ {\boldsymbol{\eta}}_r $满足局部Lipschitz条件, $\Xi_r\subset {{\bf{R}}}^{{N}}$为非空开子集. $ {\boldsymbol{\eta}}_r(t) $是初值问题(5)在最大存在区间$ [0,t'_f) $上的解, $ t'_f<+\infty $. 设$ \Xi'_r $$ \Xi_r $的紧子集, 则存在$t_s\in [0,t'_f)$, 使得$ {\boldsymbol{\eta}}_r(t_s)\not\in\Xi'_r $.

    引理 2[29]. 对任意$ a\in {{\bf{R}}} $, $ b \in {{\bf{R}}} $, $ m\in {{\bf{R}}}_{>0} $, $ n\in {{\bf{R}}}_{>0} $和函数$ \rho(a,b)>0 $, 下列不等式成立

    $$\begin{split} |a|^m|b|^n \le\;& \frac{m}{m+n}\rho(a,b)|a|^{m+n}\;+\\&\frac{n}{m+n}\rho(a,b)^{-\tfrac{m}{n}}|b|^{m+n} \end{split}$$ (6)

    引理 3[29-30]. 对任意$ p\ge 1 $, $ a\in {{\bf{R}}} $, $ b \in {{\bf{R}}} $, 下列不等式成立

    $$ \|a|^{p}-|b|^{p}|\le |[a]^{p}-[b]^{p}| \hspace{37pt} $$ (7)
    $$ \begin{split} \,|[a]^{p}-[b]^{p}|\le\; &c_{p}|a-b|\times\\ &(|a-b|^{{p}-1}+|b|^{{p}-1}) \end{split} $$ (8)
    $$ |a|^{p}+|b|^{p}\le(|a|+|b|)^{p} \hspace{45pt}$$ (9)

    其中, $ c_{p} = 2^{p-2}+2 $.

    引理 4[31]. 对任意$ \delta\in {{\bf{R}}}_{>0} $$ \xi \in {{\bf{R}}} $, 下列不等式成立

    $$ 0\le |\xi|-\frac{\xi^2}{\sqrt{\xi^2+\delta^2}}<\delta $$ (10)

    引理 5[32]. 对满足$ 0\le d<c $$ c\in {{\bf{R}}} $$ d\in {{\bf{R}}} $, 下列不等式成立

    $$ \log\frac{c}{c-d} \le \frac{d}{c-d} $$ (11)

    本节设计了一种基于障碍李雅普诺夫函数的自适应跟踪控制器, 并给出了闭环系统的稳定性证明.

    定义如下误差坐标变换

    $$ z_1 = x_1-y_r $$ (12)
    $$ z_i = x_i-\alpha_{i-1},\;i = 2,\cdots,n $$ (13)

    其中, $ \alpha_{i-1} $是第$ i-1 $步的虚拟控制律.

    步骤 $ {\boldsymbol{i}} $ ${\boldsymbol{(i = 1,\cdots,n-1)}}$. 选取正常数$ \mu_i $满足$ \mu_i>|z_i(0)| $, 设计第$ i $步虚拟控制律和自适应律为

    $$ \alpha_i = -\xi_i\left(k_i+\frac{\sigma_i\hat{\vartheta}_i}{\sqrt{\xi_i^2+\delta_i^2}}\right) $$ (14)
    $$ \dot{\hat{\vartheta}}_i = \gamma_i\left(\frac{\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}-\lambda_i\hat{\vartheta}_i\right) $$ (15)

    其中, $\xi_i = \dfrac{z_i}{\mu_i^2-z_i^{2}}$, $ \hat{\vartheta}_i $$ \vartheta_i $的估计值, $ \hat{\vartheta}_i(0)\ge 0 $, $ k_i $, $ \sigma_i $, $ \gamma_i $$ \lambda_i $为正常数.

    步骤 n. 选取正常数$ \mu_n $满足$ \mu_n>|z_n(0)| $, 设计实际控制律和自适应律为

    $$ u = -\xi_n\left(k_n+\frac{\sigma_n\hat{\vartheta}_n}{\sqrt{\xi_n^2+\delta_n^2}}\right) $$ (16)
    $$ \dot{\hat{\vartheta}}_n = \gamma_n\left(\frac{\xi_n^2}{\sqrt{\xi_n^2+\delta_n^2}}-\lambda_n\hat{\vartheta}_n\right) $$ (17)

    其中, $\xi_n = \dfrac{z_n}{\mu_n^2-z_n^{2}}$, $ \hat{\vartheta}_n $$ \vartheta_n $的估计值且满足, $\hat{\vartheta}_n(0)\ge 0$, $ k_n $, $ \sigma_n $, $ \gamma_n $$ \lambda_n $为正常数.

    上述自适应控制器的设计过程如图1所示.

    图 1  具有未知幂次的控制系统框图
    Fig. 1  Block diagram of the control system with unknown powers

    注 3. 如式(14) ~ (17)所示, 本文提出的自适应反推控制策略不依赖于系统幂次$ p_i $及其上界信息, 且无需知晓系统函数$ f_i(t,{\boldsymbol{x}},u) $, $ g_i(t,{\boldsymbol{x}},u) $及相应的界函数$ \bar{f}_{il}(\bar{{\boldsymbol{x}}}_i) $, $ \underline{g}_i(\bar{{\boldsymbol{x}}}_{i}) $, $ \bar{g}_i(\bar{{\boldsymbol{x}}}_{i}) $的解析表达式. 同时, 该控制策略未包含虚拟控制律$ \alpha_i $的导数, 消除了积分反推法中“计算膨胀”问题.

    在给出闭环系统的稳定性分析之前, 先引入如下命题.

    命题 1. 对式(14) ~ (17)的$\hat{\vartheta}_1,\cdots,\hat{\vartheta}_n, \alpha_1,\cdots, \alpha_{n-1}$$ u $, 下列陈述成立

    i) $ \hat{\vartheta}_i(t)\ge 0 $, $i = 1,\cdots,n$.

    ii) $\xi_i[\alpha_i]^{p_i} = -|\xi_i||\alpha_i|^{p_i} \le 0, \xi_n [u]^{p_n} = -|\xi_n| |u|^{p_n}$, $i = 1,\cdots,n-1$.

    证明. i) 由于$\dfrac{\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}\ge 0$$ \hat{\vartheta}_i(0)\ge 0 $, 根据式(15)和式(17), 可直接推出$ \hat{\vartheta}_i(t)\ge 0 $, $i = 1,\cdots,n$.

    ii) 根据式(14)和式(16), $ \alpha_i $, $i = 1,\cdots,n-1$$ u $改写为

    $$ \alpha_i = \xi_i\phi_i,i = 1,\cdots,n-1 $$ (18)
    $$ u = \xi_n\phi_n\hspace{74pt} $$ (19)

    其中,

    $$ \phi_i = -k_i-\frac{\sigma_i\hat{\vartheta}_i}{\sqrt{\xi_i^2+\delta_i^2}},\;\;i = 1,\cdots,n $$ (20)

    从而, 有

    $$ \begin{split} \xi_i[\alpha_i]^{p_i} =&\; \xi_i|\alpha_i|^{p_i}{\rm{sign}}(\xi_i\phi_i)\\& \quad i = 1,\cdots,n-1\end{split} $$ (21)
    $$ \xi_n [u]^{p_n} = \xi_n |u|^{p_n}{\rm{sign}}(\xi_n\phi_n) $$ (22)

    另外, 由于$ \hat{\vartheta}_i(t)\ge 0 $, $i = 1,\cdots,n$, 从式(20)易知$ \phi_i\le 0 $, $i = 1,\cdots,n$, 进而可得${\rm{sign}}(\xi_i\phi_i) = -{\rm{sign}}(\xi_i)$, $i = 1,\cdots,n$. 故

    $$ \begin{split} \xi_i[\alpha_i]^{p_i} =&\; -|\xi_i||\alpha_i|^{p_i}\le 0\\ & i = 1,\cdots,n-1 \end{split}$$ (23)
    $$ \xi_n [u]^{p_n} = -|\xi_n| |u|^{p_n}\le 0 $$ (24)

    本文主要结论可总结为如下定理.

    定理 1. 对满足假设1和假设2的高阶不确定非线性系统(1), 在任意初始条件$ {\boldsymbol{x}}(0) $下, 控制器(16)以及自适应律(15)和(17)保证了闭环系统的所有信号一致有界, 并且输出跟踪误差可以收敛到残差为任意小的残差集.

    证明. 本证明共分为3部分. 首先, 证明由系统(1), 控制器(16), 自适应律(15)和(17)组成的闭环系统在最大存在区间$ [0,t_f) $上存在唯一解${\pmb\eta}(t) = [z_1(t),\cdots,z_n(t),\hat{\vartheta}_1(t),\cdots,\hat{\vartheta}_n(t)]^{\rm{T}}$. 然后, 采用反证法证明$ t_f = +\infty $. 最后, 实现本文控制目标.

    Part 1. 根据式(14)和式(16), 虚拟控制律$\alpha_1,\cdots, \alpha_{n-1}$, 实际控制律$ u $以及系统状态$x_1,\cdots,x_n$可写为

    $$ \alpha_i = \check{\alpha}_i(z_i,\hat{\vartheta}_i),i = 1,\cdots,n-1 $$ (25)
    $$ u = \check{\alpha}_n(z_n,\hat{\vartheta}_n) $$ (26)
    $$ x_1 = z_1+y_r= \check{x}_1(t,z_1) $$ (27)
    $$ \begin{split} x_i =\; & z_i+\check{\alpha}_{i-1}(t,z_{i-1},\hat{\vartheta}_{i-1})=\\ & \check{x}_i(t,z_{i-1},z_i,\;\hat{\vartheta}_{i-1}),i = 2,\cdots,n \end{split} $$ (28)

    因此, 由式(1)和式(14)$ \sim $(17)组成的闭环系统可改写为

    $$ \begin{split} \dot{z}_1 =\;& f_1(t,\check{{\boldsymbol{x}}},\check{\alpha}_n)+g_1(t,\check{{\boldsymbol{x}}},\check{\alpha}_n)[\check{x}_2]^{p_1}-\dot{y}_r=\\ &\varphi_1(t,z_1,\cdots,z_n,\hat{\vartheta}_1,\cdots,\hat{\vartheta}_n) \end{split} $$ (29)
    $$ \begin{split} \dot{z}_i = \;& f_i(t,\check{{\boldsymbol{x}}},\check{\alpha}_n)+g_i(t,\check{{\boldsymbol{x}}},\check{\alpha}_n)[\check{x}_{i+1}]^{p_i}\;-\\ &\frac{\partial \check{\alpha}_{i-1}}{\partial t}-\frac{\partial \check{\alpha}_{i-1}}{\partial z_{i-1}}\varphi_{i-1}-\gamma_{i-1}\frac{\partial \check{\alpha}_{i-1}}{\partial \hat{\vartheta}_{i-1}}\;\times\\ &\left(\frac{\xi_{i-1}^2}{\sqrt{\xi_{i-1}^2+\delta_{i-1}^2}}-\lambda_{i-1}\hat{\vartheta}_{i-1}\right)=\\ & \varphi_i(t,z_1,\cdots,z_n,\hat{\vartheta}_1,\cdots,\hat{\vartheta}_n),\\ &\qquad\qquad\qquad\qquad\;\; i = 2,\cdots,n-1 \end{split}$$ (30)
    $$ \begin{split} \dot{z}_n =\; &f_n(t,\check{{\boldsymbol{x}}},\check{\alpha}_n)+g_n(t,\check{{\boldsymbol{x}}},\check{\alpha}_n)[\check{\alpha}_n]^{p_n}-\\ &\frac{\partial \check{\alpha}_{n-1}}{\partial t}-\frac{\partial \check{\alpha}_{n-1}}{\partial z_{n-1}}\varphi_{n-1}-\gamma_{n-1}\frac{\partial \check{\alpha}_{n-1}}{\partial \hat{\vartheta}_{n-1}}\times\\ &\left(\frac{\xi_{n-1}^2}{\sqrt{\xi_{n-1}^2+\delta_{n-1}^2}}-\lambda_{n-1}\hat{\vartheta}_{n-1}\right)=\\& \varphi_n(t,z_1,\cdots,z_n,\hat{\vartheta}_1,\cdots,\hat{\vartheta}_n) \end{split}$$ (31)
    $$ \begin{split} \dot{\hat{\vartheta}}_i =\;& \gamma_i\Big(\frac{\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}-\lambda_i\hat{\vartheta}_i\Big)=\\ & \varphi_{n+i}(t,z_i,\hat{\vartheta}_i),\;\;i = 1,\cdots,n \end{split} $$ (32)

    其中, $\check{{\boldsymbol{x}}} = [\check{x}_1,\cdots,\check{x}_n]^{\rm{T}}\in {{\bf{R}}}^n$.

    定义开集

    $$ \Xi = \underbrace{(-\mu_1,\mu_1)\times\cdots\times(-\mu_n,\mu_n)}_n\times {{\bf{R}}}^n $$

    由于$\mu_i > |z_i(0)|$, $i = 1,\cdots,n$, 可知${\boldsymbol{\eta}}(0) = [z_1(0), \cdots, z_n(0),\hat{\vartheta}_1(0),\cdots,\hat{\vartheta}_n(0)]^{\rm{T}}\in \Xi$. 同时, 由于期望参考信号$ y_r $及其导数$ \dot{y}_r $有界, 函数$ f_i, g_i $, $i = 1,\cdots, n$$ t $上分段连续, 且关于$ {\boldsymbol{x}} $$ u $满足局部Lipschitz条件, 可推得$ \varphi_i:{{\bf{R}}}_{\ge0}\times \Xi\rightarrow {{\bf{R}}} $$ t $上分段连续, 且关于$ {\boldsymbol{x}} $$ u $满足局部Lipschitz条件. 根据微分方程解的存在唯一性定理[33], 对任意初始条件$ {\boldsymbol{\eta}}(0) $, 闭环系统(29) ~ (32)在最大存在区间$ [0,t_f) $上存在唯一解${\boldsymbol{\eta}} = [z_1,\cdots,z_n,\hat{\vartheta}_1,\cdots,\hat{\vartheta}_n]^{\rm{T}}\in \Xi$, 即, 对$\forall t\in [0,t_f)$, $ |z_i|<\mu_i $, $i = 1,\cdots,n$.

    Part 2. 本部分采用反证法证明$ t_f = +\infty $. 为此, 不妨假设$ t_f<+\infty $.

    考虑如下障碍李雅普诺夫函数[26]:

    $$ V_i = \frac{1}{{2}}\log\frac{\mu_i^2}{\mu_i^2-z_i^{2}}+\frac{\sigma_i\omega_{il} }{2\gamma_i}\tilde{\vartheta}_i^2,\;\;i = 1,\cdots,n $$ (33)

    其中, $ \tilde{\vartheta}_i = \vartheta_i-\hat{\vartheta}_i $, $ \omega_{il} $ 是未知正常数.

    步骤 $ {\boldsymbol{i}} $ ${\boldsymbol{(i = 1,\cdots,n-1)}}$. $ V_i $的导数为

    $$ \begin{split} \dot{V}_i = \;&\xi_i\Big(f_i(t,{\boldsymbol{x}},u)+g_i(t,{\boldsymbol{x}},u)[x_{i+1}]^{p_i}-\dot{\alpha}_{i-1}\Big)-\\ &\frac{\sigma_i\omega_{il} }{\gamma_i}\tilde{\vartheta}_i\dot{\hat{\vartheta}}_i \\[-10pt]\end{split}$$ (34)

    其中, $ \alpha_0 = y_r $.

    根据假设1和引理2, 下列不等式成立

    $$ \begin{split} &|f_i(t,{\boldsymbol{x}},u)|\le\\ &\qquad\sum\limits_{l = 1}^{j_i}|x_{i+1}|^{q_{il}}\bar{f}_{il}(\bar{{\boldsymbol{x}}}_i)\le\\ &\qquad\sum\limits_{l = 1}^{j_i}\Bigg[\frac{g_i(t,{\boldsymbol{x}},u)|x_{i+1}|^{p_i}}{2j_i}+\\ &\qquad\frac{p_i-q_{il}}{p_i}\left(\frac{2j_iq_{il}\bar{f}_{il}(\bar{{\boldsymbol{x}}}_i)}{p_ig_i(t,{\boldsymbol{x}},u)}\right)^{\frac{q_{il}}{p_i-q_{il}}}\bar{f}_{il}(\bar{{\boldsymbol{x}}}_i)\Bigg]\le\\ &\qquad\frac{g_i(t,{\boldsymbol{x}},u)|x_{i+1}|^{p_i}}{2}+\psi_i(\bar{{\boldsymbol{x}}}_i) \end{split} $$ (35)

    其中,

    $$ \begin{split} \psi_i(\bar{{\boldsymbol{x}}}_i) =& \sum\limits_{l = 1}^{j_i}\frac{p_i-q_{il}}{p_i}\times\\ &\left(\frac{2j_iq_{il}\bar{f}_{il}(\bar{{\boldsymbol{x}}}_i)}{p_i\underline{g}_i(\bar{{\boldsymbol{x}}}_i)}\right)^{\tfrac{q_{il}}{p_i-q_{il}}}\bar{f}_{il}(\bar{{\boldsymbol{x}}}_i) \end{split}$$

    将式(35)代入式(34), 可得

    $$ \begin{split} \dot{V}_i\le\; &g_i(t,{\boldsymbol{x}},u)\xi_i [x_{i+1}]^{p_i}+\frac{g_i(t,{\boldsymbol{x}},u)|\xi_i|}{2}|x_{i+1}|^{p_i}+\\& |\xi_i|\Big(\psi_i(\bar{{\boldsymbol{x}}}_i)+|\dot{\alpha}_{i-1}|\Big)-\frac{\sigma_i\omega_{il} }{\gamma_i}\tilde{\vartheta}_i\dot{\hat{\vartheta}}_i \\[-10pt]\end{split}$$ (36)

    根据命题1, 可得

    $$ \begin{split} \dot{V}_i\le \;&g_i(t,{\boldsymbol{x}},u)\xi_{i}([x_{i+1}]^{p_i}-[\alpha_{i}]^{p_i})+\\ &\frac{g_i(t,{\boldsymbol{x}},u)|\xi_i|}{2}\Big(|x_{i+1}|^{p_i}-|\alpha_{i}|^{p_i}\Big)+\\ &|\xi_i|\Big(\psi_i(\bar{{\boldsymbol{x}}}_i)+|\dot{\alpha}_{i-1}|\Big)+\\ &\frac{g_i(t,{\boldsymbol{x}},u)\xi_{i}}{2}[\alpha_i]^{p_i}-\frac{\sigma_i\omega_{il} }{\gamma_i}\tilde{\vartheta}_i\dot{\hat{\vartheta}}_i\le\\ &\frac{3g_i(t,{\boldsymbol{x}},u)|\xi_i|}{2}|[x_{i+1}]^{p_i}-[\alpha_{i}]^{p_i}|+\\ &|\xi_i|\Big(\psi_i(\bar{{\boldsymbol{x}}}_i)+|\dot{\alpha}_{i-1}|\Big)-\frac{\sigma_i\omega_{il} }{\gamma_i}\tilde{\vartheta}_i\dot{\hat{\vartheta}}_i+\\& \frac{g_i(t,{\boldsymbol{x}},u)\xi_{i}}{2}[\alpha_i]^{p_i} \end{split}$$ (37)

    为了处理式(37)中的项$ |\xi_i||[x_{i+1}]^{p_i}-[\alpha_{i}]^{p_i}| $, 考虑以下两种情形.

    情形 1. 当$ p_i = 1 $时. 由Part 1可得: $|z_{i+1}| < \mu_{i+1}$, $ \forall t\in [0,t_f) $, 因而

    $$ \begin{split} &|\xi_i||[x_{i+1}]^{p_i}-[\alpha_{i}]^{p_i}|= |\xi_i||z_{i+1}|\le\\ &\qquad \mu_{i+1}|\xi_i|, \;\;\forall t\in [0,t_f) \end{split} $$ (38)

    情形 2. 当$ p_i>1 $时. 由引理2和引理3以及$|z_{i+1}| < \mu_{i+1}$, $ \forall t\in [0,t_f) $, 可得

    $$\begin{split} &|\xi_i||[x_{i+1}]^{p_i}-[\alpha_{i}]^{p_i}|=\\ &\quad\; \; \; \; |\xi_i||[z_{i+1}+\alpha_{i}]^{p_i}-[\alpha_{i}]^{p_i}|\le\\ &\quad\; \; \; \; c_{p_i}|\xi_i|(\mu_{i+1}^{p_i}+\mu_{i+1}|\alpha_i|^{p_i-1})\le\\ &\quad\; \; \; \; |\xi_i|\Big(\frac{|\alpha_i|^{p_i}}{6}+\bar{\varepsilon}_{i1}\Big),\;\;\forall t\in [0,t_f) \end{split}$$ (39)

    其中,

    $$ \begin{split} &c_{p_i} = p_i(2^{p_i-2}+2)\\ &\bar{\varepsilon}_{i1} = c_{p_i}\mu_{i+1}^{p_i}+\frac{1}{p_i}\left(\frac{6(p_i-1)}{p_i}\right)^{p_i-1}(c_{p_i}\mu_{i+1})^{p_i} \end{split}$$

    综合情形1和情形2, 项 $ |\xi_i||[x_{i+1}]^{p_i}-[\alpha_{i}]^{p_i}| $放缩为

    $$ \begin{split} &|\xi_i||[x_{i+1}]^{p_i}-[\alpha_{i}]^{p_i}| \le\\ &\quad|\xi_i|\Big(\frac{|\alpha_i|^{p_i}}{6}+\bar{\varepsilon}_{i1}+\mu_{i+1}\Big),\;\forall t\in [0,t_f) \end{split} $$ (40)

    将式(40)代入式(37)中, 并结合命题1, 易得

    $$ \begin{split} \dot{V}_i\le\;&\omega_i\xi_{i}[\alpha]^{p_i}-\frac{\sigma_i\omega_{il} }{\gamma_i}\tilde{\vartheta}_i\dot{\hat{\vartheta}}_i\;+\\ &|\xi_i|\nu_i,\;\;\forall t\in [0,t_f) \end{split} $$ (41)

    其中, $\omega_i = \dfrac{\underline{g}_i(\bar{{\boldsymbol{x}}}_i)}{4}$, $\nu_i = \psi_i(\bar{{\boldsymbol{x}}}_i)+|\dot{\alpha}_{i-1}|+\dfrac{3}{2}\bar{g}_i(\bar{{\boldsymbol{x}}}_{i})\times (\bar{\varepsilon}_{i1}+ \mu_{i+1})$.

    由Part 1可知, 对$ \forall t\in [0,t_f) $, $ |z_j|<\mu_j $, $j = 1, \cdots, i$. 同时, 依据假设1和假设2, $ y_r $, $ \dot{y}_r $有界, 且$ \bar{f}_{il} $, $ \underline{g}_i $$ \bar{g}_i $为连续函数. 此外, 根据第$ i-1 $步设计, 可推知$x_1,\cdots,x_i$, $ \dot{\alpha}_{i-1} $有界, $ \forall t\in [0,t_f) $. 因此, 运用极值定理, 对$ \forall t\in [0,t_f) $, 有

    $$ 0< \omega_{il}\le \omega_i \, $$ (42)
    $$ 0\le \nu_i\le \nu_{im} $$ (43)

    其中, $ \omega_{il} $$ \nu_{im} $为未知正常数.

    将式(42)和式(43)代入式(41)中, 有

    $$ \begin{split} \dot{V}_i\le\;&\omega_{il}\xi_{i}[\alpha_i]^{p_i}-\frac{\sigma_i\omega_{il} }{\gamma_i}\tilde{\vartheta}_i\dot{\hat{\vartheta}}_i+\\ &\nu_{im}|\xi_i|,\;\;\forall t\in [0,t_f) \end{split} $$ (44)

    通过式(14)和式(15), 并结合引理3, 可得

    $$ \begin{split} \dot{V}_i\le\;&-\omega_{il}|\xi_{i}|^{p_i+1}\left(k_i+\frac{\sigma_i\hat{\vartheta}_i}{\sqrt{\xi_i^2+\delta_i^2}}\right)^{p_i}-\\& \sigma_i\omega_{il} \tilde{\vartheta}_i\left(\frac{\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}-\lambda_i\hat{\vartheta}_i\right)+\nu_{im}|\xi_i|\le\\ &-\omega_{il} |\xi_{i}|^{p_i+1}\left(\frac{\sigma_i\hat{\vartheta}_i}{\sqrt{\xi_i^2+\delta_i^2}}\right)^{p_i}+\sigma_i\omega_{il} \vartheta_i|\xi_i|-\\ &\frac{\sigma_i\omega_{il} \tilde{\vartheta}_i\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}-\omega_{il} k_i^{p_i}|\xi_{i}|^{p_i+1}+\\ &\sigma_i\omega_{il} \lambda_i\tilde{\vartheta}_i\hat{\vartheta}_i,\;\;\forall t\in [0,t_f) \end{split} $$ (45)

    其中, $\vartheta_i = \dfrac{\nu_{im}}{\sigma_i\omega_{il}}$.

    根据引理2和引理4, 式(45)中的项$ \sigma_i\omega_{il}\vartheta_i|\xi_i| $放缩为

    $$ \begin{split} \sigma_i\omega_{il} \vartheta_i|\xi_i|\le\;&\frac{\sigma_i\omega_{il} \vartheta_i\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}+\delta_i\sigma_i\omega_{il} \vartheta_i\le\\ &\frac{\sigma_i\omega_{il} \hat{\vartheta}_i\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}+\frac{\sigma_i\omega_{il} \tilde{\vartheta_i}\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}+\delta_i\sigma_i\omega_{il} \vartheta_i\le\\& \omega_{il} |\xi_{i}|^{p_i+1}\left(\frac{\sigma_i\hat{\vartheta}_i}{\sqrt{\xi_i^2+\delta_i^2}}\right)^{p_i}+\bar{\varepsilon}_{i2}\omega_{il} |\xi_i|+\\ &\frac{\sigma_i\omega_{il} \tilde{\vartheta_i}\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}+\delta_i\sigma_i\omega_{il} \vartheta_i\le\\ & \omega_{il} |\xi_{i}|^{p_i+1}\left(\frac{\sigma_i\hat{\vartheta}_i}{\sqrt{\xi_i^2+\delta_i^2}}\right)^{p_i}+\\ &\frac{1}{2}\omega_{il} k_i^{p_i}|\xi_{i}|^{p_i+1}+\frac{\sigma_i\omega_{il} \tilde{\vartheta_i}\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}}+\\ &\bar{\varepsilon}_{i3}+\delta_i\sigma_i\omega_{il} \vartheta_i,\;\;\forall t\in [0,t_f) \\[-10pt]\end{split} $$ (46)

    其中,

    $$ \begin{split} &{{\bar \varepsilon }_{i2}} = \left\{ {\begin{array}{*{20}{l}} {0,}&{{p_i} = 1}\\ {\dfrac{{{p_i} - 1}}{{{p_i}}}{{\left(\dfrac{1}{{{p_i}}}\right)}^{\tfrac{1}{{{p_i} - 1}}}},}&{{p_i} > 1} \end{array}} \right.\\ &{{\bar \varepsilon }_{i3}} = \left\{ {\begin{array}{*{20}{l}} {0,}&{{{\bar \varepsilon }_{i2}} = 0}\\ {\dfrac{{{{\bar \varepsilon }_{i2}}{\omega _{il}}{p_i}}}{{{p_i} + 1}}{{\left(\dfrac{{2{{\bar \varepsilon }_{i2}}}}{{k_i^{{p_i}}({p_i} + 1)}}\right)}^{\tfrac{1}{{{p_i}}}}}},&{{{\bar \varepsilon }_{i2}} > 0} \end{array}} \right. \end{split}$$

    由式(45)和式(46), 可得

    $$\begin{split} \dot{V}_i\le\; &-\frac{1}{2}\omega_{il} k_i^{p_i}|\xi_{i}|^{p_i+1}+\sigma_i\omega_{il} \lambda_i\tilde{\vartheta}_i\hat{\vartheta}_i\;+\\ &\bar{\varepsilon}_{i3}+\delta_i\sigma_i\omega_{il} \vartheta_i,\;\;\forall t\in [0,t_f) \end{split} $$ (47)

    依据引理2和引理5, 以及Young不等式, 则有

    $$ \begin{split} \dot{V}_i\le&-\frac{1}{2}\omega_{il} k_i^{p_i}\xi_{i}^2-\frac{1}{2}\sigma_i\omega_{il} \lambda_i\tilde{\vartheta}_i^2+\varepsilon_i\le\\ &-\frac{\omega_{il} k_i^{p_i}}{2\mu_i^2}\log\frac{\mu_i^2}{\mu_i^2-z_i^{2}}-\frac{1}{2}\sigma_i\omega_{il} \lambda_i\tilde{\vartheta}_i^2+\varepsilon_i\le\\ &-\chi_iV_i+\varepsilon_i,\;\;\forall t\in [0,t_f) \end{split}$$ (48)

    其中,

    $$ \begin{split} &{\chi _i} = \min \left\{ \frac{{{\omega _{il}}k_i^{{p_i}}}}{{\mu _i^2}},{\gamma _i}{\lambda _i}\right\} \\ &{{\bar \varepsilon }_{i4}} = \frac{1}{2}{\sigma _i}{\omega _{il}}{\lambda _i}\vartheta _i^2 + {{\bar \varepsilon }_{i3}} + {\delta _i}{\sigma _i}{\omega _{il}}{\vartheta _i}\\ &{\varepsilon _i} = \left\{ \begin{array}{*{20}{l}} {{{\bar \varepsilon }_{i4}},}&{{p_i} = 1}\\ {\dfrac{{{\omega _{il}}k_i^{{p_i}}({p_i} - 1)}}{{2({p_i} + 1)}}{{\left(\dfrac{2}{{{p_i} + 1}}\right)}^{\tfrac{2}{{{p_i} - 1}}}} + {{\bar \varepsilon }_{i4}},}&{{p_i} > 1} \end{array} \right. \end{split} $$

    因此, 存在正常数$ \chi_i^* $$ \varepsilon_i^* $满足

    $$ 0<\chi_i^*\le\chi_i $$ (49)
    $$ 0<\varepsilon_i\le\varepsilon_i^* $$ (50)

    由式(48) ~ (50), 可得

    $$ \dot{V}_i\le-\chi_i^*V_i+\varepsilon_i^*,\;\forall t\in [0,t_f) $$ (51)

    因此, 对$ \forall t\in [0,t_f) $中, 有

    $$ \frac{1}{2}\log\frac{\mu_i^2}{\mu_i^2-z_i^{2}}\le V_i\le \varpi_i $$ (52)
    $$ \frac{\sigma_i\omega_{il} }{2\gamma_i}\tilde{\vartheta}_i^2\le V_i\le \varpi_i\;\; \qquad $$ (53)

    其中, $\varpi_i = \max\{V_i(0),\dfrac{\varepsilon_i^*}{\chi_i^*}\}$.

    从式(52)和式(53), 可得

    $$ |z_i|\le\bar{\mu}_i = \mu_i\sqrt{1-\exp(-{2}\varpi_i)}<\mu_i $$ (54)
    $$ |\hat{\vartheta}_i|\le\bar{\vartheta}_i = \sqrt{\frac{2\gamma_i\varpi_i}{\sigma_i\omega_{il}}}+\vartheta_i,\;\forall t\in [0,t_f) $$ (55)

    进而可推出, 对$ \forall t\in [0,t_f) $, $ \alpha_i $$ x_{i+1} $有界. 接着, 对$ \alpha_i $$ \xi_i $分别求导, 可得

    $$ \begin{split}|\dot{\alpha}_i|\le&\left\{-\left(k_i+\frac{\sigma_i\hat{\vartheta}_i}{\sqrt{\xi_i^2+\delta_i^2}}\right)+\frac{\sigma_i\hat{\vartheta}_i\xi_i^2}{\sqrt{(\xi_i^2+\delta_i^2)^3}}\right\}\dot{\xi}_i+\\ & \frac{\gamma_i\sigma_i\xi_i}{\sqrt{\xi_i^2+\delta_i^2}}\left(\frac{\xi_i^2}{\sqrt{\xi_i^2+\delta_i^2}} -\lambda_i\hat{\vartheta}_i\right),\;\;\forall t\in [0,t_f) \end{split}$$ (56)
    $$ \begin{split} |\dot{\xi}_i| =\; &\frac{(\mu_i^2+z_i^2)}{(\mu_i^2-z_i^2)^2}\Big(f_i(t,{\boldsymbol{x}},u)\;+\\ &g_i(t,{\boldsymbol{x}},u)[x_{i+1}]^{p_i}-\dot{\alpha}_{i-1}\Big)\le\\ &\frac{(\mu_i^2+z_i^2)}{(\mu_i^2-z_i^2)^2}\Big(\sum\limits_{l = 1}^{j_i}|x_{i+1}|^{q_{il}}\bar{f}_{il}(\bar{{\boldsymbol{x}}}_i)+|\dot{\alpha}_{i-1}|+\\ &\bar{g}_i(\bar{{\boldsymbol{x}}}_{i})|x_{i+1}|^{p_i}\Big),\;\;\forall t\in [0,t_f)\\[-10pt] \end{split} $$ (57)

    从式(56)和式(57)可知, 对$ \forall t\in [0,t_f) $, $ \dot{\xi}_i $$ \dot{\alpha}_i $亦有界.

    步骤 $ {\boldsymbol{n}} $.$ V_n $的导数, 可得

    $$ \begin{split} \dot{V}_n =& \frac{z_n}{\mu_n^2-z_n^{2}}(f_n(t,{\boldsymbol{x}},u) + g_n(t,{\boldsymbol{x}},u)[u]^{p_n}-\dot{\alpha}_{n-1})-\\ &\frac{\sigma_n\beta_n}{\gamma_n}\tilde{\vartheta}_n\dot{\hat{\vartheta}}_n \\[-10pt]\end{split}$$ (58)

    类似于式(35)的推导过程, 利用假设1和引理2, 可得

    $$ |f_n(t,{\boldsymbol{x}},u)|\le \frac{1}{2}g_n(t,{\boldsymbol{x}},u)|u|^{p_n}+\psi_n(\bar{{\boldsymbol{x}}}_n) $$ (59)

    其中,

    $$ \begin{split} \psi_n(\bar{{\boldsymbol{x}}}_n) = &\sum\limits_{l = 1}^{j_n}\frac{p_n-q_{nl}}{p_n}\times\\ &\left(\frac{2j_nq_{nl}\bar{f}_{nl}(\bar{{\boldsymbol{x}}}_n)}{p_n\underline{g}_n(\bar{{\boldsymbol{x}}}_n)}\right)^{\frac{q_{nl}}{p_n-q_{nl}}}\bar{f}_{nl}(\bar{{\boldsymbol{x}}}_n) \end{split}$$

    由式(59)以及命题1, 可推得

    $$ \dot{V}_n\le\omega_n\xi_n[u]^{p_n}+|\xi_n|\nu_n-\frac{\sigma_n\omega_{nl} }{\gamma_n}\tilde{\vartheta}_n\dot{\hat{\vartheta}}_n $$ (60)

    其中, $\omega_n = \dfrac{\underline{g}_n(\bar{{\boldsymbol{x}}}_n)}{2}$, $ \nu_n = \psi_n(\bar{{\boldsymbol{x}}}_n)+|\dot{\alpha}_{n-1}| $.

    由Part 1可知, 对$ \forall t\in [0,t_f) $, $ |z_j|<\mu_j $, $j = 1, \cdots, n$. 同时, 根据假设1和假设2, $ y_r $$ \dot{y}_r $有界, 且$ \bar{f}_{nl} $, $ \underline{g}_n $$ \bar{g}_n $连续. 此外, 由第$ n-1 $步设计可推得$x_1,\cdots, x_n$, $ \dot{\alpha}_{n-1} $有界, $ \forall t\in [0,t_f) $. 因此, 运用极值定理, 对$ \forall t\in [0,t_f) $, 有

    $$ 0< \omega_{nl}\le \omega_n $$ (61)
    $$ 0\le \nu_n\le \nu_{nm} $$ (62)

    其中, $ \omega_{nl} $$ \nu_{nm} $为未知正常数.

    利用式(61)和式(62), 有

    $$ \begin{split} \dot{V}_n\le\;&\omega_{nl}\xi_n[u]^{p_n}+\nu_{nm}|\xi_n|-\\& \frac{\sigma_n\omega_{nl} }{\gamma_n}\tilde{\vartheta}_n\dot{\hat{\vartheta}}_n,\;\;\forall t\in [0,t_f) \end{split} $$ (63)

    根据式(16)和式(17)以及命题1和引理3, 可得

    $$ \begin{split} \dot{V}_n\le&-\omega_{nl}|\xi_{n}|^{p_n+1}\Big(k_n+\frac{\sigma_n\hat{\vartheta}_n}{\sqrt{\xi_n^2+\delta_n^2}}\Big)^{p_n}-\\ &\sigma_n\omega_{nl} \tilde{\vartheta}_n\left(\frac{\xi_n^2}{\sqrt{\xi_n^2+\delta_n^2}}-\lambda_n\hat{\vartheta}_n\right)+\nu_{nm}|\xi_n|\le\\ & -\omega_{nl} |\xi_{n}|^{p_n+1}\left(\frac{\sigma_n\hat{\vartheta}_n}{\sqrt{\xi_n^2+\delta_n^2}}\right)^{p_n}-\\ &\omega_{nl} k_n^{p_n}|\xi_{n}|^{p_n+1}-\\ &\frac{\sigma_n\omega_{nl} \tilde{\vartheta}_n\xi_n^2}{\sqrt{\xi_n^2+\delta_n^2}}+\sigma_n\omega_{nl} \lambda_n\tilde{\vartheta}_n\hat{\vartheta}_n+\\ &\sigma_n\omega_{nl} \vartheta_n|\xi_n|,\;\;\forall t\in [0,t_f) \\[-10pt]\end{split}$$ (64)

    其中, $\vartheta_n = \dfrac{\nu_{nm}}{\sigma_n\omega_{nl}}$.

    依据引理2和引理4, 式(64)中的项$ \sigma_n\omega_{nl}\vartheta_n|\xi_n| $放缩为

    $$ \begin{split} \sigma_n\omega_{nl} \vartheta_n|\xi_n|\le\;&\frac{\sigma_n\omega_{nl} \vartheta_n\xi_n^2}{\sqrt{\xi_n^2+\delta_n^2}}+\delta_n\sigma_n\omega_{nl} \vartheta_n\le\\ & \frac{\sigma_n\omega_{nl} \hat{\vartheta}_n\xi_n^2}{\sqrt{\xi_n^2+\delta_n^2}}+\frac{\sigma_n\omega_{nl} \tilde{\vartheta}_n\xi_n^2}{\sqrt{\xi_n^2+\delta_n^2}}\;+\\ &\delta_n\sigma_n\omega_{nl} \vartheta_n\le\\ &\omega_{nl} |\xi_n|^{p_n+1}\left(\frac{\sigma_n\hat{\vartheta}_n}{\sqrt{\xi_n^2+\delta_n^2}}\right)^{p_n}+\\ &\bar{\varepsilon}_{n2}\omega_{nl} |\xi_n|+\delta_n\sigma_n\omega_{nl}\vartheta_n+\\ &\frac{\sigma_n\omega_{nl} \tilde{\vartheta}_n\xi_n^2}{\sqrt{\xi_n^2+\delta_n^2}}\le\\ &\omega_{nl} |\xi_n|^{p_n+1}\left(\frac{\sigma_n\hat{\vartheta}_n}{\sqrt{\xi_n^2+\delta_n^2}}\right)^{p_n}+\\ &\frac{1}{2}\omega_{nl} k_n^{p_n}\xi_{n}^{p_n+1}+\delta_n\sigma_n\omega_{nl} \vartheta_n+\\ &\frac{\sigma_n\omega_{nl}\tilde{\vartheta}_n\xi_n^2}{\sqrt{\xi_n^2+\delta_n^2}}+\bar{\varepsilon}_{n3} \end{split} $$ (65)

    其中,

    $$ \begin{split} &{{\bar \varepsilon }_{n2}} = \left\{ {\begin{array}{*{20}{l}} {0,}&{{p_n} = 1}\\ {\dfrac{{{p_n} - 1}}{{{p_n}}}{{\left(\dfrac{1}{{{p_n}}}\right)}^{\tfrac{1}{{{p_n} - 1}}}},}&{{p_n} > 1} \end{array}} \right.\\ &{{\bar \varepsilon }_{n3}} = \left\{ {\begin{array}{*{20}{l}} {0,}&{{{\bar \varepsilon }_{n2}} = 0}\\ {\dfrac{{{{\bar \varepsilon }_{n2}}{\omega _{nl}}{p_n}}}{{{p_n} + 1}}{{\left(\dfrac{{2{{\bar \varepsilon }_{n2}}}}{{k_n^{{p_n}}({p_n} + 1)}}\right)}^{\tfrac{1}{{{p_n}}}}},}&{{{\bar \varepsilon }_{n2}} > 0} \end{array}} \right. \end{split} $$

    将式(65)代入式(64)中, 得到

    $$ \begin{split} \dot{V}_n\le\;&-\frac{1}{2}\omega_{nl} k_n^{p_n}|\xi_{n}|^{p_n+1}+\sigma_n\omega_{nl} \lambda_n\tilde{\vartheta}_n\hat{\vartheta}_n\;+\\ &\bar{\varepsilon}_{n3}+\delta_n\sigma_n\omega_{nl} \vartheta_n,\;\;\forall t\in [0,t_f) \end{split} $$ (66)

    根据引理2和引理5, 以及Young不等式, 可得

    $$ \begin{split} \dot{V}_n\le&-\frac{1}{2}\omega_{nl} k_n^{p_n}\xi_{n}^2-\frac{1}{2}\sigma_n\omega_{nl} \lambda_n\tilde{\vartheta}_n^2+\varepsilon_n\le\\ &-\frac{\omega_{nl} k_n^{p_n}}{2\mu_n^2}\log\frac{\mu_n^2}{\mu_n^2-z_n^{2}}-\frac{1}{2}\sigma_n\omega_{nl} \lambda_n\tilde{\vartheta}_n^2+\varepsilon_n\le\\ &-\chi_nV_n+\varepsilon_n,\forall t\in [0,t_f) \\[-10pt]\end{split} $$ (67)

    其中,

    $$ \begin{split} &{\chi _n} = \min \left\{ \frac{{{\omega _{nl}}k_n^{{p_n}}}}{{\mu _n^2}},{\gamma _n}{\lambda _n}\right\} \\ &{{\bar \varepsilon }_{n4}} = \frac{1}{2}{\sigma _n}{\omega _{nl}}{\lambda _n}\vartheta _n^2 + {{\bar \varepsilon }_{n3}} + {\delta _n}{\sigma _n}{\omega _{nl}}{\vartheta _n}\\ &{\varepsilon _n} = \left\{ {\begin{array}{*{20}{l}} {{{\bar \varepsilon }_{n4}},}&{{p_n} = 1}\\ {\dfrac{{{\omega _{nl}}k_n^{{p_n}}({p_n} - 1)}}{{2({p_n} + 1)}}{{\left(\dfrac{2}{{{p_n} + 1}}\right)}^{\tfrac{2}{{{p_n} - 1}}}} + {{\bar \varepsilon }_{n4}},}&{{p_n} > 1} \end{array}} \right. \end{split} $$

    因此, 存在正常数$ \chi_n^* $$ \varepsilon_n^* $, 使得

    $$ 0<\chi_n^*\le \chi_n $$ (68)
    $$ 0<\varepsilon_n\le\varepsilon_n^* \; $$ (69)

    根据式(67) ~ (69), 可得

    $$ \dot{V}_n\le-\chi_n^*V_n+\varepsilon_n^*,\;\;\forall t\in [0,t_f) $$ (70)

    因此, 对$ \forall t\in [0,t_f) $, 有

    $$ \frac{1}{2}\log\frac{\mu_n^2}{\mu_n^2-z_n^{2}}\le V_n\le \varpi_n $$ (71)
    $$ \frac{\sigma_n\omega_{nl} }{2\gamma_n}\tilde{\vartheta}_n^2\le V_n\le \varpi_n\;\;\;\;\;\;\; $$ (72)

    其中, $\varpi_n = \max\{V_n(0),\dfrac{\varepsilon_n^*}{\chi_n^*}\}$.

    由式(71)和式(72), 可得

    $$ |z_n|\le \bar{\mu}_n = \mu_n\sqrt{1-\exp(-{2}\varpi_n)}<\mu_n\;\;\;\;\; $$ (73)
    $$ |\hat{\vartheta}_n|\le\sqrt{\bar{\vartheta}_n = \frac{2\gamma_n\varpi_n}{\sigma_n\omega_{nl}}}+\vartheta_n,\;\; \forall t\in [0,t_f) $$ (74)

    故可推出, 对$ \forall t\in [0,t_f) $, $ u $有界.

    由步骤 1 ~ $n $ 可知, 存在紧子集 $\Xi' = [-\bar{\mu}_1,\bar{\mu}_1]\,\times \cdots\times [-\bar{\mu}_n, \bar{\mu}_n]\times [-\bar{\vartheta}_1,\bar{\vartheta}_1]\times\cdots\times[-\bar{\vartheta}_n,\bar{\vartheta}_n]\subset \Xi$, 使得闭环系统在$ [0,t_f) $上存在唯一解$ {\boldsymbol{\eta}}(t)\in \Xi' $. 根据引理1, 可得: $ t_f = +\infty $, 即, 对$ \forall t \in [0,+\infty) $, $|z_i| < \mu_i$, $i = 1, \cdots,n$.

    Part 3. 重复Part 2中的步骤1 ~ n, 可得$x_1,\cdots, x_n$, $\alpha_1,\cdots,\alpha_{n-1}$$ u $均有界, $ \forall t \in [0,+\infty) $. 另外, 从式(54)可知, 通过减小$ \mu_1 $$ \varpi_1 $可将输出跟踪误差$ z_1 $收敛到任意小的残差集. □

    注 4. 不同于文献[20-25]中提出的控制方案, 本文采用积分反推技术和障碍李雅普诺夫方法解决了高阶非线性系统中幂次未知和系统函数不确定的问题, 且所设计控制策略不依赖于未知幂次的上界信息.

    为了验证本文所提控制算法的有效性与通用性, 考虑如下两个高阶非线性系统

    $$ {\Sigma _1}:\left\{ \begin{aligned} &{{{\dot x}_1} = {f_{1,{\Sigma _1}}} + {g_{1,{\Sigma _1}}}{{[{x_2}]}^{{p_1}}}}\\ &{{{\dot x}_2} = {f_{2,{\Sigma _1}}} + {g_{2,{\Sigma _1}}}{{[u]}^{{p_2}}}}\\ &{y = {x_1}} \end{aligned} \right. $$ (75)
    $$ {\Sigma _2}:\left\{ \begin{aligned} &{{{\dot x}_1} = {f_{1,{\Sigma _2}}} + {g_{1,{\Sigma _2}}}{{[{x_2}]}^{{p_1}}}}\\ &{{{\dot x}_2} = {f_{2,{\Sigma _2}}} + {g_{2,{\Sigma _2}}}{{[u]}^{{p_2}}}}\\ &{y = {x_1}} \end{aligned} \right. $$ (76)

    其中, $p_1 = {5}/{3}$, $p_2 ={7}/{3}$, $ f_{1,\Sigma_1} = x_1\cos (t) $, $g_{1,\Sigma_1} = 3+ 0.5\sin (t)$, $f_{2,\Sigma_1} = x_1+2\sin (x_1x_2)$, $g_{2,\Sigma_1} = 2+ 0.1\sin (t)$, $f_{1,\Sigma_2} \;= \;(0.5x_1\; +\; 1)\cos (t)$, $g_{1,\Sigma_2} = 2 + 0.1\sin (t)$, $f_{2,\Sigma_2} = \cos (x_1 )\exp(2x_2\sin (x_1 )) + x_1x_2\sin (t)$, $g_{2,\Sigma_2} = 1$, 期望参考信号$y_r(t) = \dfrac{\pi}{2}(1 - \exp( -0.1t^2)) \sin (t)$.

    在仿真中, 系统$ \Sigma_i $和自适应参数$ \hat{\vartheta}_i $的初始值设置为$ [x_1(0),x_2(0)]^{\rm{T}} = [-0.5,0.4]^{\rm{T}} $, $ \hat{\vartheta}_i(0) = 0 $, $i = 1,2$. 控制器参数$ k_1 = 2 $, $ k_2 = 1 $, $ \mu_1 = 4 $, $ \mu_2 = 2 $, $ \sigma_1 = 3 $, $ \sigma_2 = 2 $, $ \gamma_1 = 2 $, $ \gamma_2 = 3 $, $ \delta_1 = \delta_2 = 0.01 $$ \lambda_1 = \lambda_2 = 0.002 $, 其中, $ \mu_1 = 4>|z_1(0)| = 0.5 $, $\mu_2 = 2 > |z_2(0)| = {106}/{315}$. 系统$ \Sigma_1 $$ \Sigma_2 $的仿真结果如图2 ~ 4所示. 图2刻画了输出跟踪误差$ y-y_r $的变化情况, 图3给出系统的控制信号$ u $, 图4描述了自适应参数$ \hat{\vartheta}_1 $$ \hat{\vartheta}_2 $. 从仿真结果可以看出, 本文所提自适应控制策略既能使系统$ \Sigma_1 $$ \Sigma_2 $的输出跟踪误差收敛到原点附近的较小邻域内, 又能确保闭环系统的所有信号有界.

    图 2  系统$\Sigma_1$$\Sigma_2$的输出跟踪误差$y-y_r$
    Fig. 2  Output tracking errors $y-y_r$ of systems $\Sigma_1$ and $\Sigma_2$
    图 3  系统$\Sigma_1$$\Sigma_2$的控制信号$u$
    Fig. 3  Control signals $u$ of systems $\Sigma_1$ and $\Sigma_2$
    图 4  系统$\Sigma_1$$\Sigma_2$的自适应参数$\hat{\vartheta}_1$$\ \hat{\vartheta}_2$
    Fig. 4  Adaptive parameters $\hat{\vartheta}_1$ and $\hat{\vartheta}_2$ of systems $\Sigma_1$ and $\Sigma_2$

    为进一步验证本文控制算法的幂次无关特性, 在系统初始值与控制器参数不变的条件下, 对具有不同幂次$ p_1 $$ p_2 $的系统$ \Sigma_1 $进行仿真测试. 仿真结果如图5图6所示. 图5为系统$ \Sigma_1 $在不同幂次$ p_1 $$ p_2 $条件下的输出跟踪误差$ y-y_r $, 图6为相应的控制信号$ u $. 仿真结果表明, 在不同幂次条件下, 该控制器仍然可以保证闭环系统获得良好的控制性能.

    图 5  系统$\Sigma_1$在不同幂次下的跟踪误差$y-y_r$
    Fig. 5  Output tracking errors $y-y_r$ of system $\Sigma_1$ under various powers
    图 6  系统$\Sigma_1$在不同幂次下的控制信号$u$
    Fig. 6  Control signals $u$ of system $\Sigma_1$ under various powers

    针对一类具有未知幂次的高阶不确定非线性系统, 提出了一种基于障碍李雅普诺夫函数的自适应控制算法. 在无需知晓系统函数先验知识的条件下, 所提控制算法有效克服了系统幂次未知与模型不确定带来的技术挑战. 该算法的显著特点是所设计的自适应控制器均与系统幂次无关. 最后, 仿真结果验证了本文控制算法的有效性与通用性.

    今后的研究方向包括将本文所提方法推广到具有未知幂次的高阶非线性系统的输出反馈控制设计[34]. 此外, 为验证本文方法的实用性, 将本文所提控制策略应用于实际系统[35]亦是我们未来研究的目标.

  • 图  1  本文控制方法与文献[30]控制方法的仿真结果

    Fig.  1  Simulation results of the control method in [30] and the proposed method

    图  2  Pendubot系统实验平台

    Fig.  2  The experimental platform of the Pendubot system

    图  3  实验结果

    Fig.  3  Experimental results

    表  1  性能评价

    Table  1  Performance indexes

    绝对误差累积和 误差均方差
    文献[30] 23 396.5 2.7
    本文方法 8 156.1 1.8
    下载: 导出CSV

    表  2  性能评价

    Table  2  Performance indexes

    绝对误差累积和 误差均方差
    常规PD 361.1 6.5
    文献[30] 337.3 6.1
    本文方法 204.3 4.2
    下载: 导出CSV
  • [1] 赵大勇, 柴天佑. 再磨过程泵池液位区间与给矿压力模糊切换控制. 自动化学报, 2013, 39(5): 556−564

    Zhao Da-Yong, Chai Tian-You. Fuzzy switching control for sump level interval and hydrocyclone pressure in regrinding process. Acta Automatica Sinica, 2013, 39(5): 556−564
    [2] 贾瑶, 张立岩, 柴天佑. 矿浆中和过程中基于模型预估模糊自适应控制. 东北大学学报, 2014, 35(5): 617−621 doi: 10.3969/j.issn.1005-3026.2014.05.003

    Jia Yao, Zhang Li-Yan, Chai Tian-You. Based on fuzzy adaptive control of model predictive in slurry neutralization process. Journal of Northeastern University Natural Science, 2014, 35(5): 617−621 doi: 10.3969/j.issn.1005-3026.2014.05.003
    [3] Zhang Y J, Jia Y, Chai T Y, Wang D H, Dai W, Fu J. Data-driven PID controller and its application to pulp neutralization process. IEEE Transactions on Control Systems Technology, 2018, 26(3): 828−841 doi: 10.1109/TCST.2017.2695981
    [4] Xia D Y, Chai T Y, Wang L Y. Fuzzy neural-network friction compensation-based singularity avoidance energy swing-up to nonequilibrium unstable position control of Pendubot. IEEE Transactions on Control Systems Technology, 2014, 22(2): 690−705 doi: 10.1109/TCST.2013.2255290
    [5] 魏萃, 柴天佑, 贾瑶, 王良勇. 补偿信号法驱动的Pendubot自适应平衡控制. 自动化学报, 2019, 45(6): 1146−1156

    Wei Cui, Chai Tian-You, Jia Yao, Wang Liang-Yong. Compensation signal driven adaptive balance control of the Pendubot. Acta Automatica Sinica, 2019, 45(6): 1146−1156
    [6] Chen L, Narendra K S. Nonlinear adaptive control using neural networks and multiple models. Automatica, 2001, 37(8): 1245−1255 doi: 10.1016/S0005-1098(01)00072-3
    [7] Fu Y, Chai T Y. Nonlinear multivariable adaptive control using multiple models and neural networks. Automatica, 2007, 43(8): 1101−1110
    [8] 柴天佑, 张亚军. 基于未建模动态补偿的非线性自适应切换控制方法. 自动化学报, 2010, 37(7): 773−786

    Chai Tian-You, Zhang Ya-Jun. Nonlinear adaptive switching control method based on un-modeled dynamics compensation. Acta Automatica Sinica, 2010, 37(7): 773−786
    [9] Wang Y G, Chai T Y, Fu J, Zhang Y J, Fu Y. Adaptive decoupling switching control based on generalized predictive control. IET Control Theory and Application, 2012, 12(6): 1−12
    [10] Wang Y G, Chai T Y, Fu J, Sun J, Wang H. Adaptive decoupling switching control of the forced-circulation evaporation system using neural networks. IEEE Transactions on Control Systems Technology, 2013, 21(3): 964−974 doi: 10.1109/TCST.2012.2193883
    [11] Hou Z S, Jin S T. Data-driven model-free adaptive control for a class of MIMO nonlinear discrete-time systems. IEEE Transactions on Neural Networks, 2011, 22(12): 2173−2188 doi: 10.1109/TNN.2011.2176141
    [12] Zhu Y M, Hou Z S. Data-driven MFAC for a class of discrete-time nonlinear systems with RBFNN. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(5): 1013−1020
    [13] Dai W, Chai T Y, Yang S X. Data-driven optimization control for safety operation of hematite grinding process. IEEE Transactions on Industrial Electronics, 2015, 62(5): 2930−2941 doi: 10.1109/TIE.2014.2362093
    [14] Chi R H, Liu Y, Hou Z S, Jin S T. Data-driven terminal iterative learning control with high-order learning law for a class of non-linear discrete-time multiple-input–multiple output systems. IET Control Theory and Applications, 2015, 9(7): 1075−1082
    [15] Chai T Y, Zhang Y J, Wang H, Su C Y, Sun J. Data-based virtual un-modeled dynamics driven multivariable nonlinear adaptive switching control. IEEE Transactions on Neural Networks, 2011, 22(12): 2154−2171 doi: 10.1109/TNN.2011.2167685
    [16] Spong M W, Block D J. The Pendubot: A mechatronic system for control research and education. In: Proceedings of the 34th IEEE Conference on Decision and Control.New Orleans, LA, USA: IEEE, 1995. 555−556
    [17] Zhang M J, Tzyh-Jong T. Hybrid control of the Pendubot. IEEE/ASME Transactions on Mechatronics, 2002, 7(1): 79−86 doi: 10.1109/3516.990890
    [18] Xin X, Liu Y N. Reduced-order stable controllers for two- link underactuated planar robots. Automatica, 2013, 49(7): 2176−2183 doi: 10.1016/j.automatica.2013.03.027
    [19] Sanchez E N, Flores V. Real-time fuzzy PI+PD control for an underactuated robot. In: Proceedings of the 2002 IEEE Internatinal Symposium on Intelligent Control. Vancouver, BC, Canada: IEEE, 2002. 137−141
    [20] 侯俊, 王良勇, 柴天佑, 方正. 基于T-S模糊的欠驱动机械臂的平衡控制. 控制工程, 2012, 19(1): 5−8, 85 doi: 10.3969/j.issn.1671-7848.2012.01.002

    Hou Jun, Wang Liang-Yong, Chai Tian-You, Fang Zheng. Balance control of underactuated manipulator using T-S fuzzy scheme. Control Engineering of China, 2012, 19(1): 5−8, 85 doi: 10.3969/j.issn.1671-7848.2012.01.002
    [21] Wang W, Yi J Q, Zhao D B, Liu X J. Adaptive sliding mode controller for an underactuated manipulator. In: Proceedings of the 2004 International Conference on Machine Learning and Cybernetics. Shanghai, China: IEEE, 2004. 882−887
    [22] Spall J C, Cristion J A. Model-free control of nonlinear stochastic systems with discrete-time measurements. IEEE Transactions on Automatic Control, 1998, 43(9): 1198−1210 doi: 10.1109/9.718605
    [23] Hjalmarsson H, Gevers M, Gunnarsson S, Lequin O. Iterative feedback tuning: Theory and applications. IEEE Control Systems Magazine, 1998, 18(4): 26−41 doi: 10.1109/37.710876
    [24] Agnoloni T, Mosca E. Controller falsification based on multiple models. International Journal of Adaptive Control and Signal Processing, 2003, 17(2): 163−177 doi: 10.1002/acs.745
    [25] Safonov M G, Tsao T C. The unfalsified control concept and learning. IEEE Transactions on Automatic Control, 1997, 42(6): 843−847 doi: 10.1109/9.587340
    [26] Campi M C, Lecchini A, Savaresi S M. Virtual reference feedback tuning: A direct method for the design of feedback controllers. Automatica, 2002, 38(8): 1337−1346 doi: 10.1016/S0005-1098(02)00032-8
    [27] Markovsky I, Rapisarda P. Data-driven simulation and control. International Journal of Control, 2008, 81(12): 1946−1959 doi: 10.1080/00207170801942170
    [28] Jang J S R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on System, Man, Cybernetics, 1993, 23(3): 665−685 doi: 10.1109/21.256541
    [29] Zhang Y J, Chai T Y, Wang D H. An alternating identification algorithm for a class of nonlinear dynamical systems. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(7): 1606−1617 doi: 10.1109/TNNLS.2016.2547968
    [30] Eom M, Chwa D. Robust swing-up and balancing control using a nonlinear disturbance observer for the Pendubot system with dynamic friction. IEEE Transactions on Robotics, 2015, 31(2): 331−343 doi: 10.1109/TRO.2015.2402512
    [31] Sun N, Fang Y C, Chen H, Lu B, Fu Y M. Slew/Translation positioning and swing suppression for 4-DOF tower cranes with parametric uncertainties: Design and hardware experimentation. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6407−6418
    [32] 王永富, 柴天佑. 一种补偿动态摩擦的自适应模糊控制方法. 中国电机工程学报, 2005, 25(2): 139−143

    Wang Yong-Fu, Chai Tian-You. Adaptive fuzzy control method for dynamic friction compensation. Proceedings of the CSEE, 2005, 25(2): 139−143
  • 期刊类型引用(9)

    1. 尹宏伟,杭雨晴,胡文军. 融合异常检测与区域分割的高效K-means聚类算法. 郑州大学学报(工学版). 2024(03): 80-88 . 百度学术
    2. 黄鹤,黄佳慧,刘国权,王会峰,高涛. 采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法. 西安交通大学学报. 2024(07): 214-226 . 百度学术
    3. 高瑞贞,王诗浩,王皓乾,张京军,李志杰. 基于图注意力机制的三维点云感知. 中国测试. 2024(07): 155-162 . 百度学术
    4. 邢建平,殷煜昊. 基于三维重建外点剔除的船舶航迹自适应修正. 舰船科学技术. 2024(14): 162-165 . 百度学术
    5. 梁循,李志莹,蒋洪迅. 基于图的点云研究综述. 计算机研究与发展. 2024(11): 2870-2896 . 百度学术
    6. 黄鹤,温夏露,杨澜,王会峰,高涛,茹锋. 基于疯狂捕猎秃鹰算法的K均值互补迭代聚类优化. 浙江大学学报(工学版). 2023(11): 2147-2159 . 百度学术
    7. 胡建平,刘凯,郭新宇,吴升,温维亮. 自适应加权算子结合主曲线提取玉米叶片点云骨架. 农业工程学报. 2022(02): 166-174 . 百度学术
    8. 任彪,陆玲. 基于PCL三维点云花瓣分割与重建. 现代电子技术. 2022(12): 149-154 . 百度学术
    9. 吴艳娟,王健,王云亮. 基于骨架提取算法的作物茎秆识别与定位方法. 农业机械学报. 2022(11): 334-340 . 百度学术

    其他类型引用(15)

  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  1889
  • HTML全文浏览量:  182
  • PDF下载量:  368
  • 被引次数: 24
出版历程
  • 收稿日期:  2019-03-07
  • 录用日期:  2019-06-09
  • 网络出版日期:  2020-07-10
  • 刊出日期:  2020-07-10

目录

/

返回文章
返回