2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针对执行器非光滑反向间隙-饱和的柔性立管边界控制

赵志甲 任志刚

刘秀翀, 王占山. 系统H∞范数计算:Lyapunov函数的直接优化方法. 自动化学报, 2019, 45(8): 1606-1610. doi: 10.16383/j.aas.c180619
引用本文: 赵志甲, 任志刚. 针对执行器非光滑反向间隙 − 饱和的柔性立管边界控制. 自动化学报, 2019, 45(11): 2050−2057 doi: 10.16383/j.aas.c190126
LIU Xiu-Chong, WANG Zhan-Shan. Calculation of the System H∞ Norm: a Lyapunov Function Optimization Method. ACTA AUTOMATICA SINICA, 2019, 45(8): 1606-1610. doi: 10.16383/j.aas.c180619
Citation: Zhao Zhi-Jia, Ren Zhi-Gang. Boundary control of a flexible marine riser subject to nonsmooth actuator backlash-saturation constraints. Acta Automatica Sinica, 2019, 45(11): 2050−2057 doi: 10.16383/j.aas.c190126

针对执行器非光滑反向间隙-饱和的柔性立管边界控制

doi: 10.16383/j.aas.c190126
基金项目: 

国家自然科学基金 61703114

广东省教育厅创新强校项目 2017KZDXM060

广东省教育厅创新强校项目 2017KQNCX153

国家自然科学基金 61803109

广州市科技计划项目 201904010494

广东省教育厅创新强校项目 2018KQNCX192

广州市科技计划项目 201904010475

详细信息
    作者简介:

    赵志甲  广州大学机械与电气工程学院讲师.主要研究方向为柔性机械系统, 海洋控制论, 机器人学.E-mail:zhjzhaoscut@163.com

    通讯作者:

    任志刚 广东工业大学自动化学院讲师.主要研究方向为分布参数系统控制, 自适应学习与控制.本文通信作者.E-mail:renzhigang@gdut.edu.cn

Boundary Control of a Flexible Marine Riser Subject to Nonsmooth Actuator Backlash-Saturation Constraints

Funds: 

National Natural Science Foundation of China 61703114

Innovative School Project of Education Department of Guangdong 2017KZDXM060

Innovative School Project of Education Department of Guangdong 2017KQNCX153

National Natural Science Foundation of China 61803109

Science and Technology Planning Project of Guangzhou City 201904010494

Innovative School Project of Education Department of Guangdong 2018KQNCX192

Science and Technology Planning Project of Guangzhou City 201904010475

More Information
    Author Bio:

    Lecturer at the School of Mechanical and Electrical Engineering, Guangzhou University. His research interest covers flexible mechanical systems, ocean cybernetics, and robotics

    Corresponding author: REN Zhi-Gang Lecturer at the School of Automation, Guangdong University of Technology. His research interest covers distributed parameter system control and adaptive learning and control. Corresponding author of this paper
  • 摘要: 研究了针对执行器非光滑反向间隙-饱和约束特性的深海柔性立管系统振动控制和全局稳定问题.为了实现控制效果和品质,引入辅助系统和函数设计边界控制策略,以抑制立管系统振动并消除混合的反向间隙-饱和输入非线性影响.采用严格的分析且无需求助于模型降阶,所研发的控制器确保闭环系统在Lyapunov意义下的一致有界稳定性.通过选取恰当的设计参数,仿真结果验证了所设计控制器的控制性能.能.
    Recommended by Associate Editor YAO Peng-Fei
  • $ H_{\infty} $控制理论主要研究抑制干扰和不确定性问题[1].在$ H_{\infty} $控制理论中, 传递函数(或系统)的$ H_{\infty} $范数是一项重要的性能指标, 用于度量扰动输入对系统输出的影响, 反映了闭环系统的抗扰能力.在$ H_{\infty} $控制理论研究中, 长期存在一个挑战性议题:是否能够直接给出关于$ H_{\infty} $范数的通用解析表达式, 进而避免针对线性矩阵不等式(Linear matrix inequality, LMI)约束条件的繁琐的$ H_{\infty} $范数近似寻优方案.

    在20世纪80年代, $ H_{\infty} $控制理论的研究由频域转换到时域, 开启了基于状态空间方程描述的系统鲁棒性能研究[2].总的来说, $ H_{\infty} $性能时域分析面临的核心问题是如何选择适当的李雅普诺夫函数.具体表现为基于李雅普诺夫方程[3-4]或参数化Riccati不等式[5]均难以得到用于精确分析系统$ H_{\infty} $性能的最优李雅普诺夫函数, 因此在早期的研究中结果的保守性是难以避免的.

    为精确求解$ H_{\infty} $范数, 有学者提出了有界实引理[6], 并将求解$ H_{\infty} $范数问题转化为时域状态空间的约束优化问题.基于有界实引理给出的LMI约束条件, $ H_{\infty} $范数能够被近似寻优[7-14].在LMI方法中, $ H_{\infty} $范数的寻优一般包含以下步骤:

    1) 给出一个充分大的初始$ H_{\infty} $范数估计$ \mit\gamma $;

    2) 解LMI问题;

    3) 递减$ H_{\infty} $范数估计$ \mit\gamma $, 直到获得满足LMI条件的最小$ H_{\infty} $范数估计$ \mit\gamma $.

    显然, 一旦最小$ H_{\infty} $范数估计得到, 则通过解LMI, 可以得到相应的近似最优李雅普诺夫函数.不难发现, LMI方法存在一定不足, 表现为:

    1) 对于每一个给定的$ \mit\gamma $, LMI条件需要被重复求解, 直到找到最小的$ H_{\infty} $范数估计, 过程过于繁琐;

    2) 这种试凑逼近方法无法揭示系统结构和参数对$ H_{\infty} $性能的影响, 在一定程度上限制了控制器精细设计的研究.

    为了克服目前关于$ H_{\infty} $范数问题研究的不足, 一个可替换的方法是直接优化李雅普诺夫函数, 进而得到关于$ H_{\infty} $范数的通用解析表达式.目前, 针对系统具体性能, 难以找到李雅普诺夫函数设计的充要条件, 因此这方面的研究并不多见.事实上, 在分析系统具体性能时, 存在最优的李雅普诺夫函数, 并且这一最优李雅普诺夫函数与系统结构和参数存在内在关系[15].因此本文尝试寻找一种李雅普诺夫函数的直接优化途径, 进而实现$ H_{\infty} $性能的精确分析.

    由于多数高阶系统在一定的条件下可以近似(或分解)为二阶系统来研究, 并且二阶系统的分析方法是分析高阶系统的基础[16], 因此为有效展现最优李雅普诺夫函数与系统结构和参数存在内在关系, 本文针对一类二阶系统的$ H_{\infty} $范数问题, 构造和优化李雅普诺夫函数, 进而得到$ H_{\infty} $范数的通用解析表达式.本文的研究避免了LMI方法中繁琐的近似寻优过程, 并展示了系统矩阵特征值的实部和虚部对$ H_{\infty} $性能的影响.本文结构如下:第1节分析$ H_{\infty} $范数问题; 第2节分析Riccati不等式中李雅普诺夫函数的选择对求解$ H_{\infty} $范数的影响; 第3节展现李雅普诺夫函数的直接优化方法, 并给出$ H_{\infty} $范数的通用解析表达式; 第4节给出算例, 验证李雅普诺夫函数直接优化方法的有效性.

    系统描述为

    $ \begin{align} \dot{\boldsymbol{ x}} = A {\boldsymbol{ x}}+ {\boldsymbol{ w}} \end{align} $

    (1)

    其中, $ {\boldsymbol{ x}} \in \textbf{R}^{2} $, $ A $为Hurwitz矩阵, $ A $的特征值为复数, $ {\boldsymbol{ w}} $为扰动输入, $ \|{\boldsymbol{ w}}\| \leq \delta $, $ \delta $为常数, $ \|{\boldsymbol{ w}}\| = (\Sigma^{2}_{i = 1}w^{2}_{i})^{\frac{1}{2}} $.

    研究的问题是如何得到系统(1)的状态上界.在数学意义上, 这一问题可转化为关于输入–输出系统的$ H_{\infty} $范数问题, 其中系统描述为

    $ \begin{align} \begin{cases} \dot{\boldsymbol{ x}} = A {\boldsymbol{ x}} + {\boldsymbol{ w}} \\ {\boldsymbol{ y}} = {\boldsymbol{ x}} \end{cases} \end{align} $

    (2)

    在$ H_{\infty} $控制理论中, 系统的$ H_{\infty} $范数定义为$ S $右半平面上解析的有理函数阵的最大奇异值.在标量函数中就是幅频特性的极大值, 代表了系统对峰值有界信号的传递特性.

    令李雅普诺夫函数为$ V = {\boldsymbol{ x}}^{\rm T}P{\boldsymbol{ x}} $, $ \gamma $为系统(2)的$ H_{\infty} $范数, 即$ \mit\gamma = \|G\|_{\infty} $, 其中$ G(s) = (sI-A)^{-1} $为系统(2)的传递函数.根据有界实引理, 可得

    $ \begin{align} \left[ \begin{array}{ccc} PA+A^{\rm{T}}P & P & I \\ P & -\gamma^{2} I & 0_{2\times 2} \\ I & 0_{2\times 2} & -I \\ \end{array} \right] < 0 \end{align} $

    (3)

    LMI方法是寻找式(3)中$ \mit\gamma $的最小值$ \mit\gamma_{\rm{min}} $.由于李雅普诺夫函数$ V = {\boldsymbol{ x}}^{\rm T}P {\boldsymbol{ x}} $可以任意构造, 因此对于每一个给定的$ \mit\gamma $, 需要重复求解LMI, 以判断式(3)的存在性, 直到$ \mit\gamma_{\rm{min}} $被找到.显然, 在LMI方法中复杂的优化过程是不可避免的.事实上, $ \mit\gamma_{\rm{min}} $与最优的$ P $矩阵是一一对应的.如果能够直接给出最优的$ P $矩阵, 则$ \mit\gamma_{\rm{min}} $的表达式就能够得到, 进而避免LMI方法中复杂的优化过程.本文的工作是尝试提供一种新的途径来直接给出$ \mit\gamma_{\rm{min}} $的表达式.

    根据特征值和奇异值分解原理, 可以得到下面的特性.

    特性1. 对于系统(2)中特征矩阵$ A $, 存在可逆矩阵$ T $, 满足

    $ \begin{align} D = -TAT^{-1} = \left[ \begin{array}{cc} \lambda & \nu \\ -\nu & \lambda \\ \end{array} \right] \end{align} $

    (4)

    其中, $ T = \Theta_{T1} \times \text{diag}\{t_{1}, t_{2}\} \times \Theta_{T2} $, $ \Theta_{T1} $和$ \Theta_{T2} $为正交矩阵, $ t_{2} \geq t_{1} > 0 $, $ \lambda > 0 $, $ \nu > 0 $. $ \text{diag}\{t_{1}, t_{2}\} $表示对角元素为$ t_{1} $, $ t_{2} $的对角阵.

    令$ \alpha = {t_{2}}/{t_{1}} \geq 1 $, $ {\boldsymbol{ y}} = \Theta_{T2} \times {\boldsymbol{ x}} $, $ {\boldsymbol{ {\Delta}}} = \Theta_{T2}\times{\boldsymbol{ w}} $.由式(2)和特性1, 得

    $ \begin{align} \begin{cases} \dot{\boldsymbol{ y}} = E {\boldsymbol{ y}} + B {\boldsymbol{ {\Delta}}} \\ {\boldsymbol{ x}} = C {\boldsymbol{ y}} \end{cases} \end{align} $

    (5)

    其中, $ B = I $为单位阵, $ C = \Theta_{T2}^{-1} $, $ E = - \left[ {array}{cc} \lambda & \alpha \nu \\ -\frac{1}{\alpha}\nu & \lambda \\ {array} \right], $并且系统(2)和(5)具有相同的$ H_{\infty} $范数.

    根据文献[5]中引理2.1, 可以得到下面的特性.

    特性2. 对于系统(5), 存在正定矩阵$ X $, 满足Riccati不等式

    $ \begin{align} E^{\rm T}X+XE+(1+\varepsilon)C^{\rm T}C+ \rho^{-2} XBB^{\rm T}X \leq 0 \end{align} $

    (6)

    其中, $ \gamma < \rho $, $ \gamma = \|G\|_{\infty} $为系统$ H_{\infty} $范数, $ \varepsilon $为趋于零的正数.

    注1. 应用Riccati不等式一般会得到具有很强保守性的结果, 但这种保守性并不是Riccati不等式本身导致的.研究表明:基于李雅普诺夫函数的准确选择, 可以将特性2中Riccati不等式转化为等式, 进而精确给出$ H_{\infty} $范数.因此, 导致这种保守性的原因是:在应用Riccati不等式时, 目前尚没有有效的方法找到最优的李雅普诺夫函数.这正是本文研究李雅普诺夫函数构造(或优化)的动机.

    $ \begin{align} \Upsilon = \, &K^{-1} \Theta \begin{bmatrix} \lambda & -\frac{1}{\alpha} \nu \\ \alpha \nu & \lambda \end{bmatrix}\Theta^{\rm T}\; + \nonumber \\&\Theta \begin{bmatrix} \lambda & \alpha \nu \\ -\frac{1}{\alpha} \nu & \lambda \\ \end{bmatrix} \Theta^{\rm T}K^{-1} - K^{-1}K^{-1} \end{align} $

    (7)

    其中, $ \alpha \geq 1 $,

    $ \begin{align} K = \iota \left[ \begin{array}{cc} 1 & 0 \\ 0 & k \\ \end{array} \right], \;\;\;\; \Theta = \left[ \begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \\ \end{array} \right] \end{align} $

    (8)

    $ \iota >0 $, $ k \geq 1 $, $ 0 \leq \theta \leq {\pi}/{4} $.

    由式(8)构造的李雅普诺夫函数分解了"放缩"和"旋转"作用.这种功能的分解使李雅普诺夫函数的参数优化具有了可行性.

    定理1. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足

    $ \begin{align} \gamma < \rho_{\rm{min}} = \left[\sqrt{\lambda_{\rm{min}}(\Upsilon)} \right]^{-1} \end{align} $

    (9)

    其中, $ \lambda_{\rm{min}}(\Upsilon) $为矩阵$ \Upsilon $的最小特征值.

    证明. 令$ X = \Theta^{\rm T} K \Theta $, 其中, $ K $和$ \Theta $由式(8)给出.根据特性2和式(7), 得

    $ \begin{align} \rho^{-2} I \leq \Upsilon - \varepsilon K^{-1}K^{-1} \end{align} $

    (10)

    则$ \rho^{-2} \leq \lambda_{\rm{min}}(\Upsilon- \varepsilon K^{-1}K^{-1}) $, 由于$ \gamma < \rho $, 并且$ \varepsilon $为趋于零的正数, 则式(9)成立.

    注2. 根据定理1, 可以优化李雅普诺夫函数的参数, 以最大化$ \lambda_{\rm{min}}(\Upsilon) $, 进而精确估计系统$ H_{\infty} $范数.因此, 定理1给出了一种新的途径以得到系统的$ H_{\infty} $范数.

    考查式(7)给出的矩阵$ \Upsilon $.由式(7)和式(8), 可得

    $ \begin{align} \Upsilon = \frac{1}{\iota} \left[ \begin{array}{cc} 2\lambda + \beta \nu - \frac{1}{\iota} & \frac{1}{k} \sigma \nu \\ \frac{1}{k} \sigma \nu & \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \\ \end{array} \right] \end{align} $

    (11)

    其中,

    $ \begin{align} \beta = &\ \left(\alpha-\frac{1}{\alpha}\right) \sin 2\theta \end{align} $

    (12)

    $ \begin{align} \sigma = &\, \left[\alpha- (\alpha-\frac{1}{\alpha}) \sin^{2} \theta \right] -k \left[\frac{1}{\alpha} + (\alpha-\frac{1}{\alpha}) \sin^{2} \theta \right] = \\ &\ \frac{1}{2}(1-k)(\alpha+\frac{1}{\alpha}) +\frac{1}{2}(1+k) (\alpha-\frac{1}{\alpha}) \cos 2\theta \end{align} $

    (13)

    根据式(11), 以最大化$ \lambda_{\rm{min}}(\Upsilon) $为目标, 将给出一种李雅普诺夫函数的优化方法.

    $ \begin{align} \Upsilon_{1} = \Theta^{-1} \Upsilon \Theta, \; \; Y_{1} = X^{-1} \end{align} $

    (14)

    则由式(7)和$ X = \Theta^{\rm T}K\Theta $, 得

    $ \begin{align} \Upsilon_{1} = EE^{\rm T}-(E+Y_{1})(E+Y_{1})^{\rm T} \end{align} $

    (15)

    $ \begin{align} &EE^{\rm T} = \Theta_{1}^{\rm T} \Lambda \Theta_{1}, \quad \Upsilon_{2} = \Theta_{1} \Upsilon_{1} \Theta_{1}^{\rm T} \end{align} $

    (16)

    $ \begin{align} &E_{1} = \Theta_{1} E \Theta_{1}^{\rm T}, \qquad Y_{2} = \Theta_{1} Y_{1} \Theta_{1}^{\rm T} \end{align} $

    (17)

    其中, $ \Lambda = {\rm diag}\{\sigma_{1}, \sigma_{2}\} $, $ \sigma_{1} \geq \sigma_{2} $, 则

    $ \begin{align} \Upsilon_{2} = \Lambda - (E_{1}+Y_{2})(E_{1}+Y_{2})^{\rm T} \end{align} $

    (18)

    $ \begin{align} E_{1} = E_{R}+E_{J}, \; \; Y_{3} = E_{R}+Y_{2} \end{align} $

    (19)

    其中, $ E_{R}^{\rm T} = E_{R} $, $ E_{J} = -E_{J}^{\rm T} $, 则

    $ \begin{align} \Upsilon_{2} = \Lambda - (E_{J}+Y_{3})(E_{J}+Y_{3})^{\rm T} \end{align} $

    (20)

    $ \begin{align} Y_{3} = \left[ \begin{array}{cc} y_{1} & y_{3} \\ y_{3} & y_{2} \\ \end{array} \right], \; \; E_{J} = \left[ \begin{array}{cc} 0 & a \\ -a & 0 \\ \end{array} \right] \end{align} $

    (21)

    则根据$ \Lambda = \text{diag}\{\sigma_{1}, \sigma_{2}\} $, 有$ \sigma_{1} \geq \sigma_{2} $,

    $ \begin{align} \Upsilon_{2} = & \left[ \begin{array}{cc} \sigma_{1}-(y_{3}+a)^{2}-y_{1}^{2} \\ -(y_{1}+y_{2})y_{3}-(y_{2}-y_{1})a \\ \end{array}\right.\\ &\qquad\qquad\qquad \left. \begin{array}{cc} & -(y_{1}+y_{2})y_{3}-(y_{2}-y_{1})a \\ & \sigma_{2} -(y_{3}-a)^{2}-y_{2}^{2} \\ \end{array} \right] \end{align} $

    (22)

    根据式(14), (16), (21), (22)和定理1, 存在$ Y_{3} $, 使$ \lambda_{\rm{min}}(\Upsilon_{2}) $ $ > $ $ 0 $, 即$ \Upsilon_{2} $正定.因此根据式(22), 为了最大化$ \Upsilon_{2} $的最小特征值, 应使下面两个条件成立.

    1) $ (y_{1}+y_{2})y_{3}+ (y_{2}-y_{1})a = 0 $ (例如$ y_{2} = 0 $, $ y_{3} = a $; 或$ y_{1} = y_{2} = 0 $).

    2) $ \Upsilon_{2} $的特征值相等(例如$ y_{1}^{2} = \sigma_{1}-\sigma_{2}-4a^{2} $; 或$ y_{3} $ $ = $ $ (\sigma_{1}-\sigma_{2})/{4a} $).

    注意, $ \sqrt{\sigma_{2}} $为$ E $的最小奇异值, 因此$ \gamma \geq {1}/{\sqrt{\sigma_{2}}} $.令

    $ \begin{align} \lambda_{1} = \frac{1}{\iota}\left( 2\lambda + \beta \nu - \frac{1}{\iota} \right), \; \; \lambda_{2} = \frac{1}{\iota}\left[ \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \right] \end{align} $

    (23)

    基于以上分析, 并根据式(9), (11), (14), (16)和(23), 为了最大化$ \Upsilon $的最小特征值, 李雅普诺夫函数的优化策略设计为$ \sigma = 0 $和$ \lambda_{1} = \lambda_{2} $.

    基于所给李雅普诺夫函数优化策略, 进一步优化李雅普诺夫函数参数.

    定理2. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足

    $ \begin{align} \gamma < \rho(k, \iota) = \left[\min(\lambda_{1}, \lambda_{2}) \right]^{-\frac{1}{2}} \end{align} $

    (24)

    其中, $ \lambda_{1} $和$ \lambda_{2} $由式(23)给出, 式(23)中$ \beta $由下式给出.

    $ \begin{align} \beta = \frac{2}{k+1}\sqrt{\left(k \alpha-\frac{1}{\alpha}\right)\left(\alpha- \frac{k}{\alpha}\right)} \end{align} $

    (25)

    证明. 考查式(11)给出的矩阵$ \Upsilon $.令$ \sigma = 0 $, 则

    $ \begin{align} \cos 2\theta = \frac{(k-1)(\alpha+\frac{1}{\alpha})}{(k+1)(\alpha-\frac{1}{\alpha})} \end{align} $

    (26)

    因此根据式(11), (12), (23)和$ 0 \leq \theta \leq {\pi}/{4} $, 矩阵$ \Upsilon $的特征值为$ \lambda_{1} $和$ \lambda_{2} $, 其中$ \beta $由式(25)给出.根据定理1, 可得式(24).

    注3. 基于李雅普诺夫函数参数矩阵$ \Theta $的优化策略, 定理2进一步给出系统$ H_{\infty} $范数的估计., 同时奠定了进一步优化李雅普诺夫函数参数$ k $和$ \iota $的基础.

    定理3. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足

    $ \begin{align} \gamma < \rho(k) = \begin{cases} \frac{1}{\lambda}, & \text{若}\; \alpha = 1\\ \left[ f(k)\right]^{-\frac{1}{2}}, & \text{若}\; \alpha >1 \end{cases} \end{align} $

    (27)

    其中,

    $ \begin{align} f(k) = \frac{4k}{(k+1)^{2}} \left[ \lambda^{2} + \nu^{2} - \frac{k \nu^{2}}{(k-1)^{2}} \left(\alpha-\frac{1}{\alpha}\right)^{2} \right] \end{align} $

    (28)

    证明. 考查式(23)给出的矩阵$ \Upsilon $的特征值为$ \lambda_{1} $和$ \lambda_{2} $.令$ \lambda_{1} = \lambda_{2} $, 即

    $ \begin{align} 2\lambda + \beta \nu - \frac{1}{\iota} = \frac{1}{k}(2 \lambda - \beta \nu) - \frac{1}{\iota k^{2}} \end{align} $

    (29)

    其中, $ \beta $由式(25)给出, $ \alpha \geq 1 $.

    当$ \alpha > 1 $时, 由式(25)和式(29)可知$ k \neq 1 $, 并且得

    $ \begin{align} \frac{1}{\iota} = \frac{2k \lambda}{k+1}+\frac{2k \nu}{k^{2}-1} \sqrt{\left(k \alpha- \frac{1}{\alpha}\right)\left(\alpha-\frac{k}{\alpha}\right)} \end{align} $

    (30)

    当$ \alpha = 1 $时, 由式(25)可知$ (k-1)^{2} \leq 0 $, 即$ k = 1 $.则根据式(23), (25), (29), $ \lambda_{1} = \lambda_{2} = \frac{1}{\iota} (2 \lambda-\frac{1}{\iota}) $.当$ \iota = \lambda $时, 得$ \max (\lambda_{1}) = \lambda^{2} $.

    基于以上分析, 并根据定理2和式(23), (25), (29)以及(30), 可得结论.

    注4. 通过给出李雅普诺夫函数参数$ \iota $的优化策略, 定理3进一步给出系统$ H_{\infty} $范数的估计.根据定理3, 可以直接优化李雅普诺夫函数参数$ k $, 进而得到系统$ H_{\infty} $范数的精确估计.

    注5. 注意, 当$ \alpha > 1 $时, $ k \neq 1 $.因此定理3通过分别讨论$ \alpha > 1 $和$ \alpha = 1 $两种情况, 解决了$ f(k) $的奇异问题.

    $ \begin{align} \kappa = k + \frac{1}{k} > 2 \end{align} $

    (31)

    则由式(28), 得

    $ \begin{align} f(\kappa) = \frac{4(\lambda^{2} + \nu^{2})}{\kappa+2} - \frac{4\nu^{2}}{\kappa^{2}-4} \times \left(\alpha-\frac{1}{\alpha}\right)^{2} \end{align} $

    (32)

    定理4. 对于系统(5), 系统$ H_{\infty} $范数$ \gamma $满足

    $ \begin{align} \gamma < \rho_{\text{opt}} = \begin{cases} \frac{1}{\lambda}, & \text{若}\; \alpha = 1\\ \frac{1}{2\lambda}\sqrt{\alpha^{2}+\frac{1}{\alpha^{2}}+2}, &\text{若}\; \kappa_{0} \geq \alpha^{2}+\frac{1}{\alpha^{2}}\\ \left[ f(\kappa_{0})\right]^{-\frac{1}{2}}, &\text{若}\; \kappa_{0} < \alpha^{2}+\frac{1}{\alpha^{2}} \end{cases} \end{align} $

    (33)

    其中

    $ \begin{align} &f(\kappa_{0}) = \frac{4(\lambda^{2} + \nu^{2})}{\kappa_{0}+2} - \frac{4\nu^{2}}{\kappa_{0}^{2}-4} \times \left(\alpha-\frac{1}{\alpha}\right)^{2} \end{align} $

    (34)

    $ \begin{align} &\kappa_{0} = 2 + \frac{\nu^{2} (\alpha-\frac{1}{\alpha})^{2}}{\lambda^{2} + \nu^{2}} \times \left[ 1+\sqrt{1+ \frac{4(\lambda^{2} + \nu^{2})}{\nu^{2} (\alpha-\frac{1}{\alpha})^{2}}} \right] \end{align} $

    (35)

    证明. 由式(32), 得

    $ \begin{align} f'(\kappa) = \frac{{\rm d} f(\kappa)}{{\rm d} \kappa} = -\frac{4(\lambda^{2} + \nu^{2})}{(\kappa+2)^{2}} +\frac{8(\alpha-\frac{1}{\alpha})^{2} \nu^{2} \kappa}{(\kappa+2)^{2}(\kappa-2)^{2}} \end{align} $

    (36)

    令$ f'(\kappa) = 0 $, 即

    $ \begin{align} \kappa^{2} - \left[ 4+ \frac{2(\alpha-\frac{1}{\alpha})^{2} \nu^{2}}{\lambda^{2} + \nu^{2}} \right] \kappa +4 = 0 \end{align} $

    (37)

    根据$ \kappa >2 $和式(35), 得$ \kappa = \kappa_{0} $.

    根据式(35) $ \sim $ (37), 得

    $ \begin{align} \lim \limits_{\varsigma \rightarrow 0} \frac{f'(\kappa_{0} + \varsigma)-f'(\kappa_{0})}{\varsigma} <0 \end{align} $

    (38)

    因此, 在$ 2 < \kappa < \infty $的条件下, $ \max f(\kappa) = f(\kappa_{0}) $, 如图 1 (a)1 (b)所示.

    图 1  函数分析
    Fig. 1  Function analysis

    注意, 定理2中李雅普诺夫函数参数矩阵$ \Theta $的优化策略为$ \sigma = 0 $, 则由式(13), 可得$ k \leq \alpha^{2} $.由于$ k >1 $, 因此根据式(31), 得

    $ \begin{align} \Omega = \left\{ \kappa \in \textbf{R} | 2 < \kappa \leq \alpha^{2}+\frac{1}{\alpha^{2}} \right\} \end{align} $

    (39)

    根据图 1 (a)1 (b), 得

    $ \begin{align} \max \limits_{k \in \Omega} f(\kappa) = \begin{cases} \frac{4\lambda^{2}}{\alpha^{2}+\frac{1}{\alpha^{2}}+2}, &\text{若}\; \kappa_{0} \geq \alpha^{2}+\frac{1}{\alpha^{2}}\\ f(\kappa_{0}), & \text{若}\; \kappa_{0} < \alpha^{2}+\frac{1}{\alpha^{2}} \end{cases} \end{align} $

    (40)

    因此由定理3可得结论.

    注6. 通过对李雅普诺夫函数参数的直接优化, 定理4给出了系统$ H_{\infty} $范数上界的优化结果.应用定理4, 可以给出系统$ H_{\infty} $范数的精确估计.

    注7. 不同于LMI方法, 本文提出的李雅普诺夫函数直接优化方法分析了李雅普诺夫函数的构造对系统性能分析的影响, 充分利用系统结构和参数以优化李雅普诺夫函数的设计.与LMI方法相比, 李雅普诺夫函数直接优化方法能够直接给出系统$ H_{\infty} $范数的精确结果, 进而避免了复杂的数值优化过程.因此本文的工作提供了一种新的途径以更为方便地分析系统动态性能.

    考查系统

    $ \begin{align} \dot{\boldsymbol{ x}} = -\left[ \begin{array}{cc} 1.25 & 1.25 \\ -1.25 & 2.75 \\ \end{array} \right]{\boldsymbol{ x}}+ {\boldsymbol{ w}} \end{align} $

    (41)

    其中, $ {\boldsymbol{ w}} $为扰动输入, $ \|{\boldsymbol{ w}}\| \leq 1 $, $ {\boldsymbol{ x}} $为状态输出.根据式(5), 得

    $ \begin{align} \begin{cases} \dot{\boldsymbol{ y}} = - \left[ \begin{array}{cc} 2 & 2 \\ -0.5 & 2 \\ \end{array} \right] {\boldsymbol{ y}} + {\boldsymbol{ {\Delta}}} \\ {\boldsymbol{ x}} = \frac{\sqrt{2}}{2} \left[ \begin{array}{cc} 1 & -1 \\ 1 & 1 \\ \end{array} \right] {\boldsymbol{ y}} \end{cases} \end{align} $

    (42)

    因此, $ \lambda = 2 $, $ \nu = 1 $, $ \alpha = 2 $.

    由式(34), 得$ \kappa_{0} = 3.8651< \alpha^{2}+\frac{1}{\alpha^{2}} = 4.25 $.则根据定理4, 得$ \gamma < \rho_{\text{opt}} = 0.622 $.因此$ \gamma \approx 0.622 $.应用MATLAB中$ H_{\infty} $范数求解函数hinfnorm (sys, 0.0000001)可得相同的结果.因此提出的李雅普诺夫函数直接优化方法能精确给出系统$ H_{\infty} $范数.

    表 1进一步给出在不同参数条件下系统(5)的$ H_{\infty} $范数.表 1表明, 针对式(5)给出的具有不同参数的系统, 提出的李雅普诺夫函数直接优化方法都能精确给出系统$ H_{\infty} $范数.

    表 1  $H_{\infty}$范数分析($\alpha = 2$)
    Table 1  $H_{\infty}$ norm analysis ($\alpha = 2$)
    $\lambda$ $\nu$ MATLAB 定理4 稳态误差$\|A^{-1}\|$ 状态上界
    2 6 0.626 0.626 0.307 0.626
    2 4 0.626 0.626 0.419 0.626
    2 2 0.626 0.626 0.588 0.626
    2 1.2 0.626 0.626 0.626 0.626
    2 1 0.622 0.622 0.622 0.622
    2 0 0.501 0.501 0.501 0.501
    下载: 导出CSV 
    | 显示表格

    在$ \alpha $和系统特征值实部$ \lambda $确定(即$ \alpha = 2 $, $ \lambda = 2 $)的条件下, 表 1给出的结果表明, 随着系统特征值虚部$ \nu $变化, $ H_{\infty} $范数的变化具有一定规律性, 表现为:

    1) 当$ \nu = \nu^{*} = 1.2 $ (即$ \kappa_{0} = \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数为$ \max \|A^{-1}\| $;

    2) 当$ \nu < \nu^{*} $ (即$ \kappa_{0} < \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数与稳态指标$ \|A^{-1}\| $一致;

    3) 当$ \nu > \nu^{*} $ (即$ \kappa_{0} > \alpha^{2}+{1}/{\alpha^{2}} $)时, $ H_{\infty} $范数为固定值(即$ H_{\infty} $范数的值与$ \nu $无关), 并且根据定理4, $ H_{\infty} $范数的表达式非常简洁.

    由式(1), (3), (41), 得

    $ \begin{align} \begin{bmatrix} -P \begin{bmatrix} 1.25 & 1.25 \\ -1.25 & 2.75 \\ \end{bmatrix} -\small{ \begin{bmatrix} 1.25 & -1.25 \\ 1.25 & 2.75 \\ \end{bmatrix}}P & P & I \\ P & -\gamma^{2} I & 0_{2\times 2} \\ I & 0_{2\times 2} & -I \end{bmatrix} < 0 \end{align} $

    (43)

    采用LMI方法求解$ H_{\infty} $范数的步骤为:

    1) 选择足够大的$ \gamma $, 如$ \gamma = 10 $;

    2) 应用MATLAB中LMI工具求解式(43), 可得$ P $存在;

    3) 减小$ \gamma $取值, 如$ \gamma = 1 $, 应用LMI工具求解式(43), 可得$ P $存在;

    4) 当$ \gamma = 0.622 $时, 应用LMI工具求解式(43), 可得$ P $存在;

    5) 当$ \gamma = 0.621 $时, 应用LMI工具求解(43), 可得$ P $不存在.

    基于以上步骤, LMI方法可给出$ H_{\infty} = 0.622 $.这一结果与定理4得到的结果一致, 如表 1所示.

    事实上, LMI方法需要对$ \gamma $进行遍历寻找.当选$ \gamma $的间隔较大时, 保守的结果不可避免.与之相比, 本文的方法具有明显的优越性.

    本文针对$ H_{\infty} $控制理论研究中难以精确求解系统$ H_{\infty} $范数的问题, 提出了一种李雅普诺夫函数的直接优化方法.通过优化Riccati不等式中的李雅普诺夫函数, 给出了$ H_{\infty} $范数的通用解析表达式, 进而提供了一个有效的途径以直接和精确求解系统$ H_{\infty} $范数.研究结果具有以下特点:

    1) 与LMI方法相比, 本文所提方法避免了复杂的数值优化过程, 使求解系统$ H_{\infty} $范数简化.

    2) 与早期关于李雅普诺夫方程和Riccati不等式的研究相比, 本文所提方法避免了由于李雅普诺夫函数选择的随意性导致的保守结果.

    3) 本文所提方法能够展现系统矩阵特征值的实部和虚部对$ H_{\infty} $性能的影响, 为进一步精确(定量)控制系统$ H_{\infty} $性能提供借鉴.

    在进一步的工作中, 将研究含有时滞及非线性项的系统.


  • 本文责任编委 姚鹏飞
  • 图  1  柔性立管系统

    Fig.  1  Flexible riser system

    图  2  未受控的立管偏移量

    Fig.  2  Displacement of the uncontrolled riser

    图  3  受控的立管偏移量

    Fig.  3  Displacement of the controlled riser

    图  4  立管的端点偏移量

    Fig.  4  Endpoint displacement of the riser

    图  5  设计的控制命令

    Fig.  5  Designed control command

    图  6  非线性的控制输入

    Fig.  6  Control input with nonlinearities

  • [1] He W, Sun C, Ge S S. Top tension control of a flexible marine riser by using integral-barrier Lyapunov function. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):497-505 doi: 10.1109/TMECH.2014.2331713
    [2] He W, Nie S X, Meng T T, Liu Y J. Modeling and vibration control for a moving beam with application in a drilling riser. IEEE Transactions on Control Systems Technology, 2017, 25(3):1036-1043 doi: 10.1109/TCST.2016.2577001
    [3] Do K D. Stochastic boundary control design for extensible marine risers in three dimensional space. Automatica, 2017, 77:184-197 doi: 10.1016/j.automatica.2016.11.032
    [4] Zhao Z J, Liu Y, Guo F. Robust output feedback stabilization for a flexible marine riser system. ISA Transactions, 2018, 78:130-140 doi: 10.1016/j.isatra.2017.11.006
    [5] 魏萍, 丁卯, 左信, 罗雄麟.基于微分方程对称的分布参数系统稳态控制.自动化学报, 2014, 40(10):2163-2170 http://www.aas.net.cn/CN/abstract/abstract18491.shtml

    Wei Ping, Ding Mao, Zuo Xin, Luo Xiong-Lin. Steady-state control for distributed parameter systems by symmetry of differential equations. Acta Automatica Sinica, 2014, 40(10):2163-2170 http://www.aas.net.cn/CN/abstract/abstract18491.shtml
    [6] 李健, 刘允刚.一类不确定热方程自适应边界控制.自动化学报, 2012, 38(3):469-473 http://www.aas.net.cn/CN/abstract/abstract17699.shtml

    Li Jian, Liu Yun-Gang. Adaptive boundary control for a class of uncertain heat equations. Acta Automatica Sinica, 2012, 38(3):469-473 http://www.aas.net.cn/CN/abstract/abstract17699.shtml
    [7] Li S, Yao P F. Stabilization of the Euler-Bernoulli plate with variable coefficients by nonlinear internal feedback. Automatica, 2014, 50(9):2225-2233 doi: 10.1016/j.automatica.2014.07.010
    [8] Guo W, Guo B Z. Performance output tracking for a wave equation subject to unmatched general boundary harmonic disturbance. Automatica, 2016, 68:194-202 doi: 10.1016/j.automatica.2016.01.041
    [9] Wang J M, Liu J J, Ren B B. Sliding mode control to stabilization of cascaded heat PDEODE systems subject to boundary control matched disturbance. Automatica, 2015, 52:23-34 doi: 10.1016/j.automatica.2014.10.117
    [10] Wu H N, Wang J W. Static output feedback control via PDE boundary and ODE measurements in linear cascaded ODE-beam systems. Automatica, 2014, 50(11):2787-2798 doi: 10.1016/j.automatica.2014.09.006
    [11] Cai X S, Krstic M. Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary. Automatica, 2016, 68:27-38 doi: 10.1016/j.automatica.2016.01.043
    [12] Ge S S, He W, How B V. Boundary control of a coupled nonlinear flexible marine riser. IEEE Transactions on Control Systems Technology, 2010, 18(5):1080-1091 doi: 10.1109/TCST.2009.2033574
    [13] Guo F, Liu Y, Luo F. Adaptive stabilisation of a flexible riser by using the Lyapunov-based barrier backstepping technique. IET Control Theory and Applications, 2017, 11(14):2252-2260 doi: 10.1049/iet-cta.2017.0076
    [14] 赵志甲, 刘屿, 郭芳, 吴忻生, 邬依林.海洋柔性立管输出反馈边界控制.控制理论与应用, 2017, 34(2):205-214 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201702007

    Zhao Zhi-jia, Liu Yu, Guo Fang, Wu Xin-Sheng, Wu Yi-Lin. Robust boundary control for flexible fluid-transporting marine riser based on internal fluid dynamics. Control Theory and Applications, 2017, 34(2):205-214 http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201702007
    [15] Guo F, Liu Y, Wu Y L, Luo F. Observer-based backstepping boundary control for a flexible riser system. Mechanical Systems and Signal Processing, 2018, 111:314-330 doi: 10.1016/j.ymssp.2018.03.058
    [16] He W, Ge S S, How B V, Choo Y S, Hong K S. Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica, 2011, 47(4):722-732 doi: 10.1016/j.automatica.2011.01.064
    [17] Chen M, Ren Y, Liu J Y. Anti-disturbance control for a suspension cable system of helicopter subject to input nonlinearities. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(12):2292-2304 doi: 10.1109/TSMC.2017.2710638
    [18] Liu Z J, Liu J K, He W. Modeling and vibration control of a flexible aerial refueling hose with variable lengths and input constraint. Automatica, 2017, 77:302-310 doi: 10.1016/j.automatica.2016.11.002
    [19] Li H Y, Zhao S Y, He W, Lu R Q. Adaptive finite-time tracking control of full states constrained nonlinear systems with dead-zone. Automatica, 2019, 100:99-107 doi: 10.1016/j.automatica.2018.10.030
    [20] Zhou J, Wen C Y. Adaptive Backstepping Control of Uncertain Systems:Nonsmooth Nonlinearities, Interactions or Time-Variations. Boston:Birkhauser, 2008. 83-96
    [21] He W, He X Y, Ge S S. Vibration control of flexible marine riser systems with input saturation. IEEE/ASME Transaction on Mechatronics, 2016, 21(1):254-265 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6c294a19272e13a2abda4b6224a3457f
    [22] Zhao Z J, He X Y, Wen G L. Boundary robust adaptive antisaturation control of vibrating flexible riser systems. Ocean Engineering, 2019, 179:298-306 doi: 10.1016/j.oceaneng.2019.01.020
    [23] Zhao Z J, Liu Z J, Li Z F, Wang N, Yang J F. Control design for a vibrating flexible marine riser system. Journal of the Franklin Institute, 2017, 354(18):8117-8133 doi: 10.1016/j.jfranklin.2017.10.004
    [24] Zhao Z J, He X Y, Ren Z G, Wen G L. Boundary adaptive robust control of a flexible riser system with input nonlinearities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, in press, DOI: 10.1109/TSMC.2018.2882734
    [25] Rodriguez Linan, M C, Heath W. P. Controller structure for plants with combined saturation and deadzone/backlash. In: Proceedings of the 2012 IEEE International Conference on Control Applications (CCA). Dubrovnik, Croatia, 2012. 1394-1399
    [26] Queiroz M S, Dawson D M, Nagarkatti S P, Zhang F M. Lyapunov Based Control of Mechanical Systems. Boston:Birkhauser, 2000. 279-280
    [27] Zhao Z J, Shi J, Lan X J, Wang X W. Adaptive neural network control of a flexible string system with non-symmetric dead-zone and output constraint. Neurocomputing, 2018, 283:1-8 doi: 10.1016/j.neucom.2017.12.013
    [28] He X Y, He W, Jing S, Sun C Y. Boundary vibration control of variable length crane systems in two dimensional space with output constraints. IEEE/ASME Transaction on Mechatronics, 2017, 22(5):1952-1962 doi: 10.1109/TMECH.2017.2721553
    [29] Liu Z J, Liu J K, He W. Robust adaptive fault tolerant control for a linear cascaded ode-beam systems. Automatica, 2018, 98:42-50 doi: 10.1016/j.automatica.2018.09.021
    [30] Zhao Z J, He X Y, Ren Z G, Wen G L. Output feedback stabilization for an axially moving system. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, in press, DOI: 10.1109/TSMC.2018.2882822
    [31] Fu J, Ma R C, Chai T Y. Adaptive finite-time stabilization of a class of uncertain nonlinear systems via logic-based switchings. IEEE Transactions on Automatic Control, 2018, 62(11):5998-6003 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be19b29bbd7054edca0150b180de9748
    [32] Dai J G, Ren B B. UDE-based robust boundary control for an unstable parabolic PDE with unknown input disturbance. Automatica, 2018, 93:363-368 doi: 10.1016/j.automatica.2018.03.080
  • 期刊类型引用(3)

    1. 吕芳芳,楼旭阳,叶倩. 具有死区非线性输入的柔性臂自适应边界控制. 扬州大学学报(自然科学版). 2024(05): 16-24 . 百度学术
    2. 谢志勇,朱娟芬,胡小平. 考虑间隙特性的双机械臂模糊自适应鲁棒控制. 现代制造工程. 2022(02): 52-58 . 百度学术
    3. 马永浩,张爽,何修宇,刘志杰. 基于连续反演算法的时滞补偿控制综述. 工程科学学报. 2022(06): 1053-1061 . 百度学术

    其他类型引用(5)

  • 加载中
  • 图(6)
    计量
    • 文章访问数:  1827
    • HTML全文浏览量:  443
    • PDF下载量:  160
    • 被引次数: 8
    出版历程
    • 收稿日期:  2019-03-04
    • 录用日期:  2019-08-08
    • 刊出日期:  2019-11-20

    目录

    /

    返回文章
    返回