2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯CNN和注意力网络的钢轨表面缺陷检测系统

金侠挺 王耀南 张辉 刘理 钟杭 贺振东

高迎彬, 孔祥玉, 崔巧花, 侯立安.主子空间跟踪信息准则及算法.自动化学报, 2020, 46(10): 2214-2220 doi: 10.16383/j.aas.c180141
引用本文: 金侠挺, 王耀南, 张辉, 刘理, 钟杭, 贺振东. 基于贝叶斯CNN和注意力网络的钢轨表面缺陷检测系统. 自动化学报, 2019, 45(12): 2312−2327 doi: 10.16383/j.aas.c190143
Gao Ying-Bin, Kong Xiang-Yu, Cui Qiao-Hua, Hou Li-An. Principal subspace tracking information criterion and algorithm. Acta Automatica Sinica, 2020, 46(10): 2214-2220 doi: 10.16383/j.aas.c180141
Citation: Jin Xia-Ting, Wang Yao-Nan, Zhang Hui, Liu Li, Zhong Hang, He Zhen-Dong. DeepRail: automatic visual detection system for railway surface defect using Bayesian CNN and attention network. Acta Automatica Sinica, 2019, 45(12): 2312−2327 doi: 10.16383/j.aas.c190143

基于贝叶斯CNN和注意力网络的钢轨表面缺陷检测系统

doi: 10.16383/j.aas.c190143
基金项目: 国家自然科学基金(61573134, 61733004), 湖南省科技计划项目(2017XK2102, 2018GK2022, 2018JJ3079)资助
详细信息
    作者简介:

    金侠挺:湖南大学电气与信息工程学院硕士研究生. 2017年获得长沙理工大学学士学位. 主要研究方向为机器学习, 深度学习, 视觉检测. E-mail: xtchin@hnu.edu.cn

    王耀南:中国工程院院士, 湖南大学电气与信息工程学院教授. 1995年获得湖南大学博士学位. 主要研究方向为机器人学, 智能控制和图像处理. 本文通信作者. E-mail: yaonan@hnu.edu.cn

    张辉:长沙理工大学副教授. 2012 年获得湖南大学博士学位. 主要研究方向为工业机器视觉, 数字图像处理. E-mail: zhanghuihby@126.com

    刘理:湖南大学博士研究生. 2006年获得东南大学硕士学位. 主要研究方向为机器人视觉测量, 路径规划及智能控制. E-mail: liuli@hnu.edu.cn

    钟杭:湖南大学博士研究生. 2013年和2016年分别获得湖南大学学士学位和硕士学位. 主要研究方向为机器人控制, 视觉伺服和路径规划. E-mail: zhonghang@hnu.edu.cn

    贺振东:郑州轻工业大学副教授. 2016年获得湖南大学博士学位. 主要研究方向为机器视觉, 机器学习. E-mail: hezhendong_itl@163.com

DeepRail: Automatic Visual Detection System for Railway Surface Defect Using Bayesian CNN and Attention Network

Funds: Supported by National Natural Science Foundation of China (61573134, 61733004), Hunan Key Project of Research and Development Plan (2017XK2102, 2018GK2022, 2018JJ3079)
  • 摘要: 面向复杂多样的钢轨场景, 本文扩展了最先进的深度学习语义分割框架DeepLab v3+ 到一个新的轻量级、可伸缩性的贝叶斯版本DeeperLab, 实现表面缺陷的概率分割. 具体地, Dropout被融入改进的Xception网络, 使得从后验分布中生成蒙特卡罗样本; 其次, 提出多尺度多速率的空洞空间金字塔池化(Atrous spatial pyramid pooling, ASPP)模块, 提取任意分辨率下的密集特征图谱; 更简单有效的解码器细化目标的边界, 计算Softmax概率的均值和方差作为分割预测和不确定性. 为解决类别不平衡问题, 基于在线前景 − 背景挖掘思想, 提出损失注意力网络(Loss attention network, LAN)定位缺陷以计算惩罚系数, 从而补偿和抑制DeeperLab的前景与背景损失, 实现辅助监督训练. 实验结果表明本文算法具有91.46 %分割精度和0.18 s/帧的运行速度, 相比其他方法更加快速鲁棒.
  • 在信息处理领域, 通常将信号自相关矩阵最大特征值对应的特征向量称之为信号的主成分, 而由信号的多个主成分张成的空间称为信号的主子空间.在很多信号处理问题中, 需要对信号的主子空间进行在线跟踪, 如视觉跟踪[1]、波达方向估计[2]、图像处理[3]、谱分析[4]等领域.因此, 发展主子空间跟踪算法就成为了一件非常有意义的工作.

    以往解决主子空间跟踪问题主要依靠矩阵特征值分解(Eigenvalue decomposition, EVD)和奇异值分解(Singular value decomposition, SVD)等, 然而该方法计算复杂度高, 而且难以满足实时信号处理的要求.为了克服这些缺点, 学者们提出了基于Hebbian神经网络的主子空间跟踪方法.相比传统的EVD和SVD方法, 神经网络方法具有以下3个方面的优点: 1)可以对输入信号的自相关矩阵进行在线估计; 2)算法的计算复杂度较低; 3)能够处理非平稳的随机信号[4].基于上述优势, 神经网络方法已经成为近些年来国际上的一个研究热点.

    基于单层线性神经网络, Oja提出了著名的Oja算法[5], 然而Oja算法是一个单维主成分提取算法.为了能够实现对信号主子空间的跟踪, 学者们通过对Oja算法进行了改进提出了很多算法, 如FDPM (Fast data projection method)算法[6]、SOOJA (Stable and orthonormal OJA algorithm)算法[7]、SDPM (Stable DPM algorithm)算法[8]等, 然而上述算法大多是基于启发式推理提出来的, 而并没有建立相对应的信息准则.由于信息准则在算法发展中具有很重要的意义[9], 因此研究主子空间准则是一件非常有意义的工作.在文献[10]中, 基于最小均方误差(Least mean squared error, LMSE)准则, Yang提出了投影近似子空间跟踪算法(Projection approximation subspace tracking, PAST); 此后, Miao等提出了NIC (Novel information criterion)准则[11], 并分别导出了梯度和递归型主子空间跟踪算法; 基于Rayleigh商函数, Kong等提出了UIC (Unified information criterion)准则[12], 仿真实验表明基于UIC准则导出的算法具有很快的收敛速度.目前, 发展主子空间跟踪准则仍然具有很强的研究价值.

    本文将提出一种新型的主子空间跟踪信息准则, 并通过梯度法导出快速的主子空间跟踪算法.论文的结构安排如下:第1节是提出一种新的主子空间信息准则; 第2节是对所提信息准则进行前景分析; 第3节主要是采用梯度上升法导出主子空间算法; 第4节通过两组仿真实验对所提算法的性能进行验证; 本文的结论在第5节.

    考虑一个具有如下形式的多输入多输出线性神经网络模型:

    $$ \begin{equation} {\pmb{y}} = {{W}^{\rm T}}{\pmb{x}} \end{equation} $$ (1)

    其中, $ {W} = [{\pmb {w}_1}, {\pmb {w}_2}, \cdots , {\pmb {w}_r}] \in {{\bf {R}}^{n \times r}} $是神经网络的权矩阵, $ {\pmb {w}_i} $是权矩阵$ {W} $的第$ i $列; $ {\pmb{x}} \in {{\bf {R}}^{n \times 1}} $是采样信号, 这里作为神经网络的输入; $ {\pmb{y}} \in {{\bf {R}}^{r \times 1}} $为采样信号的低维表示, $ r $是子空间的维数.本文的目的就是构造合适的神经网络权矩阵迭代更新方程, 使神经网络的权矩阵最终能够收敛到采样信号的主子空间.

    基于上述神经网络模型, 给定域$ \Omega = \{ {W}|0 < {{W}^{\rm T}}{RW} < \infty , {{W}^{\rm T}}{W} \ne 0\} $, 提出如下信息准则:

    $$ \begin{align} {{W}^*} = \, & {\rm{arg}}{\kern 1pt} \mathop {\max }\limits_{{W} \in \Omega } J({W})\\& J({W}) = \frac{1}{2}{\rm tr}\left[ {({{W}^{\rm T}}{RW}){{({{W}^{\rm T}}{W})}^{ - 1}}} \right]+\\& \frac{1}{2}{\rm tr}\left[ {\ln ({{W}^{\rm T}}{W}) - {{W}^{\rm T}}{W}} \right] \end{align} $$ (2)

    其中, $ {{R}} = {\rm E}[{{\pmb {xx}}}_{}^{\rm T}] $为采样信号的自相关矩阵.根据矩阵理论可得:矩阵$ {{R}} $是一个对称的正定矩阵, 且特征值均是非负的.对矩阵$ {{R}} $特征值分解得:

    $$ \begin{equation} {{R}} = {{U\Lambda }}{{{U}}^{\rm T}} \end{equation} $$ (3)

    其中, $ {{U}} = [{{\pmb {u}}_1}, {{\pmb {u}}_2}, \cdots , {{\pmb {u}}_n}] $是由矩阵$ {{R}} $的特征向量构成的矩阵, $ {{\Lambda }} = {\rm {\rm {\rm diag}}}\{{\lambda _1}, {\lambda _2}, \cdots , {\lambda _n}\} $是由矩阵$ {{R}} $的特征值组成.为了后续使用方便, 这里将特征值按降序进行排列, 即特征值满足如下方程:

    $$ \begin{equation} {\lambda _1} > {\lambda _2} > \cdots > {\lambda _r} > \cdots > {\lambda _n} > 0 \end{equation} $$ (4)

    根据主子空间的定义可知特征值$ {\lambda _1}, {\lambda _2}, \cdots , {\lambda _r} $所对应的特征向量张成的子空间称为输入信号的主子空间.从式(2)可得$ J({W}) $是无下界的, 且当$ {W} $趋于无穷大时, $ J({W}) $将趋于负无穷大, 因此研究$ J({W}) $的极小值是没有任何意义的.实际上, 我们关心的是$ J({W}) $的极大点.具体说来, 我们关心以下几个问题:

    1) $ J({W}) $有没有全局极大点?

    2) $ J({W}) $的全局极大点与信号的主子空间之间的关系是什么?

    3) $ J({W}) $有没有其他局部极值?

    上述三个问题的回答将由下在一节中完成.

    信息准则(2)的全局最优值分析通过定理1和定理2来完成.

    定理1.  在域$ \Omega = \{ {W}|0 < {{W}^{\rm T}}{RW} < \infty , {{W}^{\rm T}}{W} \ne 0\} $内, 当且仅当$ {W} = {{{U'}}_r}{{Q}} $时, 权矩阵$ {W} $是信息准则$ J({W}) $的一个平稳点, 其中$ {{{U'}}_r} = [{{\pmb {u}}_{j1}}, {{\pmb {u}}_{j2}}, \cdots , {{\pmb {u}}_{jr}}] $是由自相关矩阵$ {{R}} $的任意$ r $个特征向量构成的矩阵, $ {{Q}} $是任意一个$ r \times r $维正交矩阵.

    将$ {{R}} $的特征向量作为空间$ {{\bf{R}}^{n \times n}} $的一组正交基, 则权矩阵$ {W} $可以表示为: $ {W} = {{{U}}^{\rm T}}{{\tilde W}} $, 其中$ {{\tilde W}} \in {{\bf {R}}^{n \times r}} $称为系数矩阵.将这一结果代入式(2)可得:

    $$ \begin{align} {{{{\tilde W}}}^*} = \, & {\rm{arg}}{\kern 1pt} \mathop {\max }\limits_{{W} \in \Omega } E({{\tilde W}})\\ E({{\tilde W}}) = \, & \frac{1}{2}{\rm tr}[({{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}}){({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}}]+\\& \frac{1}{2}{\rm tr}[\ln ({{{{\tilde W}}}^{\rm T}}{{\tilde W}}) - {{{{\tilde W}}}^{\rm T}}{{\tilde W}}] \end{align} $$ (5)

    显然式(2)和式(5)是等价的, 即定理1的证明是可以通过对下述推论的证明来完成.

    推论1.   在域$ \tilde \Omega = \left\{ {{{\tilde W}}|0 < {{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} < \infty} \right. $, $ \left. { {{{{\tilde W}}}^{\rm T}}{{\tilde W}} \ne 0} \right\} $中, 当且仅当$ {{\tilde W}} = {{{P}}_r}{{Q}} $时, $ {{\tilde W}} $是$ E({{\tilde W}}) $的一个平稳点, 其中$ {{{P}}_r} \in {{ {R}}^{n \times r}} $是任意一个$ n \times r $维置换矩阵.

    证明参见附录A.

    定理2.   在域$ \Omega $内, 当且仅当$ {W} = {{{\tilde U}}_r}{{Q}} $时, 其中$ {{{\tilde U}}_r} = [{{\pmb {u}}_1}, {{\pmb {u}}_2}, \cdots , {{\pmb {u}}_r}] $是由自相关矩阵$ {{R}} $的前$ r $个特征向量构成的矩阵且$ {{Q}} $是任意一个$ r \times r $维正交矩阵, 信息准则$ J({W}) $达到全局极大. $ J({W}) $没有其他局部极值, 在全局最大点处有:

    $$ \begin{equation} J({W}) = \frac{1}{2}\sum\limits_{i = 1}^r {{\lambda _i}} - \frac{r}{2} \end{equation} $$ (6)

    同定理1的证明过程一样, 这里将通过对推论2的证明来完成定理2的证明.

    推论2.   在域$ \tilde \Omega $中, 当且仅当$ {{\tilde W}} = {{\bar PQ}} $, 信息准则$ E({{\tilde W}}) $达到全局最大点, 其中$ {{\bar P}} = {( {{{\tilde P}}}\; \; {{0}})^{\rm T}} \in {{ {\bf R}}^{n \times r}} $一个$ n \times r $维矩阵, $ {{\tilde P}} $是一个置换矩阵, 而$ E({{\tilde W}}) $所有其他的平稳点都是鞍点.

    证明参见附录B.

    通过定理1和定理2可知, 当神经网络权矩阵$ {W} $刚好收敛到自相关矩阵$ {{R}} $的主子空间的一组正交基时, $ J({W}) $取得全局极大值, 从而建立起神经网络与信号主子空间之间的关系.由于信息准则$ J({W}) $只有一个全局最大点, 而没有局部极值, 因此采用非线性规划算法(如梯度法、共轭梯度法、牛顿法等)来求解该优化问题.梯度算法是采用$ J({W}) $的梯度作为迭代步长; 共轭梯度法需要不断修正算法的共轭方向, 所导出的算法通常具有较高的计算复杂度; 牛顿法则用到的Hessian矩阵, 而当$ {W} $是一个矩阵时该Hessian矩阵是非常难以获得的.相比共轭梯度法和牛顿算法, 梯度法具有算法结构更为简单, 计算复杂度低, 因此下一节将采用梯度算法导出新型的主子空间跟踪算法.

    假定$ {\pmb{x}}(k), k = 0, 1, 2, \cdots $是一个平稳的随机过程, 这里将其作为神经网络模型的输入.根据随机学习理论, 权矩阵$ {W} $的变化规律与输入向量$ {\pmb{x}}(k) $并不相关.取式(2)作为最优化函数, 则可以得出所提信息准则的梯度流为:

    $$ \begin{align} \frac{{{\rm d}{W}(t)}}{{\rm d}{t}} = \, & \left[ {\frac{{{W}(t)}}{{{{W}^{\rm T}}(t){W}(t)}} - {W}(t)} \right]+\\& \left[ {{RW}(t) - \frac{{{W}(t){{W}^{\rm T}}(t){RW}(t)}} {{{{W}^{\rm T}}(t){W}(t)}}} \right]\times\\& {\left\{ {{{W}^{\rm T}}(t){W}(t)} \right\}^{ - 1}} \end{align} $$ (7)

    应用随机近似理论可得:

    $$ \begin{align} &\frac{{{\rm d}{W}(t)}}{{\rm d}{t}} = \\&\quad \left[ {{W}(t){{\left\{ {{{W}^{\rm T}}(t){W}(t)} \right\}}^{ - 1}} - {W}(t)} \right]- \\&\quad \left[ {{W}(t){{W}^{\rm T}}(t){\pmb{x}}(t){{\pmb{x}}^{\rm T}}(t){W}(t){{\left\{ {{{W}^{\rm T}}(t){W}(t)} \right\}}^{ - 1}}} \right.- \\&\quad \left. {{\pmb{x}}(t){{\pmb{x}}^{\rm T}}(t){W}(t)} \right]{\left\{ {{{W}^{\rm T}}(t){W}(t)} \right\}^{ - 1}} \end{align} $$ (8)

    对式(8)进行离散化操作后获得如下方程:

    $$ \begin{align} &{W}\left( {k + 1} \right) = \\&\quad {{W}}(k) - \eta \left[ {{{W}}(k){{\left( {{{{W}}^{\rm T}}(k){{W}}(k)} \right)}^{ - 1}}{\pmb{y}}(k){{\pmb{y}}^{\rm T}}(k)} \right.- \\&\quad \left. {{\pmb{x}}(k){{\pmb{y}}^{\rm T}}(k)} \right] {\left( {{{{W}}^{\rm T}}(k){{W}}(k)} \right)^{ - 1}} - \eta {{W}}(k)+ \\&\quad \eta {{W}}(k){\left( {{{{W}}^{\rm T}}(k){{W}}(k)} \right)^{ - 1}} \end{align} $$ (9)

    其中, $ \eta $是神经网络的学习因子, 且满足$ 0 < \eta < 1 $.式(9)所描述的算法在每一步迭代过程中计算复杂度为: $ n{{r}^{2}}+4{{r}^{3}}\text{ /}3 $, 这点与UIC算法[12]是相同的, 要少于NIC算法[11]中的$ 2{n^2}r + {\rm O}(n{r^2}) $的计算量和共轭梯度算法[13] $ 12{n^2}r + {\rm O}(n{r^2}) $的计算量.

    本节通过两个仿真实例来对所提算法的性能进行验证.第一个实验考察所提算法提取多维主子空间的能力并将仿真结果与其他同类型算法进行对比; 第二个是应用所提算法解决图像重构问题.

    在本实验中, 所提算法将与UIC算法和SDPM算法进行对比.为了衡量算法的收敛性能, 这里采用如下两个评价函数, 第一个是第$ k $次迭代时的权矩阵模值

    $$ \begin{equation} p({{{W}}_k}) = {\left\| {{{W}}_k^{\rm T}{{{W}}_k}} \right\|_F} \end{equation} $$ (10)

    第二个是指标参数

    $$ \begin{equation} {\rm{dist}}({{{W}}_k}) = {\left\| {{{W}}_k^{\rm T}{{{W}}_k}{\rm diag}{\left\{{{{W}}_k^{\rm T}{{{W}}_k}} \right\}^{ - 1}} - {{{I}}_r}} \right\|_F} \end{equation} $$ (11)

    指标参数代表着权矩阵正交化的偏离程度.显然, 如果$ {\rm{dist}}({{{W}}_k}) $收敛到0, 则意味着权矩阵收敛到了主子空间的一个正交基.

    本实验中信号产生方法与文献[12]相同, 即输入信号$ {{{X}}_k} = {{B}}{{\pmb {z}}_k} $, 其中$ B=\text{randn}(31,31)/31$是一个随机产生的矩阵, $ {{\pmb {z}}_k} \in {{ {\bf R}}^{31 \times 1}} $是高斯的、瞬时白的、随机产生的向量.在本实验中, 分别采用UIC算法、SDPM算法和所提算法对信号的12维主子空间进行提取跟踪.三种算法采用相同的学习因子$ \eta = 0.1 $, 初始权矩阵是随机产生的(即矩阵的每一个元素均服从均值为零方差为1的高斯分布).通常情况下, 取不同的初始化权矩阵时, 算法具有不同的收敛速度.为了更全面地衡量算法性能, 通常取多次实验的平均值来描述算法收敛过程.在图 1图 2分别给出了三种算法在迭代过程中的权矩阵模值曲线和指标参数曲线, 该结果曲线是100次独立实验结果平均得到的.图中实线代表着所提算法, 虚线代表UIC算法, 点划线代表SDPM算法.

    图 1  权矩阵模值曲线
    Fig. 1  Curves of the weight matrix norm
    图 2  指标参数曲线
    Fig. 2  Curves of the parameter index

    图 1图 2中可以发现, 所提算法的权矩阵模值曲线收敛到了一个常数而且指标参数收敛到了零.这就表明所提算法具备跟踪信号主子空间的能力.从图 1中我们还可以发现, 所提算法的权矩阵模值在200步时就已经收敛, 而UIC算法则需要300步, SDPM算法需要800步, 即所提算法的权矩阵模值曲线具有最快的收敛速度.同理, 从图 2中可以发现所提算法指标参数的收敛速度要优于其他两个算法.综合两图可以得出结论:三种算法中, 所提算法具有最快的收敛速度.

    数据压缩是主子空间算法的一个很重要的应用.本实验将利用所提算法对著名的Lena图像进行压缩重构.如图 3所示, 原始Lena图像的像素为$ 512 \times 512 $.在本实验中, 将Lena图像分解成若干个$ 8 \times 8 $不重叠的小块.将每一个小块中的数据按照从左至右从上到下的顺序排列起来, 构成一个64维向量.在去掉均值和标准化后, 将这些图像数据构成一个输入序列.然后采用SDPM算法、UIC算法以及所提算法对该图像进行压缩重构, 这里重构维数为5.与实验1相同, 本实验同样采用权矩阵模值和指标参数两个评价函数.

    图 3  原始的Lena图像
    Fig. 3  The original image of Lena

    本实验中三种算法的初始化参数设置方法与实验1相类似, 具体参数如下:学习因子$ \eta = 0.2 $, 初始化权矩阵是随机产生的.图 4是经过所提算法压缩后重构出来的Lena图像, 图 5是三种算法的权矩阵模值曲线, 图 6是三种算法的指标参数曲线, 该结果曲线都是100次独立实验的平均值.对比图 3图 4可以发现, 重构的Lena图像是很清晰的, 即所提算法能够有效解决图像压缩重构问题.通过图 5图 6可以发现:不论是权矩阵模值曲线还是指标参数曲线, 所提算法的收敛速度均要快于UIC算法和SDPM算法.这进一步证实了所提算法在收敛速度方面的优势.

    图 4  所提算法压缩重构的Lena图像
    Fig. 4  Reconstructed image by the proposed algorithm
    图 5  三种算法权矩阵模值曲线
    Fig. 5  Norm curves of the three algorithms
    图 6  三种算法的指标参数曲线
    Fig. 6  Parameter index curves of the three

    主子空间跟踪算法在现代信息科学各个领域均有着很重要的应用.基于Hebbian神经网络的主子空间跟踪是近些年来国际上的一个研究热点.然而目前大多数主子空间跟踪神经网络算法是基于启发式推理而提出来的, 能够提供信息准则的算法并不多见.针对这一问题, 本文提出了一种新型的信息准则, 并对所提信息准则的前景进行了严格的证明.通过梯度上升法导出了一个主子空间跟踪算法.仿真实验表明:相比一些现有主子空间跟踪算法, 所提算法具有更快的收敛速度.

    进一步的研究方向是寻找新型的主子空间信息准则, 创新信息准则的平稳点分析方法, 将主子空间算法应用于更广泛的领域.

    证明   在域$ \tilde \Omega $内, $ E({{\tilde W}}) $对于矩阵$ {{\tilde W}} $的一阶微分存在, 且有

    $$ \begin{align} \nabla E({{\tilde W}}) = \, & {{\Lambda \tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} - {{\tilde W}} - \\& {{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 2}}{{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} + {{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} \end{align} $$ (A1)

    定义一个矩阵集$ \left\{ {{{\tilde W}}|{{\tilde W}} = {{{P}}_r}{{Q}}} \right\} $, 则在该集合内的任意一点均有:

    $$ \begin{align} & \nabla E({{\tilde W}}){|_{{{\tilde W}} = {{{P}}_r}{{Q}}}} = \\&\qquad {{\Lambda }}{{{P}}_r}{{Q}}{({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r} {{Q}})^{ - 1}} + {{{P}}_r}{{Q}}{({{{Q}}^{\rm T}} {{P}}_r^{\rm T}{{{P}}_r}{{Q}})^{ - 1}}- \\&\qquad {{{P}}_r}{{Q}}{({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r}{{Q}})^{ - 2}}{{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}{{Q}} - {{{P}}_r}{{Q}} = \\&\qquad {{\Lambda }}{{{P}}_r}{{Q}} + {{{P}}_r}{{Q}}{{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}{{Q}} = 0 \end{align} $$ (A2)

    反之, 根据定义可得, 在$ E({{\tilde W}}) $平稳点处有$ \nabla E({{\tilde W}}) = {{0}} $成立, 即

    $$ \begin{align} &{{\Lambda \tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} + {{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}}- \\&\qquad {{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 2}}{{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} - {{\tilde W}} = {{0}} \end{align} $$ (A3)

    将上式左右两边各乘以$ {{{\tilde W}}^{\rm T}} $可得:

    $$ \begin{align} & {{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} + {{{{\tilde W}}}^{\rm T}}{{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}}- \\&\qquad {{{{\tilde W}}}^{\rm T}}{{\tilde W}}{({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 2}}{{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} - {{{{\tilde W}}}^{\rm T}}{{\tilde W}} = \\&\qquad {{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} {({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}} - {{{{\tilde W}}}^{\rm T}}{{W}}- \\&\qquad {({{{{\tilde W}}}^{\rm T}}{{\tilde W}})^{ - 1}}{{{{\tilde W}}}^{\rm T}}{{\Lambda \tilde W}} + {{I}} = \\&\qquad {{I}} - {{{{\tilde W}}}^{\rm T}}{{W}} = {{0}} \end{align} $$ (A4)

    根据上式可得, 在$ E({{\tilde W}}) $平稳点处有

    $$ \begin{equation} {{{\tilde W}}^{\rm T}}{{W}} = {{I}} \end{equation} $$ (A5)

    上式表明在$ E({{\tilde W}}) $平稳点处矩阵$ {{\tilde W}} $的各个列向量之间是相互正交的.将式(A5)代入式(A3)可得:

    $$ \begin{equation} {{\Lambda \tilde W}} = {{\tilde W}}{{{\tilde W}}^{\rm T}}{{\Lambda \tilde W}} \end{equation} $$ (A6)

    令矩阵$ {\tilde W}$的行向量为${{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{u}}}_{i}}\ (i=1,2,\cdots ,n) $, 即有$ \tilde W{\rm{ = }}{\left[ {\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over u} _1^{\rm{T}},\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over u} _2^{\rm{T}}, \cdots ,\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over u} _n^{\rm{T}}} \right]^{\rm{T}}} $, 同时定义矩阵$ {{B}} = {{{\tilde W}}^{\rm T}}{{\Lambda \tilde W}} $, 则根据式(11)可得:

    $$ \begin{equation} {\sigma _i}{\mathord{\buildrel{\lower3pt\hbox{$ \smile$}} \over u} _i} = {\mathord{\buildrel{\lower3pt\hbox{$ \smile$}} \over u} _i}{{B}}, \quad i = 1, 2, \cdots , n \end{equation} $$ (A7)

    显然, 上式可以看作是矩阵$ {{B}} $的特征值分解.由于$ {{B}} $是一个$ r \times r $维对称正定矩阵, 只有$ r $个相互正交的左行特征向量, 即矩阵$ {{\tilde W}} $只有$ r $个相互正交的行向量.更进一步, 矩阵$ {{\tilde W}} $的这$ r $个非零行向量正好构成了一个正交矩阵, 也就是说此时矩阵$ {{\tilde W}} $可以通过$ {{\tilde W}} = {{{P}}_r}{{Q}} $来表示.

    证明    定义一个置换矩阵$ {{{P}}_r} \ne {{\bar P}} $, 则矩阵$ {{{P}}_r} $中的第$ r + 1 $到$ n $个行向量之中必有一个非零的行向量.由于$ {{{P}}_r} $和$ {{\bar P}} $同为两个置换矩阵, 则必定存在两个对角矩阵$ {{\bar \Lambda }} $和$ {{\hat \Lambda }} $使得下式成立:

    $$ \begin{equation} {{{\bar P}}^{\rm T}}{{\Lambda \bar P}} = {{\bar \Lambda }}, {{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r} = {{\hat \Lambda }} \end{equation} $$ (B1)

    根据上式可得:

    $$ \begin{equation} \begin{cases} {\rm tr}\left( {{{{{\bar P}}}^{\rm T}}{{\Lambda \bar P}}} \right) = \sum\limits_{i = 1}^r {{\lambda _i}} \\ {\rm tr}\left( {{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}} \right) = \sum\limits_{i = 1}^r {{\lambda _{{{\hat j}_i}}}} \end{cases} \end{equation} $$ (B2)

    将特征值$ {\lambda _{\hat ji}} $ $ (i = 1, 2, \cdots , r) $按照降序顺序排列, 即有$ {\hat \lambda _{\hat j1}} > {\hat \lambda _{\hat j2}} > \cdots > {\hat \lambda _{\hat jr}} $, 则对于$ {{{P}}_r} \ne {{\bar P}} $, 则必定存在有$ {\lambda _i} > {\hat \lambda _{\hat ji}}\; (i = 1, 2, \cdots , r) $成立, 即有:

    $$ \begin{equation} {\rm tr}\left( {{{{{\bar P}}}^{\rm T}}{{\Lambda \bar P}}} \right) > {\rm tr}\left( {{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}} \right) \end{equation} $$ (B3)

    由于

    $$ \begin{align} E({{{P}}_r}{{Q}}) = \, & \frac{1}{2}{\rm tr}[({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}{{Q}}){({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r}{{Q}})^{ - 1}}]+\\& \frac{1}{2}{\rm tr}[\ln ({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r}{{Q}}) - {{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{{P}}_r}{{Q}}] = \\& \frac{1}{2}{\rm tr}[({{{Q}}^{\rm T}}{{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r}{{Q}})] - \frac{r}{2} = \\& \frac{1}{2}{\rm tr}[({{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r})] - \frac{r}{2} \end{align} $$ (B4)
    $$ \begin{align} E({{{{\bar P}}}^{\rm T}}{{Q}}) = \, & \frac{1}{2}{\rm tr}[({{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\Lambda \bar PQ}}){({{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\bar PQ}})^{ - 1}}]+ \\& \frac{1}{2}{\rm tr}[\ln ({{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\bar PQ}}) - {{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\bar PQ}}] = \\& \frac{1}{2}{\rm tr}[({{{Q}}^{\rm T}}{{{{\bar P}}}^{\rm T}}{{\Lambda \bar PQ}})] - \frac{r}{2} = \\& \frac{1}{2}{\rm tr}[({{{{\bar P}}}^{\rm T}}{{\Lambda \bar P}})] - \frac{r}{2} \end{align} $$ (B5)

    根据式(B3)有:

    $$ \begin{equation} E({{{P}}_r}{{Q}}) < E({{{\bar P}}^{\rm T}}{{Q}}) \end{equation} $$ (B6)

    即集合$ \left\{ {{P_r}Q|{Q^{\rm{T}}}\Lambda Q > 0\& {{\rm{P}}_{\rm{r}}} \ne {\rm{\bar P}}} \right\} $的点并不是全局极大点.

    由于$ {{{P}}_r} \ne {{\bar P}} $, 则矩阵$ {{\bar P}} $中必定存在一列向量$ {{{\bar p}}_i} $ $ (1 \le i \le r) $, 使得:

    $$ \begin{equation} {{\bar p}}_i^{\rm T}{{{P}}_r} = {{0}} \end{equation} $$ (B7)

    同理, 矩阵$ {{{P}}_r} $中也存在一列向量$ {{{p}}_{r, j}}\; (1 \le j \le r) $使得

    $$ \begin{equation} {{{p}}_{r, j}}{{\bar P}} = {{0}} \end{equation} $$ (B8)

    令$ {{{\bar p}}_i} $的非零元素为$ {\bar j_i} $行, $ {{{p}}_{r, j}} $的非零元素为$ {\hat j_j} $行, 则有$ {\bar j_i} > {\hat j_j} $和$ {\lambda _{{{\hat j}_j}}} > {\lambda _{{{\bar j}_i}}} $.定义矩阵:

    $$ \begin{equation} {{B}} = \left[ {{{{p}}_{r, 1}}, \cdots , \frac{{{{{p}}_{r, i}} + \varepsilon {{{{\bar p}}}_i}}}{{\sqrt {1 + {\varepsilon ^2}} }}, \cdots , {{{p}}_{r, r}}} \right] \end{equation} $$ (B9)

    其中, $ \varepsilon $是正任意小数.由$ {{{\bar p}}_i} $和$ {{{p}}_{r, j}} $有且仅有一个非零元素得

    $$ \begin{align} {{\Lambda B}} = \, & {\rm diag}\left\{ {{\lambda _{\hat j1}}{{{p}}_{r, 1}}, \cdots , } {\frac{{{\lambda _{\hat jj}}{{{p}}_{r, i}} + \varepsilon {\lambda _{\bar ji}}{{{{\bar p}}}_i}}}{{\sqrt {1 + {\varepsilon ^2}} }}, \cdots , {\lambda _{\hat jr}}{{{p}}_{r, r}}} \right\} \end{align} $$ (B10)

    更进一步有:

    $$ \begin{equation} {{{B}}^{\rm T}}{{\Lambda B}} = {\rm diag}\left\{ {{\lambda _{\hat j1}}, \cdots , \frac{{{\lambda _{\hat jj}} + \varepsilon {\lambda _{\bar ji}}}}{{1 + {\varepsilon ^2}}}, \cdots , {\lambda _{\hat jr}}} \right\} \end{equation} $$ (B11)

    通过式(A8)可得:

    $$ \begin{align} & {{{B}}^{\rm T}}{{\Lambda B}} - {{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r} = \\& \qquad {\rm diag}\left\{ {{\lambda _{\hat j1}}, \cdots , \frac{{{\lambda _{\hat jj}} + \varepsilon {\lambda _{\bar ji}}}}{{1 + {\varepsilon ^2}}}, \cdots , {\lambda _{\hat jr}}} \right\}- \\& \qquad {\rm diag}\left\{ {{\lambda _{\hat j1}}, \cdots , {\lambda _{\hat jj}}, \cdots , {\lambda _{\hat jr}}} \right\} = \\& \qquad {\rm diag}\left\{ {0, \cdots , \frac{{\left( { - {\lambda _{\hat jj}} + {\lambda _{\bar ji}}} \right){\varepsilon ^2}}}{{1 + {\varepsilon ^2}}}, \cdots , 0} \right\} \end{align} $$ (B12)

    由于$ {\lambda _{\hat jj}} > {\lambda _{\bar ji}} $, 所以$ {{{B}}^{\rm T}}{{\Lambda B}} - {{P}}_r^{\rm T}{{\Lambda }}{{{P}}_r} $是一个负定矩阵, 因此有:

    $$ \begin{equation} E({{BQ}}) = \frac{1}{2}{\rm tr}[{{{B}}^{\rm T}}{{\Lambda B}}] - \frac{r}{2} < E({{{P}}_r}{{Q}}) \end{equation} $$ (B13)

    即集合$ \left\{ {{P_r}Q|{Q^{\rm{T}}}\hat \Lambda Q > \;0{\rm{\& }}{P_r} \ne \bar P} \right\} $中所有平稳点都是不稳定的鞍点.

    接下来将证明: $ J({{W}}) $没有其他局部极值.令$ {{{\dot U}}_r} = {{{\tilde U'}}_r} + \varepsilon {{{M}}_1} $, 其中$ {{{M}}_1} = [{{0}}, \cdots , {{\pmb {u}}_k}, \cdots , {{0}}] $, $ 1 \le k \le r $.即$ {{{\dot U}}_r} $是$ {{{\tilde U'}}_r} $沿$ {{\pmb {u}}_k} $的方向增长而成.由于$ {{{\tilde U'}}_r} \ne {{{\tilde U}}_r} $, 则必定有$ {\lambda _k} > {\lambda _{jk}} $.

    当$ {{W}} = {{{\dot U}}_r}{{Q}} $时, 有:

    $$ \begin{align} & {\left. {J({{W}})} \right|_{{{W}} = {{{{\dot U}}}_r}{{Q}}}} - {\left. {J({{W}})} \right|_{{{W}} = {{{{\tilde U'}}}_r}{{Q}}}} = \\& \qquad \frac{1}{2}\left( {{\lambda _k} - {\lambda _{jk}}} \right){\varepsilon ^2} + o({\varepsilon ^2}) \end{align} $$ (B14)

    令$ {{{\ddot U}}_r} = {{{\tilde U'}}_r} + \varepsilon {{{M}}_2} $, 其中$ {{{M}}_2} = [{{0}}, \cdots , {{\pmb {u}}_{jk}}, \cdots , {{0}}] $, $ 1 \le k \le r $.即$ {{{\dot U}}_r} $是$ {{{\tilde U'}}_r} $沿$ {{\pmb {u}}_{jk}} $的方向增长而成.当$ {{W}} = {{{\dot U}}_r}{{Q}} $时, 有:

    $$ \begin{align} & {\left. {J({{W}})} \right|_{{{W}} = {{{{\ddot U}}}_r}{{Q}}}} - {\left. {J({{W}})} \right|_{{{W}} = {{{{\tilde U'}}}_r}{{Q}}}} = - 2{\varepsilon ^2} + o({\varepsilon ^2}) \end{align} $$ (B15)

    从式(B14)$ \, \sim\, $(B15)得当$ {{W}} = {{{U'}}_r}{{Q}} $且$ {{W}} \ne {{{\tilde U}}_r}{{Q}} $时, $ J({{W}}) $沿$ {{\pmb {u}}_k} $方向是增的, 而沿$ {{\pmb {u}}_{jk}} $方向是减的, 所以$ J({{W}}) $在该平稳点处不可能取得局部极值.


  • Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000
  •  收稿日期 2019-03-07    录用日期 2019-08-08 Manuscript received March 7, 2019; accepted August 8, 2019 国家自然科学基金 (61573134, 61733004), 湖南省科技计划项目 (2017XK2102, 2018GK2022, 2018JJ3079) 资助 Supported by National Natural Science Foundation of China (61573134, 61733004) and Hunan Key Project of Research and Development Plan (2017XK2102, 2018GK2022, 2018JJ3079) 本文责任编委 阳春华 Recommended by Associate Editor YANG Chun-Hua 1. 湖南大学电气与信息工程学院 长沙 410082    2. 湖南大学机器人视觉感知与控制技术国家工程实验室 长沙 410082    3. 长沙理工大学电气与信息工程学院 长沙 410114    4. 郑州轻工业大学电气与信息工程学院 郑州 450000 1. College of Electrical and Information Engineering, Hunan University, Changsha 410082     2. National Engineering Laboratory of Robot Vision Perception and Control Technology, Hunan University, Changsha 410082    3. College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114    4. College of Electrical and  Information
  • 图  1  钢轨表面成像系统

    Fig.  1  Rail surface imaging system

    图  2  本文提出缺陷检测算法的整体框架

    Fig.  2  Overview of the proposed rail defect detection algorithm

    图  3  贝叶斯网络DeeperLab的编码器 − 解码器架构

    Fig.  3  Encoder-decoder architecture of the proposed DeeperLab

    图  4  嵌有Dropout的改进Xception网络

    Fig.  4  Improved Xception network with Dropout

    图  5  损失注意力网络(LAN)的结构示意图

    Fig.  5  Structure of the proposed loss attention network (LAN)

    图  6  不同钢轨场景下LAN网络对不同尺度表面缺陷的检测结果

    Fig.  6  LAN detection results of different scaled defects in various rail scenes

    图  7  不同条件的LAN测试箱形图

    Fig.  7  Box-plot of LAN in difierent conditions

    图  8  本文方法和其他方法在不同钢轨样本的测试结果

    Fig.  8  Results of the proposed method and other methods on various rail samples

    图  9  不同钢轨场景类型的P-R曲线

    Fig.  9  P-R curves of difierent rail scene types

    图  10  使用不同批量尺寸训练的测试结果

    Fig.  10  Results of our method with difierent batch sizes

    表  1  本文方法和其他方法在不同钢轨样本的定量结果

    Table  1  Quantitative results of our method and other methods in various rail samples

    图像 指标/方法 FCN[32] Unet[34] SegNet[35] PSPNet[36] 之前工作[29] DeepLab v3+[25] Mask RCNN[23] 本文方法
    样本 1 MCR (%) 2.25 11.28 1.87 1.12 4.71 1.33 0.94 1.01
    RI (%) 97.65 80.87 98.33 98.57 92.46 98.39 98.65 99.60
    PSNR (dB) 19.18 28.93 21.09 25.56 24.33 21.46 29.07 32.78
    Jacc (%) 31.86 41.67 41.92 64.06 58.35 44.15 81.55 91.09
    VI (pixel) 0.20 0.91 0.16 0.12 0.50 0.14 0.11 0.08
    样本 2 MCR (%) 1.69 29.72 1.58 1.35 3.43 2.40 2.27 2.49
    RI (%) 98.19 53.90 98.31 98.65 96.63 98.42 98.36 98.61
    PSNR (dB) 19.37 23.50 19.97 21.49 20.01 24.76 24.53 26.07
    Jacc (%) 57.60 27.43 61.19 69.01 59.23 81.84 78.72 85.99
    VI (pixel) 0.16 2.24 0.17 0.13 0.31 0.17 0.17 0.15
    样本 3 MCR (%) 6.79 31.77 8.95 3.24 14.78 7.91 6.73 6.85
    RI (%) 89.00 57.92 93.65 95.35 82.54 95.79 96.40 97.63
    PSNR (dB) 12.12 16.95 15.40 15.81 11.41 18.29 19.89 23.37
    Jacc (%) 46.47 38.81 64.76 66.97 39.73 78.69 81.00 91.99
    VI (pixel) 0.52 2.65 0.44 0.31 1.04 0.35 0.35 0.24
    样本 4 MCR (%) 4.66 45.13 10.85 4.45 14.95 11.25 8.43 8.51
    RI (%) 94.41 44.64 92.49 13.62 84.56 91.29 95.16 96.10
    PSNR (dB) 14.93 16.94 14.15 15.98 19.97 14.96 19.80 21.53
    Jacc (%) 64.13 31.80 60.45 67.33 83.72 64.04 82.88 88.98
    VI (pixel) 0.44 3.67 0.61 0.47 1.16 0.68 0.49 0.42
    样本 5 MCR (%) 7.83 23.93 7.61 12.30 13.98 14.07 11.98 12.21
    RI (%) 89.42 76.97 89.73 92.63 91.11 89.75 91.80 95.91
    PSNR (dB) 12.34 19.27 12.53 16.67 16.36 13.42 15.80 19.98
    Jacc (%) 59.42 70.08 61.14 76.56 76.15 65.02 71.83 89.84
    VI (pixel) 0.68 2.09 0.66 0.81 1.00 0.66 0.79 0.51
    样本 6 MCR (%) 9.00 17.68 8.64 8.31 14.30 9.54 6.60 7.35
    RI (%) 94.33 79.14 95.12 94.87 84.60 93.16 98.00 97.44
    PSNR (dB) 16.11 20.54 16.56 17.70 12.45 15.80 22.38 22.64
    Jacc (%) 69.14 59.89 71.84 74.68 49.52 67.57 89.78 91.15
    VI (pixel) 0.45 1.62 0.40 0.47 0.98 0.53 0.28 0.26
    下载: 导出CSV

    表  2  不同贝叶斯变体的性能(%)

    Table  2  Performance of difierent Bayesian variants (%)

    概率变体 加权平均法 蒙特卡罗采样法
    Jacc Dice Jacc Dice
    无 Dropout 68.36 68.95
    编码器 55.24 56.71 64.60 66.07
    解码器 61.78 61.34 63.92 65.88
    编−解码器 58.62 60.12 60.57 62.49
    输入流 75.44 76.21 82.65 80.33
    中间流 83.12 80.69 90.43 91.52
    输出流 68.50 67.33 77.21 78.06
    下载: 导出CSV

    表  3  综合性能的消融研究

    Table  3  Ablation experiment of comprehensive performance

    方法 Pixel Jacc.
    (%)
    运行时间 (ms) 模型成本(MB) 训练成本(GB)
    60 × 40 250 × 160 500 × 300
    MobileNet (β = 16) 77.17 19.91 53.10 133.49 23 3.82
    ResNet50 (β = 16) 77.80 40.55 141.92 336.36 274 4.43
    ResNet101 (β = 16) 78.45 66.37 181.80 431.42 477 6.99
    Xception34 (β = 16) 81.66 46.64 149.13 352.70 288 3.97
    Xception34 + DA (β = 16) 83.25 3.95
    Xception65 + DA (β = 16) 88.73 79.64 159.29 517.70 439 4.20
    Xception65 + DA + MC (β = 16) 91.46 90.26 180.53 586.73 5.56
    下载: 导出CSV
  • [1] 贺振东, 王耀南, 毛建旭, 印峰. 基于反向P-M扩散的钢轨表面缺陷视觉检测. 自动化学报, 2014, 40(8): 1667−1679

    1 He Zhen-Dong, Wang Yao-Nan, Mao Jian-Xu, Yin Feng. Research on inverse P-M diffusion-based rail surface defect detection. Acta Automatica Sinica, 2014, 40(8): 1667−1679
    [2] 2 He Z D, Wang Y N, Yin F, Liu J. Surface defect detection for high-speed rails using an inverse PM diffusion model. Sensor Review, 2016, 36(1): 86−97 doi: 10.1108/SR-03-2015-0039
    [3] 3 Resendiz E, Hart J M, Ahuja N. Automated visual inspection of railroad tracks. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 751−760 doi: 10.1109/TITS.2012.2236555
    [4] 孙次锁, 张玉华. 基于智能识别与周期检测的钢轨伤损自动预警方法研究. 铁道学报, 2018, 40(11): 140−146 doi: 10.3969/j.issn.1001-8360.2018.11.020

    4 Sun Ci-Suo, Zhang Yu-Hua. Research on automatic early warning method for rail flaw based on intelligent identification and periodic detection. Journal of the China Railway Society, 2018, 40(11): 140−146 doi: 10.3969/j.issn.1001-8360.2018.11.020
    [5] 5 Liang B, Iwnicki S, Ball A, Young A E. Adaptive noise cancelling and time-frequency techniques for rail surface defect detection. Mechanical Systems and Signal Processing, 2015, 54−55: 41−51
    [6] 6 Gibert X, Patel V M, Chellappa R. Deep multitask learning for railway track inspection. IEEE Transactions on Intelligent transportation systems, 2017, 18(1): 153−164 doi: 10.1109/TITS.2016.2568758
    [7] Giben X, Patel V M, Chellappa R. Material classification and semantic segmentation of railway track images with deep convolutional neural networks. In: Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Québec, Canada: IEEE, 2015: 621−625
    [8] Faghih-Roohi S, Hajizadeh S, Núñez A, Babuska R. Deep convolutional neural networks for detection of rail surface defects. In: Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), IEEE, 2016: 2584−2589
    [9] Masci J, Meier U, Ciresan D, et al. Steel defect classification with max-pooling convolutional neural networks. In: Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), IEEE, 2012: 1−6
    [10] 10 Chen J W, Liu Z Y, Wang H R, Núñez A, Han Z W. Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Transactions on Instrumentation and Measurement, 2018, 67(2): 257−269 doi: 10.1109/TIM.2017.2775345
    [11] 11 Liu Z G, Wang L Y, Li C J, Yang G J, Han Z W. A high-precision loose strands diagnosis approach for isoelectric line in high-speed railway. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1067−1077 doi: 10.1109/TII.2017.2774242
    [12] 12 Zhong J P, Liu Z T, Han Z W, Han Y, Zhang W X. A CNN-based defect inspection method for catenary split pins in high-speed railway. IEEE Transactions on Instrumentation and Measurement, 2018
    [13] 袁静, 章毓晋. 融合梯度差信息的稀疏去噪自编码网络在异常行为检测中的应用. 自动化学报, 2017, 43(4): 604−610

    13 Yuan Jing, Zhang Yu-Jin. Application of sparse denoising auto encoder network with gradient difference information for abnormal action detection. Acta Automatica Sinica, 2017, 43(4): 604−610
    [14] 唐贤伦, 杜一铭, 刘雨微, 李佳歆, 马艺玮. 基于条件深度卷积生成对抗网络的图像识别方法. 自动化学报, 2018, 44(5): 855−864

    14 Tang Xian-Lun, Du Yi-Ming, Liu Yu-Wei, Li Jia-Xin, Ma Yi-Wei. Image recognition with conditional deep convolutional generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 855−864
    [15] 辛宇, 杨静, 谢志强. 基于标签传播的语义重叠社区发现算法. 自动化学报, 2014, 40(10): 2262−2275

    15 Xin Yu, Yang Jing, Xie Zhi-Qiang. An overlapping semantic community structure detecting algorithm by label propagation. Acta Automatica Sinica, 2014, 40(10): 2262−2275
    [16] 16 Denker J S, Lecun Y. Transforming neural-net output levels to probability distributions. Advances in Neural Information Processing Systems, 1991: 853−859
    [17] 17 MacKay D J C. A practical Bayesian framework for backpropagation networks. Neural Computation, 1992, 4(3): 448−472 doi: 10.1162/neco.1992.4.3.448
    [18] 18 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929−1958
    [19] Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 2016 International Conference on Machine Learning, 2016: 1050−1059
    [20] 郑文博, 王坤峰, 王飞跃. 基于贝叶斯生成对抗网络的背景消减算法. 自动化学报, 2018, 44(5): 878−890

    20 Zheng Wen-Bo, Wang Kun-Feng, Wang Fei-Yue. Background subtraction algorithm with Bayesian generative adversarial networks. Acta Automatica Sinica, 2018, 44(5): 878−890
    [21] Fu J, Zheng H, Mei T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4438−4446
    [22] Wang F, Jiang M Q, Qian C, Yang S, Li C, Zhang H G, et al. Residual attention network for image classification. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 3156−3164
    [23] He K M, Gkioxari G, Dollar P, Girshick R. Mask R-CNN. In: Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2961−2969
    [24] 24 Lin H, Shi Z, Zou Z. Fully convolutional network with task partitioning for inshore ship detection in optical remote sensing images. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1665−1669 doi: 10.1109/LGRS.2017.2727515
    [25] Chen L C, Zhu Y K, Papandreou G, Schroff F, Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the 2018 European Conference on Computer Vision (ECCV), 2018: 801−818
    [26] 韩江洪, 乔晓敏, 卫星, 陆阳. 基于空间卷积神经网络的井下轨道检测方法. 电子测量与仪器学报, 2018, 32(12): 34−43

    26 Han Jiang-Hong, Qiao Xiao-Min, Wei Xing, Lu Yang. Downhole track detection method based on spatial convolutional neural network. Journal of Electronic Measurement and Instrumentation, 2018, 32(12): 34−43
    [27] 时增林, 叶阳东, 吴云鹏, 娄铮铮. 基于序的空间金字塔池化网络的人群计数方法. 自动化学报, 2016, 42(6): 866−874

    27 Shi Zeng-Lin, Ye Yang-Dong, Wu Yun-Peng, Lou Zheng-Zheng. Crowd counting using rank-based spatial pyramid pooling network. Acta Automatica Sinica, 2016, 42(6): 866−874
    [28] Chen L C, Papandreou G, Kokkinos I, Murphy K, Yuille A L. Semantic image segmentation with deep convolutional nets and fully connected CRFs, arXiv preprint arXiv: 1412. 7062, 2014
    [29] 张辉, 金侠挺, Wu Q M Jonathan, 贺振东, 王耀南. 基于曲率滤波和改进GMM的钢轨缺陷自动视觉检测方法. 仪器仪表学报, 2018, 39(4): 181−194

    29 Zhang Hui, Jin Xia-Ting, Wu Q. M. Jonathan, He Zhen-Dong, Wang Yao-Nan. Automatic visual detection method of railway surface defects based on curvature filtering and Improved GMM. Chinese Journal of Scientific Instrument, 2018, 39(4): 181−194
    [30] 骆小飞, 徐军, 陈佳梅. 基于逐像素点深度卷积网络分割模型的上皮和间质组织分割. 自动化学报, 2017, 43(11): 2003−2013

    30 Luo Xiao-Fei, Xu Jun, Chen Jia-Mei. A deep convolutional network for pixel-wise segmentation on epithelial and stromal tissues in histologic images. Acta Automatica Sinica, 2017, 43(11): 2003−2013
    [31] Chollet F. Xception: deep learning with depthwise separable convolutions. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251−1258
    [32] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 3431−3440
    [33] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779−788
    [34] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. In: Proceedings of the 2015 International Conference on Medical image Computing and Computer-assisted Intervention, Springer, Cham, 2015: 234−241
    [35] 35 Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481−2495 doi: 10.1109/TPAMI.2016.2644615
    [36] 36 Zhao H S, Shi J P, Qi X J, Wang X G, Jia J Y. Pyramid scene parsing network. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881−2890
  • 期刊类型引用(28)

    1. 何成刚,张坤雄,俞茹昕,王欣纪,徐逸勋,刘吉华. 机器视觉在钢轨表面病害检测应用研究综述. 高速铁路新材料. 2024(01): 7-13 . 百度学术
    2. 杨春龙,吕东澔,张勇,任彦,李少波. 融合自适应下采样的带钢表面缺陷检测算法. 钢铁研究学报. 2024(06): 806-816 . 百度学术
    3. 李磊,李妍. 基于改进YOLOV7的钢轨表面伤损智能检测研究. 中国战略新兴产业. 2024(17): 140-143 . 百度学术
    4. 郑广智,彭添强,肖计春,吴高昌,李智,柴天佑. 基于语义信息增强的化纤丝线网络度检测方法. 自动化学报. 2024(10): 1963-1976 . 本站查看
    5. 王煜,齐宏拓,杨整涛,程柯帏,伍洲. 基于点云分层融合架构的混凝土气孔缺陷量化评估方法. 仪器仪表学报. 2024(07): 86-98 . 百度学术
    6. 井庆龙,闵永智,李成学. 融合贝叶斯优化的轨面缺陷检测模型压缩方法. 兰州交通大学学报. 2024(05): 130-138 . 百度学术
    7. 王耀东,于航,李宁,朱力强,史红梅,余祖俊. 基于纹理特征增强的重载铁路钢轨缺陷检测算法. 铁道学报. 2024(11): 93-101 . 百度学术
    8. 马居坡,陈周熠,吴金建. 基于动态视觉传感器的铝基盘片表面缺陷检测. 自动化学报. 2024(12): 2407-2419 . 本站查看
    9. 张晓宇,李立明,柴晓冬,郑树彬,汪晨曦. 基于级联网络的钢轨顶面缺陷检测方法研究. 铁道标准设计. 2023(03): 90-97 . 百度学术
    10. 兰欢,余建波. 基于深度学习三维成型的钢板表面缺陷检测. 浙江大学学报(工学版). 2023(03): 466-476+561 . 百度学术
    11. 周云海,靳广伟,于高缘,黄伟,迟婉求,黄南天. 基于BAGAN-CNN的局部放电模式识别. 电气应用. 2023(07): 25-33 . 百度学术
    12. 吴福培,谢晓扬,黄耿楠,吴涛,李昇平. 基于Anchors设计和模型迁移的钢轨内部伤损检测方法. 铁道学报. 2023(10): 112-119 . 百度学术
    13. 张泽辉,李庆丹,富瑶,何宁昕,高铁杠. 面向非独立同分布数据的自适应联邦深度学习算法. 自动化学报. 2023(12): 2493-2506 . 本站查看
    14. 杨杨,黄菊. 基于机器视觉的直插式网络变压器PIN脚平整度检测. 四川职业技术学院学报. 2023(06): 152-157 . 百度学术
    15. 曹义亲,刘龙标,何恬,丁要男. 基于贪心选择及斜率探测扩充的轨面提取方法. 计算机科学与探索. 2022(01): 205-216 . 百度学术
    16. 王品学,张绍兵,成苗,何莲,秦小山. 基于可变形卷积和自适应空间特征融合的硬币表面缺陷检测算法. 计算机应用. 2022(02): 638-645 . 百度学术
    17. 马天鸽. 基于光纤感测技术的城市轨道交通钢轨状态实时监测方法. 机械与电子. 2022(02): 50-54 . 百度学术
    18. 吴捷. 基于改进YOLOv3模型的接触轨表面缺陷检测方法. 设备管理与维修. 2022(06): 30-32 . 百度学术
    19. 余文勇,张阳,姚海明,石绘. 基于轻量化重构网络的表面缺陷视觉检测. 自动化学报. 2022(09): 2175-2186 . 本站查看
    20. 赵晨阳,张辉,廖德,李晨. 基于注意力机制与混合监督学习的钢轨表面缺陷检测模型. 计算机科学. 2022(S2): 488-493 . 百度学术
    21. 刘金海,赵真,付明芮,左逢源,王雷. 基于主动小样本学习的管道焊缝缺陷检测方法. 仪器仪表学报. 2022(11): 252-261 . 百度学术
    22. 邓泽林,刘行,董云龙,袁烨. 无纺布疵点实时检测技术与系统设计. 自动化学报. 2021(03): 583-593 . 本站查看
    23. 徐科,甘伟,焦建朋,张俊升,朱华林,周东东. 基于光度立体的钢轨表面三维重建方法. 河北冶金. 2021(05): 18-22+82 . 百度学术
    24. 黄健,郑春厚,章军,王兵,陈鹏. 基于小样本度量迁移学习的表面缺陷检测. 模式识别与人工智能. 2021(05): 407-414 . 百度学术
    25. 曹义亲,丁要男. 基于HSV色彩空间S分量的轨面区域提取方法. 南京理工大学学报. 2021(04): 464-471 . 百度学术
    26. 姜迪,刘慧,李钰,张彩明. 结合稠密特征映射的CT图像肿瘤分割模型. 计算机辅助设计与图形学学报. 2021(08): 1273-1286 . 百度学术
    27. 景志远,王二化,朱彪. 粗轧板坯表面裂纹检测与控制的应用. 冶金自动化. 2021(06): 76-83 . 百度学术
    28. 李杰,李响,许元铭,杨绍杰,孙可意. 工业人工智能及应用研究现状及展望. 自动化学报. 2020(10): 2031-2044 . 本站查看

    其他类型引用(51)

  • 加载中
  • 图(10) / 表(3)
    计量
    • 文章访问数:  3933
    • HTML全文浏览量:  1249
    • PDF下载量:  650
    • 被引次数: 79
    出版历程
    • 收稿日期:  2019-03-07
    • 录用日期:  2019-08-08
    • 刊出日期:  2019-12-01

    目录

    /

    返回文章
    返回