2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于车辆载带中继的路边单元突发业务分组调度最优策略

代亮 张亚楠 钱超 孟芸 黄鹤

代亮, 张亚楠, 钱超, 孟芸, 黄鹤. 基于车辆载带中继的路边单元突发业务分组调度最优策略. 自动化学报, 2021, 47(5): 1098−1110 doi: 10.16383/j.aas.c190054
引用本文: 代亮, 张亚楠, 钱超, 孟芸, 黄鹤. 基于车辆载带中继的路边单元突发业务分组调度最优策略. 自动化学报, 2021, 47(5): 1098−1110 doi: 10.16383/j.aas.c190054
Dai Liang, Zhang Ya-Nan, Qian Chao, Meng Yun, Huang He. Optimal packet scheduling strategy for roadside units'  bursty traffic based on relaying vehicles. Acta Automatica Sinica, 2021, 47(5): 1098−1110 doi: 10.16383/j.aas.c190054
Citation: Dai Liang, Zhang Ya-Nan, Qian Chao, Meng Yun, Huang He. Optimal packet scheduling strategy for roadside units'  bursty traffic based on relaying vehicles. Acta Automatica Sinica, 2021, 47(5): 1098−1110 doi: 10.16383/j.aas.c190054

基于车辆载带中继的路边单元突发业务分组调度最优策略

doi: 10.16383/j.aas.c190054
基金项目: 国家重点基础研究发展计划(2018YFB1600600), 国家自然科学基金(61701044)资助
详细信息
    作者简介:

    代亮:长安大学电子与控制工程学院副教授. 2011年获得西安电子科技大学通信工程学院通信与信息系统专业博士学位. 主要研究方向为车联网理论与应用. 本文通信作者. E-mail: ldai@chd.edu.cn

    张亚楠:长安大学电子与控制工程学院硕士研究生. 2015年获得长安大学电子与控制工程学院自动化专业学士学位. 主要研究方向为车联网理论与应用. E-mail: 2016132053@chd.edu.cn

    钱超:长安大学电子与控制工程学院讲师. 2013年获得长安大学电子与控制工程学院博士学位. 主要研究方向为智能交通系统. E-mail: qianchao@chd.edu.cn

    孟芸:长安大学电子与控制工程学院讲师. 2015年获得西安电子科技大学通信工程学院博士学位. 主要研究方向为无线通信系统. E-mail: mengyun@chd.edu.cn

    黄鹤:长安大学电子与控制工程学院副教授. 2009年获得西北工业大学电子信息工程学院博士学位. 主要研究方向为无线通信系统. E-mail: huanghe@chd.edu.cn

Optimal Packet Scheduling Strategy for Roadside Units'  Bursty Traffic Based on Relaying Vehicles

Funds: Supported by National Key Research and Development Program of China (2018YFB1600600) and National Natural Science Foundation of China (61701044)
More Information
    Author Bio:

    DAI Liang Associate professor at the School of Electronics and Control Engineering, Chang' an University. He received his Ph.D. degree from Xidian University in 2011. His research interest covers theory and application of vehicular networks. Corresponding author of this paper

    ZHANG Ya-Nan Master student at the School of Electronics and Control Engineering, Chang' an University. She received her bachelor degree from Chang' an University in 2015. Her research interest covers theory and application of vehicular networks

    QIAN Chao Lecturer at the School of Electronics and Control Engineering, Chang' an University. He received his Ph.D. degree from Chang' an University in 2013. His main research interest is intelligent transportation system

    MENG Yun Lecturer at the School of Electronics and Control Engineering, Chang' an University. She received her Ph.D. degree from Xidian University in 2015. Her main research interest is wireless communication system

    HUANG He Associate professor at the School of Electronics and Control Engineering, Chang' an University. He received his Ph.D. degree from Northwestern Polytechnical University in 2009. His main research interest is wireless communication system

  • 摘要:

    高速公路车联网场景中, 路边单元(Roadside units, RSUs)可作为多种周边监测数据的汇入网关, 其业务具有突发特性, 且可通过移动车辆以“存储−载带−转发”方式传输到与骨干网络互联的RSU. 针对RSU间业务传输问题, 源RSU可根据实时业务到达率按需匹配资源, 以应对业务突发性对分组端到端时延的影响. 本文首先针对RSU突发业务传输过程建立突发业务到达模型、车辆到达模型和离散车速状态模型; 进而利用受限马尔科夫决策过程对系统状态转移过程进行分析, 并建立非线性平均端到端时延最小化问题; 最后通过分析最优解的形式得出最优分组调度策略具有门限结构. 仿真结果验证了RSU间业务传输过程中排队时延和传播时延之间存在折中, 且该分组调度策略能降低业务传输过程的平均端到端时延.

  • 图  1  路边单元突发业务分组传输调度示意图

    Fig.  1  The schematic of bursty traffic transmission scheduling between roadside units

    图  2  RSU−车辆分组随机调度系统

    Fig.  2  The packet scheduling system of RSU-vehicles

    图  3  离散车速状态模型

    Fig.  3  Discrete velocity states models

    图  4  马尔科夫链模型

    Fig.  4  Markov chain model

    图  5  OPSS-RSUs方法双门限结构

    Fig.  5  Double threshold structure of OPSS-RSUs

    图  6  平均排队时延和平均端到端时延随平均传播时延的变化曲线

    Fig.  6  Changes in average queuing delay and average end-to-end delay as the average propagation delay increases

    图  7  时延随$\bar \alpha $变化曲线

    Fig.  7  Change of delay with $\bar \alpha $

    图  8  时延随$\lambda $变化曲线

    Fig.  8  Change of delay with $\lambda $

    表  1  仿真参数表

    Table  1  Simulation parameters

    参数名称 符号/单位 参数值
    RSU缓存容量 $K$/个 100
    RSU间隔距离 $L$/m 10 000
    速度区间 $[{V_{\min }},{V_{\max }}]$/(m/s) [16.67, 33.33]
    速度期望 $\overline V $/(m/s) 25
    速度标准差 $\sigma $ 10
    车辆到达率 $\lambda $/(辆/s) 0.55
    时隙长度 $\Delta t$/s 1
    车速状态数量 $W$ 4
    发送分组数量上限 $S$ 2
    下载: 导出CSV

    表  2  分组到达参数表

    Table  2  Packets arrival parameters

    分组到达概率${\theta _i}$ ${\theta _0}$ ${\theta _1}$ ${\theta _2}$ 平均到达率$\bar \alpha $
    方案 1 0.7 0.1 0.2 0.5
    方案 2 0.6 0.1 0.3 0.7
    下载: 导出CSV
  • [1] 王晓, 要婷婷, 韩双双, 曹东璞, 王飞跃. 平行车联网基于ACP的智能车辆网联管理与控制. 自动化学报, 2018, 44(8): 1391−1404

    Wang Xiao, Yao Ting-Ting, Han Shuang-Shuang, Cao Dong-Pu, Wang Fei-Yue. Parallel internet of vehicles: The ACP-based networked management and control for intelligent vehicles. Acta Automatica Sinica, 2018, 44(8): 1391−1404
    [2] 冯建周, 宋沙沙, 孔令富. 物联网语义关联和决策方法的研究. 自动化学报, 2016, 42(11): 1691−1701

    Feng Jian-Zhou, Song Sha-Sha, Kong Ling-Fu. Research on semantic association and decision method of the internet of things. Acta Automatica Sinica, 2016, 42(11): 1691−1701
    [3] Atallah R F, Khabbaz M J, Assi C M. Modeling and performance analysis of medium access control schemes for drive-thru Internet access provisioning systems. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(6): 3238−3248 doi: 10.1109/TITS.2015.2440447
    [4] He J P, Cai L, Pan J P, Cheng P. Delay analysis and routing for two-dimensional VANETs using carry-and-forward mechanism. IEEE Transactions on Mobile Computing, 2017, 16(7): 1830−1841 doi: 10.1109/TMC.2016.2607748
    [5] Huang L J, Jiang H, Zhang Z, Yan Z J. Efficient data traffic forwarding for infrastructure-to-infrastructure communications in VANETs. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 839−853 doi: 10.1109/TITS.2017.2705047
    [6] Si P B, He Y, Yao H P, Yang R Z, Zhang Y H. DaVe: Offloading delay-tolerant data traffic to connected vehicle networks. IEEE Transactions on Vehicular Technology, 2016, 65(6): 3941−3953 doi: 10.1109/TVT.2016.2550105
    [7] Oh S, Schenato L, Chen P, Sastry S. Tracking and coordination of multiple agents using sensor networks: System design, algorithms and experiments. Proceedings of the IEEE, 2007, 95(1): 234−254 doi: 10.1109/JPROC.2006.887296
    [8] Mencagli G, Torquati M, Danelutto M, Matteis T D. Parallel continuous preference queries over out-of-order and bursty data streams. IEEE Transactions on Parallel and Distributed Systems, 2017, 28(9): 2608−2624 doi: 10.1109/TPDS.2017.2679197
    [9] Chen J Q, Mao G Q, Li C L, Liang W F, Zhang D G. Capacity of cooperative vehicular networks with infrastructure support: Multiuser case. IEEE Transactions on Vehicular Technology, 2018, 67(2): 1546−1560 doi: 10.1109/TVT.2017.2753772
    [10] Wang Y, Liu Y S, Zhang J Y, Ye H N, Tan Z H. Cooperative store-carry-forward scheme for intermittently connected vehicular networks. IEEE Transactions on Vehicular Technology, 2017, 66(1): 777−784
    [11] Shahidi R, Ahmed M H. Probability distribution of end-to-end delay in a highway VANET. IEEE Communications Letters, 2014, 18(3): 443−446 doi: 10.1109/LCOMM.2014.011214.132606
    [12] Seliem H, Shahidi R, Ahmed M H, Shehata M S. Probability distribution of the re-healing delay in a one-way highway VANET. IEEE Communications Letters, 2018, 22(10): 2056−2059 doi: 10.1109/LCOMM.2018.2859928
    [13] Huang J J, Tseng Y T. The steady-state distribution of rehealing delay in an intermittently connected highway VANET. IEEE Transactions on Vehicular Technology, 2018, 67(10): 10010−10021 doi: 10.1109/TVT.2018.2865500
    [14] Ni Y Z, He J P, Cai L, Bo Y M. Data uploading in hybrid V2V/V2I vehicular networks: Modeling and cooperative strategy. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4602−4614 doi: 10.1109/TVT.2018.2796563
    [15] Kuo Y W, Li C L, Jhang J H, Lin S. Design of a wireless sensor network-based IoT platform for wide area and heterogeneous applications. IEEE Sensors Journal, 2018, 18(12): 5187−5197 doi: 10.1109/JSEN.2018.2832664
    [16] Abdrabou A, Zhuang W H. Probabilistic delay control and road side unit placement for vehicular ad hoc networks with disrupted connectivity. IEEE Journal on Selected Areas in Communications, 2011, 29(1): 129−139 doi: 10.1109/JSAC.2011.110113
    [17] Carpenter S E, Sichitiu M L. BUR-GEN: A bursty packet generator for vehicular communication channels. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10232−10242 doi: 10.1109/TVT.2018.2866946
    [18] Katsaros K. End-to-end delay bound analysis for location-based routing in hybrid vehicular networks. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7462−7475 doi: 10.1109/TVT.2015.2482362
    [19] Hu Y, Li H Y, Chang Z, Han Z. End-to-end backlog and delay bound analysis for multi-hop vehicular ad hoc networks. IEEE Transactions on Wireless Communications, 2017, 16(10): 6808−6821 doi: 10.1109/TWC.2017.2731847
    [20] Li Y, Jin D P, Hui P, Chen S. Contact-aware data replication in roadside unit aided vehicular opportunistic networks. IEEE Transactions on Mobile Computing, 2016, 15(2): 306−321 doi: 10.1109/TMC.2015.2416185
    [21] Zhang S, Zhang N, Fang X J, Yang P, Shen X S. Self-sustaining caching stations: Toward cost-effective 5G-enabled vehicular networks. IEEE Communications Magazine, 2017, 55(11): 202−208 doi: 10.1109/MCOM.2017.1700129
    [22] Zhang N, Zhang S, Yang P, Alhussein O, Zhuang W H, Shen X S. Software defined space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Communications Magazine, 2017, 55(7): 101−109 doi: 10.1109/MCOM.2017.1601156
    [23] Khabbaz M J, Fawaz W F, ASSI C M. Probabilistic bundle relaying schemes in two-hop vehicular delay tolerant networks. IEEE Communications Letters, 2011, 15(3): 281−283 doi: 10.1109/LCOMM.2011.011011.102512
    [24] Khabbaz M J, Fawaz W F, Assi C M. Modeling and delay analysis of intermittently connected roadside communication networks. IEEE Transactions on Vehicular Technology, 2012, 61(6): 2698−2706 doi: 10.1109/TVT.2012.2200001
    [25] Khabbaz M J, Fawaz W F, Assi C M. A probabilistic bundle relay strategy in two-hop vehicular delay tolerant networks. In: Proceedings of the 2011 IEEE International Conference on Communications. Kyoto, Japan, IEEE, 2011. 1−6
    [26] Khabbaz M J, Alazemi H M K, Assi C M. Stochastic data delivery delay analysis in intermittently connected vehicular networks. In: Proceedings of the 2012 IEEE Global Communications Conference. Anaheim, CA, USA: IEEE, 2012. 183−188
    [27] Khabbaz M J, Alazemi H M K, Assi C M. Delay-aware data delivery in vehicular intermittently connected networks. IEEE Transactions on Communications, 2013, 61(3): 1134−1143 doi: 10.1109/TCOMM.2012.122712.120222
    [28] Khabbaz M J, Alazemi H M K, Assi C M. Modeling and delay analysis of a retransmission-based bundle delivery scheme for intermittent roadside communication networks. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 700−708 doi: 10.1109/TITS.2012.2228192
    [29] Ramaiyan V, Altman E, Kumar A. Delay optimal scheduling in a two-hop vehicular relay network. Mobile Networks and Applications, 2010, 15(1): 97−111
    [30] Badia L, Scalabrin M. Stochastic analysis of delay statistics for intermittently connected vehicular networks. In: Proceedings of the 20th European Wireless Conference. Barcelona, Spain: VDE, 2014. 1−6
    [31] Khabbaz M J, Fawaz W F, Assi C M. A probabilistic and traffic-aware bundle release scheme for vehicular intermittently connected networks. IEEE Transactions on Communications, 2012, 60(11): 3396−3406 doi: 10.1109/TCOMM.2012.082712.110473
    [32] Khabbaz M J, Fawaz W F, Assi C M. Modeling and analysis of bulk bundle release schemes in two-hop vehicular DTNs. In: Proceedings of the 2011 IEEE Global Telecommunications Conference. Houston, TX, USA: IEEE, 2011. 1−6
    [33] Fawaz W F, Atalla R F, Khabbaz M J. A first step towards the resolution of the starvation problem in multi-point-to-point ICRCNs. IEEE Communications Letters, 2013, 17(11): 2104−2107 doi: 10.1109/LCOMM.2013.091913.131740
    [34] Arafa A, Baknina A, Ulukus S. Online fixed fraction policies in energy harvesting communication systems. IEEE Transactions on Wireless Communications, 2018, 17(5): 2975−2986 doi: 10.1109/TWC.2018.2805336
    [35] Wang M, Liu J, Chen W. On delay-power tradeoff of rate adaptive wireless communications with random arrivals. In: Proceedings of the 2017 IEEE Global Communications Conference. Singapore, Singapore: IEEE, 2017. 1−6
    [36] Khabbaz M J, Fawaz W F, Assi C M. A simple free-flow traffic model for vehicular intermittently connected networks. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(3): 1312−1326 doi: 10.1109/TITS.2012.2188519
    [37] 徐昕, 沈栋, 高岩青, 王凯. 基于马氏决策过程模型的动态系统学习控制: 研究前沿与展望. 自动化学报, 2012, 38(5): 673−687

    Xu Xin, Shen Dong, Gao Yan-Qing, Wang Kai. Learning control of dynamical systems based on Markov decision processes: Research frontiers and outlooks. Acta Automatica Sinica, 2012, 38(5): 673−687
    [38] Puterman M L. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Hoboken, NJ, USA: Wiley, 1994.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1073
  • HTML全文浏览量:  133
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-23
  • 录用日期:  2019-08-15
  • 网络出版日期:  2021-05-21
  • 刊出日期:  2021-05-20

目录

    /

    返回文章
    返回