2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于事件触发二阶多智能体系统的固定时间比例一致性

陈世明 邵赛 姜根兰

陈世明, 邵赛, 姜根兰. 基于事件触发二阶多智能体系统的固定时间比例一致性. 自动化学报, 2022, 48(1): 261−270 doi: 10.16383/j.aas.c190128
引用本文: 陈世明, 邵赛, 姜根兰. 基于事件触发二阶多智能体系统的固定时间比例一致性. 自动化学报, 2022, 48(1): 261−270 doi: 10.16383/j.aas.c190128
Chen Shi-Ming, Shao Sai, Jiang Gen-Lan. Distributed event-triggered fixed-time scaled consensus control for second-order multi-agent systems. Acta Automatica Sinica, 2022, 48(1): 261−270 doi: 10.16383/j.aas.c190128
Citation: Chen Shi-Ming, Shao Sai, Jiang Gen-Lan. Distributed event-triggered fixed-time scaled consensus control for second-order multi-agent systems. Acta Automatica Sinica, 2022, 48(1): 261−270 doi: 10.16383/j.aas.c190128

基于事件触发二阶多智能体系统的固定时间比例一致性

doi: 10.16383/j.aas.c190128
基金项目: 国家自然科学基金(61973118, 11662002),江西省科技厅项目(20182BCB22009, 20171BAB202029, 20165BCB19011)资助
详细信息
    作者简介:

    陈世明:华东交通大学电气与自动化 工程学院教授. 2006 年于华中科技大学获得博士学位. 主要研究方向为复杂网络理论及应用, 多智能体系统协调控制, PSO 优化算法. 本文通信作者. E-mail: shmchen@ecjtu.jx.cn

    邵赛:华东交通大学电气与自动化工程学院硕士研究生. 主要研究方向为多智能体系统协调控制. E-mail: 15797863922@163.com

    姜根兰:华东交通大学电气与自动化工程学院硕士研究生. 主要研究方向为多智能体系统协调控制. E-mail: jiang094921@163.com

Distributed Event-triggered Fixed-time Scaled Consensus Control for Second-order Multi-agent Systems

Funds: Supported by National Natural Science Foundation of China (61973118, 11662002), Project in JiangXi Province Department of Science and Technology (20182BCB22009, 20171BAB202029, 20165BCB19011)
More Information
    Author Bio:

    CHEN Shi-Ming Professor at the School of Electrical and Automation Engineering, East China Jiaotong University. He received his Ph. D. degree from Huazhong University of Science and Technology. His research interest covers complex network theory and application, coordination control of multi-agent systems, and particle swarm optimization algorithm. Corresponding author of this paper

    SHAO Sai Master student at the School of Electrical and Automation Engineering, East China Jiaotong University. His research interest covers coordination control of multi-agent systems

    JIANG Gen-Lan Master student at the School of Electrical and Automation Engineering, East China Jiaotong University. His research interest covers coordination control of multi-agent systems

  • 摘要: 研究了在无向拓扑下, 由多个子群组成的二阶多智能体系统的固定时间比例一致性问题, 采用反推法设计了一种基于事件触发的固定时间非线性比例一致控制策略, 该策略包含分段式事件触发函数: 当智能体在追踪虚拟速度时, 给出了基于速度信息的触发条件; 当智能体速度与虚拟速度达到一致时, 切换至基于位置信息的触发条件, 可有效减少系统能量耗散及控制器更新频次. 通过在位置和速度状态上设置比例参数, 在固定时间内可实现不同子群智能体之间的比例一致. 利用代数图论、线性矩阵不等式以及Lyapunov稳定性理论, 证明在该控制策略下, 二阶多智能体系统能实现固定时间比例一致性, 且不存在Zeno行为. 最后, 仿真实例进一步验证了理论结果的有效性.
  • 图  1  拓扑图

    Fig.  1  Topological graph

    图  2  各智能体在控制策略(10)下的状态轨迹

    Fig.  2  Trajectories of agents under controller (10)

    图  3  各智能体在控制策略(10)下的速度状态

    Fig.  3  Velocities of agents under controller (10)

    图  4  追踪虚拟速度的误差

    Fig.  4  Tracking the error of virtual speed

    图  5  智能体1在触发条件(17)下的测量误差及阈值变化趋势

    Fig.  5  The evolution of the error norm and the threshold of agent 1 with trigger function (17)

    图  6  智能体1在触发条件(25)下的测量误差及阈值变化趋势

    Fig.  6  The evolution of the error norm and the threshold of agent 1 with trigger function (25)

    图  7  各智能体在控制策略(10)下的触发间隔及在时间触发控制策略下的触发间隔

    Fig.  7  The triggered interval of each agent undercontrol scheme (10) and the trigger interval underthe time trigger control strategy

    图  8  各智能体的状态误差

    Fig.  8  State errors of agents

    图  9  拓扑图

    Fig.  9  Topological graph

    图  10  各智能体在控制策略(10)下的状态轨迹

    Fig.  10  Trajectories of agents under controller (10)

    图  11  各智能体在控制策略(10)下的速度状态

    Fig.  11  Velocities of agents under controller (10)

    图  12  追踪虚拟速度的误差

    Fig.  12  Tracking the error of virtual speed

  • [1] Thunberg J, Goncalves J, Hu X. Consensus and formation control on SE(3) for switching topologies[J]. Automatica, 2016, 66(5): 63-82.
    [2] Xiao F, Wang L, Chen J, Gao Y P. Finite-time formation control for multi-agent systems[J]. Automatica, 2009, 45(11): 2605-2611. doi: 10.1016/j.automatica.2009.07.012
    [3] Martin S. Multi-agent flocking under topological interactions[J]. Systems & Control Letters, 2014, 69(1): 53-61.
    [4] 陈世明, 化俞新, 祝振敏, 赖强. 邻域交互结构优化的多智能体快速蜂拥控制算法[J]. 自动化学报, 2015, 41(12): 2092-2099.

    CHEN Shi-Ming, HUA Yu-Xin, ZHU Zhen-Min, LAI Qiang. Fast flocking algorithm for multi-agent systems by opti-mizing local interactive topology[J]. Acta Automatica Sinica, 2015, 41(12): 2092-2099.
    [5] Huang N, Duan Z, Zhao Y. Consensus of multi-agent systems via delayed and intermittent communications[J]. IET Control Theory and Applications, 2015, 9(1): 62-73. doi: 10.1049/iet-cta.2014.0729
    [6] Zhao M, Peng C, He W L, Song Y. Event-triggered communication for leader-following consensus of second-order multiagent systems[J]. IEEE Transactions on Cybernetics, 2018, 48(6): 1888-1897. doi: 10.1109/TCYB.2017.2716970
    [7] Li J P, Yang Y N, Hua C C, Guan X P. Fixed-time backstepping control design for high-order strict-feedback non-linear systems via terminal sliding mode[J]. IET Control Theory and Applications, 2017, 11(8): 1184-1193. doi: 10.1049/iet-cta.2016.1143
    [8] Wang H H, Chen B, Lin C, Sun Y M, Wang F. Adaptive flnite-time control for a class of uncertain high-order nonlinear systems based on fuzzy approximation[J]. IET Control Theory and Applications, 2017, 11(5): 677-684. doi: 10.1049/iet-cta.2016.0947
    [9] Paulo T. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 2680-1685.
    [10] Dimos V D, Emilio F, Karl H J. Distributed event-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2012, 57(5): 1291-1297. doi: 10.1109/TAC.2011.2174666
    [11] Hu A H, Cao J, Hu M F, Guo L X. Event-triggered consensus of multi-agent systems with noises[J]. Journal of the Franklin Institute, 2015, 352(9): 3489-3503. doi: 10.1016/j.jfranklin.2014.08.005
    [12] Fan Y, Feng G, Wang Y, Song C. Distributed eventtriggered control of multi-agent systems with combinational measurements[J]. Automatica, 2013, 49(2): 671-675. doi: 10.1016/j.automatica.2012.11.010
    [13] Hu A H, Cao J. Consensus of multi-agent systems via intermittent event-triggered control[J]. International Journal of Systems Science, 2017, 48(2): 280-287. doi: 10.1080/00207721.2016.1179817
    [14] Zhu Y K, Guan X P, Luo X Y, Li S B. Finite-time consensus of multi-agent system via nonlinear event-triggered control strategy[J]. IET Control Theory and Applications, 2015, 9(17): 2548-2552. doi: 10.1049/iet-cta.2014.0533
    [15] Yu S H, Wang Y L, Jin L N. Comments on ’Finite-time consensus of multi-agent system via non-linear event-triggered control strategy’[J]. IET Control Theory and Applications, 2017, 11(10): 1658-1661. doi: 10.1049/iet-cta.2016.0955
    [16] Dong Y, Xian J G. Finite-time event-triggered consensus for non-linear multi-agent networks under directed network topology[J]. IET Control Theory and Applications, 2017, 11(15): 2458-2464. doi: 10.1049/iet-cta.2017.0085
    [17] Liu J, Yu Y, Sun J, Sun C Y. Distributed event-triggered fixed-time consensus for leader-follower multiagent systems with nonlinear dynamics and uncertain disturbances[J]. International Journal of Robust and Nonlinear Control, 2018, 28(11): 3543-3559 doi: 10.1002/rnc.4098
    [18] Roy S. Scaled consensus[J]. Automatica, 2015, 51 : 259-262. doi: 10.1016/j.automatica.2014.10.073
    [19] Meng D, Jia Y. Scaled consensus problems on switching networks[J]. IEEE Transactions on Automatic Control, 2016, 61(6): 1664-1669. doi: 10.1109/TAC.2015.2479119
    [20] Yu J, Shi Y. Scaled group consensus in multiagent systems with flrst/second-order continuous dynamics[J]. IEEE Transactions on Cybernetics, 2018, 48(8): 2259-2271. doi: 10.1109/TCYB.2017.2731601
    [21] Meng D, Jia Y. Robust consensus algorithms for multiscale coordination control of multi-vehicle systems with disturbances[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2): 1107-1119. doi: 10.1109/TIE.2015.2478740
    [22] Olfatisaber R, Murray R M. Consensus problems in networks of agents with switching topology and timedelays[J]. IEEE Transactions on Automatic Control 2004, 49(9): 1520-1533. doi: 10.1109/TAC.2004.834113
    [23] Ning B, Jin J, Zheng J C, Man Z H. Finite-time and fixed-time leader-following consensus for multi-agent systems with discontinuous inherent dynamics[J]. International Journal of Control, 2017, 91(6): 1259-1270.
    [24] Zuo Z, Lin T. A new class of flnite-time nonlinear consensus protocols for multi-agent systems[J]. International Journal of Control, 2014, 87(2): 363-370. doi: 10.1080/00207179.2013.834484
    [25] Wei X Y, Yu W W, Wang H, Yao Y Y, Mei F. An observer based fixed-time consensus control for second-order multi-agent systems with disturbances[J]. IEEE Transactions on Circuits and Systems Ⅱ Express Briefs, 2019, 66(2): 247-251. doi: 10.1109/TCSII.2018.2831922
  • 加载中
图(12)
计量
  • 文章访问数:  969
  • HTML全文浏览量:  233
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 录用日期:  2019-08-15
  • 网络出版日期:  2022-01-14
  • 刊出日期:  2022-01-25

目录

    /

    返回文章
    返回