2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多相关HMT模型的DT CWT域数字水印算法

王向阳 牛盼盼 杨红颖 李丽

王向阳, 牛盼盼, 杨红颖, 李丽. 基于多相关HMT模型的DT CWT域数字水印算法. 自动化学报, 2021, 47(12): 2857−2869 doi: 10.16383/j.aas.c190075
引用本文: 王向阳, 牛盼盼, 杨红颖, 李丽. 基于多相关HMT模型的DT CWT域数字水印算法. 自动化学报, 2021, 47(12): 2857−2869 doi: 10.16383/j.aas.c190075
Wang Xiang-Yang, Niu Pan-Pan, Yang Hong-Ying, Li Li. A blind watermark decoder in DT CWT domain using Weibull distribution-based vector HMT model. Acta Automatica Sinica, 2021, 47(12): 2857−2869 doi: 10.16383/j.aas.c190075
Citation: Wang Xiang-Yang, Niu Pan-Pan, Yang Hong-Ying, Li Li. A blind watermark decoder in DT CWT domain using Weibull distribution-based vector HMT model. Acta Automatica Sinica, 2021, 47(12): 2857−2869 doi: 10.16383/j.aas.c190075

基于多相关HMT模型的DT CWT域数字水印算法

doi: 10.16383/j.aas.c190075
基金项目: 国家自然科学基金(61472171, 61701212), 中国博士后科学基金(2018T110220), 辽宁省教育厅科学研究经费项目(面上项目) (LJKZ0985), 辽宁省自然科学基金(2019-ZD-0468)资助
详细信息
    作者简介:

    王向阳:辽宁师范大学计算机科学与技术学院教授. 主要研究方向为网络信息安全与智能多媒体计算. 本文通信作者. E-mail: wxy37@126.com

    牛盼盼:博士, 辽宁师范大学计算机与信息技术学院副教授. 主要研究方向为网络信息安全与图像处理. E-mail: niupanpan3333@163.com

    杨红颖:辽宁师范大学计算机科学与技术学院教授. 主要研究方向为多媒体信息安全与图像处理. E-mail: yhy65@126.com

    李丽:辽宁师范大学计算机科学与技术学院硕士研究生. 主要研究方向为信息隐藏与数字水印. E-mail: workprocess0003@163.com

A Blind Watermark Decoder in DT CWT Domain Using Weibull Distribution-Based Vector HMT Model

Funds: Supported by National Natural Science Foundation of China (61472171, 61701212), Project Funded by China Postdoctoral Science Foundation (2018T110220), Scientific Research Project of Liaoning Provincial Education Department(LJKZ0985), and Natural Science Foundation of Liaoning Province (2019-ZD-0468)
More Information
    Author Bio:

    WANG Xiang-Yang Professor at the Multimedia and Information Security Laboratory, School of Computer and Information Technology, Liaoning Normal University. His current research interest covers network information security, and intelligent multimedia computing. Corresponding author of this paper

    NIU Pan-Pan Ph.D., associate professor at the School of Computer and Information Technology, Liaoning Normal University. Her research interest covers network information security and image processing

    YANG Hong-Ying Professor at the School of Computer and Information Technology, Liaoning Normal University. Her current research interest covers multimedia information security and image processing

    LI Li Master student at the School of Computer and Information Technology, Liaoning Normal University. Her current research interest covers information hiding and digital watermarking

  • 摘要: 本文以双树复数小波变换(Dual-tree complex wavelet transform, DT CWT)及隐马尔科夫树(Hidden Markov tree, HMT)理论为基础, 提出了一种基于Weibull向量HMT模型的DT CWT域数字音频盲水印算法. 原始数字音频首先进行DT CWT, 然后利用局部信息熵刻画音频内容特征并据此确定出重要DT CWT系数段, 进而将水印信息乘性嵌入到重要DT CWT高频系数幅值内. 水印检测时, 首先根据DT CWT系数幅值的边缘分布及系数间的多种相关性(包括子带内、尺度间、分解树间等相关性), 构造出Weibull混合向量HMT统计模型, 并估计出其统计模型参数; 然后, 利用局部最大势能(Locally most powerful, LMP)检验理论构造出局部最优检测器(Locally optimum decoder, LOD)以盲提取水印信息. 仿真实验结果表明, 本文算法可以较好地获得不可感知性、鲁棒性、水印容量之间的良好平衡, 其总体性能优于现有同类音频水印算法.
    1)  收稿日期 2019-01-30 录用日期 2019-08-08 Manuscript received January 30, 2019; accepted August 8, 2019 国家自然科学基金 (61472171, 61701212), 中国博士后科学基金(2018T110220), 辽宁省教育厅科学研究经费项目 (面上项目) (LJKZ0985), 辽宁省自然科学基金 (2019-ZD-0468) 资助 Supported by National Natural Science Foundation of China (61472171, 61701212), Project Funded by China Postdoctoral Science Foundation (2018T110220), Scientific Research Project of Liaoning Provincial Education Department (LJKZ0985), and Natural Science Foundation of Liaoning Province (2019-ZD-0468) 本文责任编委 刘成林 Recommended by Associate Editor LIU Cheng-Lin 1. 辽宁师范大学计算机与信息技术学院 大连 116029 1. School of Computer and Information Technology, Liaoning
    2)  Normal University, Dalian 116029
  • 图  1  DT CWT域系数幅值的子带内、尺度间、分解树间Chi-plot图

    Fig.  1  Chi-plot to illustrate the different degrees of dependence between intraband, interscale and dual-tree, DT CWT coefficient pairs

    图  2  DT CWT域向量HMT模型

    Fig.  2  Vector HMT model in DT CWT domain

    图  3  两种数字水印检测器(LOD和ML)的检测响应结果

    Fig.  3  The test results of LOD watermark detector and ML watermark detector under various attacks

    图  4  原始音频、含水印音频和差值音频波形图

    Fig.  4  The waveform of original audio, watermarked audio, and difference audio

    图  5  本文算法的鲁棒性能测试结果

    Fig.  5  The watermark detection results for various attacks

    表  1  不同系数段长度下整个水印系统的工作性能 (水印容量为1 024位)

    Table  1  Performance of the watermarking system in different coefficient lengths (watermark capacity is 1 024 bits)

    DT CWT系数段长度 平均PSNR (dB) 平均BER (%) 平均水印嵌入时间 (s) 平均水印提取时间 (s)
    40 48.45 0.29 0.45 8.42
    50 47.96 0.09 0.62 9.57
    60 47.28 0.00 0.71 10.67
    70 46.34 0.00 1.21 11.53
    下载: 导出CSV

    表  2  不同水印容量下整个水印系统的工作性能(局部重要系数段长度为60)

    Table  2  Performance of the watermarking system in different watermark capacities (coefficient length is 60)

    水印容量 (bit) PSNR (dB) BER (%) 水印嵌入时间 (s) 水印提取时间 (s)
    8 × 8 49.23 0.00 0.47 9.53
    16 × 16 48.16 0.00 0.68 10.24
    32 × 32 47.28 0.00 0.71 10.67
    64 × 64 44.34 0.78 1.35 15.46
    下载: 导出CSV

    表  3  客观听觉测试区分度ODG

    Table  3  Objective difference grades

    等级 ODG 描述
    5.0 0.0 不可感觉
    4.0 −1.0 可感觉但不刺耳
    3.0 −2.0 轻微刺耳
    2.0 −3.0 刺耳
    1.0 −4.0 非常刺耳
    下载: 导出CSV

    表  4  感知透明性与鲁棒性客观评价

    Table  4  Objective evaluation of perceived transparency and robustness

    音频类型 ODG BER (%)
    Popular −0.61 0.00
    Jazz −0.48 0.03
    Rock −0.68 0.16
    Speech −0.35 0.01
    Classical −0.79 0.08
    下载: 导出CSV

    表  5  不同算法的平均检测性能对比(本文算法和文献[8])

    Table  5  Comparison of average detection performance of different schemes (our scheme and [8])

    攻击类型 本文算法 文献 [8]
    DWT-RDM-W+DC DWT-RDM-W DWT-ROM DWT-LQIM DWT-norm
    Resampling (22 050 Hz) 0.000 0.000 0.000 0.000 0.000 0.000
    Requantization (16 bit - 8 bit - 16 bit) 0.000 0.000 0.000 0.000 0.001 0.000
    Amplitude scaling down to 0.85 0.000 0.000 0.000 0.000 0.000 73.723
    Additive of Gaussian noise 0.000 0.002 0.006 0.003 0.006 0.000
    Lowpass filtering (4 kHz) 0.000 0.219 0.262 0.290 0.376 0.184
    Echo addition (50 ms delay, 5 % decay) 0.021 0.026 0.041 0.041 0.187 0.142
    MP3 compression (128 kbps) 0.000 0.000 0.000 0.000 0.000 0.002
    MP3 compression (64 ps) 0.000 0.152 0.169 0.211 0.256 0.258
    下载: 导出CSV

    表  6  不同算法的平均检测性能对比(本文算法和文献[5])

    Table  6  Comparison of average detection performance of different schemes (our scheme and [5])

    攻击类型 本文算法 文献 [5]
    Classical Popular Classical N=8 Popular N=4 Classical N=8 Popular N=4
    Resampling (22 050 Hz) 0.00 0.00 0.00 0.29 0.00 0.71
    Resampling (11 025 Hz) 0.00 0.00 0.00 1.22 0.00 1.06
    Resampling (8 000 Hz) 0.02 0.02 0.01 1.25 0.02 1.20
    Lowpass filtering (3 kHz) 0.00 0.35 24.03 27.32 26.06 23.85
    MP3 compression (128 kbps) 0.00 0.00 0.11 0.13 0.08 0.08
    MP3 compression (112 kbps) 0.00 0.00 0.13 0.11 0.06 0.12
    MP3 compression (96 kbps) 0.00 0.00 1.01 2.07 1.06 1.40
    MP3 compression (80 kbps) 0.01 0.00 1.57 3.65 1.16 2.50
    下载: 导出CSV

    表  7  不同算法的平均检测性能对比(本文算法和文献[7])

    Table  7  Comparison of average detection performance of different schemes (our scheme and [7])

    攻击类型 −30 dB WSR −25 dB WSR −20 dB WSR
    文献 [7] 本文算法 文献 [7] 本文算法 文献 [7] 本文算法
    No Attack 0.14 0.00 0.04 0.00 0.00 0.00
    MP3 compression (64 kbps) 32.12 10.35 25.12 0.83 17.11 0.04
    MP3 compression (128 kbps) 24.22 0.33 19.54 0.04 12.01 0.01
    Resampling (24 kHz) 0.21 0.00 0.12 0.00 0.01 0.00
    Resampling (16 kHz) 8.17 0.03 6.35 0.02 3.23 0.00
    Additive of Gaussian noise (30 dB) 13.07 0.10 11.06 0.09 9.04 0.01
    Lowpass filtering (12 kHz) 0.41 0.13 0.22 0.00 0.04 0.00
    Amplitude scaling down to 0.7 0.43 0.41 0.31 0.01 0.05 0.00
    下载: 导出CSV

    表  8  不同算法的平均检测性能对比(本文算法和文献[17])

    Table  8  Comparison of average detection performance of different schemes (our scheme and [17])

    攻击类型 本文算法 文献 [17]
    Classical Popular Speech Classical Popular Speech
    Additive of Gaussian noise (22 dB) 0.00 0.00 0.00 0.00 0.00 0.14
    Lowpass filtering (8 kHz) 0.00 0.00 0.00 1.23 0.72 0.54
    Highpass filtering (50 Hz) 0.00 0.00 0.00 0.00 0.05 0.45
    Echo addition (50 ms delay, 40 % decay) 0.21 0.34 0.41 1.56 0.70 3.23
    Requantization (16 bit-8 bit-16 bit) 0.00 0.00 0.00 0.00 0.00 0.00
    Resampling (11 025 Hz) 0.00 0.00 0.00 0.00 0.00 0.06
    Resampling (6 000 Hz) 0.00 0.00 0.00 0.00 0.00 0.15
    Amplitude scaling up to 1.3 0.00 0.00 0.00 0.00 0.00 0.00
    Amplitude scaling down to 0.7 0.00 0.00 0.00 0.00 0.00 0.00
    MP3 compression (64 kbps) 0.00 0.00 0.00 0.02 0.00 0.06
    MP3 compression (48 kbps) 0.11 0.01 0.54 0.13 0.00 1.25
    下载: 导出CSV
  • [1] Liu X L, Lin C C, Yuan S M. Blind dual watermarking for color images’ authentication and copyright protection. IEEE Trans. on Circuits and Systems for Video Technology, 2018, 28(5): 1047−1055 doi: 10.1109/TCSVT.2016.2633878
    [2] 熊祥光. 空域强鲁棒零水印方案. 自动化学报, 2018, 44(1): 160−175

    XIONG Xiang-Guang. A zero watermarking scheme with strong robustness in spatial domain. Acta Automatica Sinica, 2018, 44(1): 160−175
    [3] Asikuzzaman M, Pickering M R. An overview of digital video watermarking. IEEE Trans. on Circuits and Systems for Video Technologya, 2018, 28(9): 2131−2153 doi: 10.1109/TCSVT.2017.2712162
    [4] Shih F Y. Digital Watermarking and Steganography: Fundamentals and Techniques. Boca Raton: CRC Press, 2017.
    [5] Chen S T, Huang H N. Optimization-based audio watermarking with integrated quantization embedding. Multimedia Tools and Applications, 2016, 75(8): 4735−4751 doi: 10.1007/s11042-015-2500-1
    [6] 姜传贤, 杨铁军, 董明刚, 程小辉, 李智. 基于线性空间隐藏模型的 可逆图像水印算法. 自动化学报, 2014, 40(10): 2324−2333

    JIANG Chuan-Xian, YANG Tie-Jun, DONG Ming-Gang, CHENG Xiao-Hui, LI Zhi. A reversible image watermarking algorithm using linear space hiding model. Acta Automatica Sinica, 2014, 40(10): 2324−2333
    [7] Hwang M J, Lee J S, Lee M S, Kang H G. SVD-based adaptive QIM watermarking on stereo audio signals. IEEE Trans. on Multimedia, 2018, 20(1): 45−54 doi: 10.1109/TMM.2017.2721642
    [8] Hu H T, Chang J R, Hsu L Y. Windowed and distortioncompensated vector modulation for blind audio watermarking in DWT domain. Multimedia Tools and Applications, 2017, 76(24): 26723−26743 doi: 10.1007/s11042-016-4202-8
    [9] Barni M, Bartolini F, DeRosa A, Piva A. Optimum decoding and detection of multiplicative watermarks. IEEE Trans. on Signal Processing, 2003, 51(4): 1118−1123 doi: 10.1109/TSP.2003.809371
    [10] 崔汉国, 刘健鑫, 李正民. 基于金字塔技术的STL模型数字水印算 法. 自动化学报, 2013, 39(6): 852−806

    CUI Han-Guo, LIU Jian-Xin, LI Zheng-Min. STL model watermarking algorithm bsed on pyramid technique. Acta Automatica Sinica, 2013, 39(6): 852−806
    [11] Etemad S, Amirmazlaghani M. A new multiplicative watermark detector in the contourlet domain using t locationscale distribution. Pattern Recognition, 2018, 77: 99−112 doi: 10.1016/j.patcog.2017.12.006
    [12] Amini M, Sadreazami H, Ahmad M O, Swamy M N S. A channel-dependent statistical watermark detector for color images. IEEE Trans. on Multimedia, 2019, 21(1): 65−73 doi: 10.1109/TMM.2018.2851447
    [13] Hua G, Huang J, Shi Y Q. Twenty years of digital audio watermarking-a comprehensive review. Signal Processing, 2016, 128: 222−242 doi: 10.1016/j.sigpro.2016.04.005
    [14] Akhaee M A, Kalantari N K, Marvasti F. Robust audio and speech watermarking using Gaussian and Laplacian modeling. Signal processing, 2010, 90(8): 2487−2497 doi: 10.1016/j.sigpro.2010.02.013
    [15] Majoul T, Raouafl F, Jaidane M. An improved scheme of audio watermarking based on turbo codes and channel efiect modeling. In: Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Prague, Czech Republic: 2011. 353−356
    [16] 唐鑫, 马兆丰, 钮心忻, 杨义先. 基于变分贝叶斯学习的音频水印盲 检测方法. 通信学报, 2015, 36(1): 121−128

    TANG Xin, MA Zhao-Feng, NIU Xin-Xin, YANG YiXian. Blind audio watermarking mechanism based on variational Bayesian learning. Journal on Communications, 2015, 36(1): 121−128
    [17] Akhaee M A, Sahraeian S M E. Scaling-based watermarking with universally optimum decoder. Multimedia Tools and Applications, 2015, 74(15): 5995−6018 doi: 10.1007/s11042-014-1904-7
    [18] Kingsbury N G. The dual-tree complex wavelet transform: A new technique for shift invariance and directional fllters. In: Proceedings of the 8th IEEE Digital Signal Processing Workshop, Bryce Canyon, USA: 1998. 120−131
    [19] Selesnick I W, Baraniuk R G, Kingsbury N C. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 2005, 22(6): 123−151 doi: 10.1109/MSP.2005.1550194
    [20] Kwitt R, Uhl A. Lightweight probabilistic texture retrieval. IEEE Trans. on Image Processing, 2010, 19(1): 241−253 doi: 10.1109/TIP.2009.2032313
    [21] Fisher N I, Switzer P. Chi-plots for assessing dependence. Biometrica, 1985, 72: 253−265 doi: 10.1093/biomet/72.2.253
    [22] Crouse M S, Nowak R D, Baraniuk R G. Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. on Signal Processing, 1998, 46(4): 886−902 doi: 10.1109/78.668544
    [23] Bian Y, Liang S. Locally optimal detection of image watermarks in the wavelet domain using Bessel K form distribution. IEEE Trans. on Image Processing, 2013, 22(2): 2372−2384
  • 加载中
图(5) / 表(8)
计量
  • 文章访问数:  889
  • HTML全文浏览量:  207
  • PDF下载量:  124
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-30
  • 录用日期:  2019-08-08
  • 网络出版日期:  2021-09-09
  • 刊出日期:  2021-12-23

目录

    /

    返回文章
    返回