2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于修剪策略的D-FNN直接逆控制算法研究

张彩霞 刘国文

张彩霞, 刘国文. 基于修剪策略的D-FNN直接逆控制算法研究. 自动化学报, 2019, 45(8): 1599-1605. doi: 10.16383/j.aas.c190038
引用本文: 张彩霞, 刘国文. 基于修剪策略的D-FNN直接逆控制算法研究. 自动化学报, 2019, 45(8): 1599-1605. doi: 10.16383/j.aas.c190038
ZHANG Cai-Xia, LIU Guo-Wen. Research on D-FNN Direct Inverse Control Algorithm Based on Pruning Strategy. ACTA AUTOMATICA SINICA, 2019, 45(8): 1599-1605. doi: 10.16383/j.aas.c190038
Citation: ZHANG Cai-Xia, LIU Guo-Wen. Research on D-FNN Direct Inverse Control Algorithm Based on Pruning Strategy. ACTA AUTOMATICA SINICA, 2019, 45(8): 1599-1605. doi: 10.16383/j.aas.c190038

基于修剪策略的D-FNN直接逆控制算法研究

doi: 10.16383/j.aas.c190038
基金项目: 

国家自然科学基金青年基金 61703104

广东省教育厅省级重大科研项目 2014KZDXM063

国家自然科学基金青年基金 61803087

国家自然科学基金青年基金 kg33201

详细信息
    作者简介:

    刘国文   佛山科学技术学院硕士研究生.主要研究方向为智能数据处理, 机器学习.E-mail:keanu_l@outlook.com

    通讯作者:

    张彩霞   博士, 佛山科学技术学院自动化学院副教授.研究方向为智能计算, 智能控制系统与多源信息融合.本文通信作者.E-mail:zh_caixia@163.com

Research on D-FNN Direct Inverse Control Algorithm Based on Pruning Strategy

Funds: 

National Natural Science Foundation Youth Fund 61703104

Guangdong Provincial Department of Education Provincial Major Scientific Research Project 2014KZDXM063

National Natural Science Foundation Youth Fund 61803087

National Natural Science Foundation Youth Fund kg33201

More Information
    Author Bio:

      Master student at Foshan University. His research interest covers intelligent data processing and machine learning

    Corresponding author: ZHANG Cai-Xia   Ph. D., associate professor at the Automated Institute, Foshan University. Her research interest covers intelligent computing, intelligent control system, and multi-source information fusion. Corresponding author of this paper
  • 摘要: 神经网络是模拟人脑结构,它具有大规模并行及分布式信息处理能力,但是不能处理和描述模糊信息.模糊系统具有推理过程容易理解,但它很难实现自适应学习的功能.如果结合神经网络与模糊系统,可以取长补短.基于此,本文提出了一种新型动态模糊神经网络(Dynamic fuzzy neural network,D-FNN)学习算法.因为它具有结构和参数同时调整且学习速度快等优点,所以既可以在模糊逻辑系统中包含低级的神经网络学习和计算功能,也可以为神经网络提供高级的类似人的思维和推理的模糊逻辑系统.此外,本文还开发了生物医学工程应用算法程序,针对药物注射系统的直接逆控制案例进行了仿真,结果表明:D-FNN具有实时学习和控制能力强、参数估计和结构辨识同时进行等优点.
    1)  本文责任编委 刘艳军
  • 图  1  D-FNN示意图

    Fig.  1  D-FNN schematic

    图  2  控制方法数学模型

    Fig.  2  Mathematical model of control method

    图  3  标准时不变系统的训练结果

    Fig.  3  Training results for standard time invariant systems

    图  4  D-FNN对系统进行的仿真

    Fig.  4  D-FNN simulation of the system

    图  5  参数变化模型的训练结果

    Fig.  5  Training results of the parameter change model

    图  6  参数变化模型的训练结果

    Fig.  6  Test result of parameter change model

    表  1  D-FNN与IANC的性能比较(mmHg)

    Table  1  Performance comparison between D-FNN and IANC (mmHg)

    方法 $ \Delta p_{\max} $ 方法 $ \Delta p_{\max} $
    D-FNN 9.01 IANC 10.1
    下载: 导出CSV
  • [1] Chen R J, Zhao A, Chen H L, Zhao Z H, Cai J, Wang C C, et al. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. Journal of the American College of Cardiology, 2015, 65(21): 2279-2287 doi: 10.1016/j.jacc.2015.03.553
    [2] Chao C T, Chen Y J, Teng C C. Simplification of fuzzy neural systems using similarity analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics, 1996, 26(2): 344-354 doi: 10.1109/3477.485887
    [3] 何正风, 张德丰, 孙亚民.高斯激活函数特征值分解修剪技术的D-FNN算法研究.中山大学学报(自然科学版), 2013, 52(1): 34- 39 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201301007

    He Zheng-Feng, Zhang De-Feng, Sun Ya-Min. Research on adaptive dynamic fuzzy neural network algorithms with Gauss activation function and eigenvalue decomposition pruning technologies. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(1): 34-39 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201301007
    [4] 马莉, 张德丰, 许勇.基于动态模糊神经网络的生物工程算法研究.计算机工程与科学, 2010, 32(3): 137-140 doi: 10.3969/j.issn.1007-130X.2010.03.036

    Ma Li, Zhang De-Feng, Xu Yong. A bio-engineering algorithm research based on dynamic fuzzy neural networks. Computer Engineering and Science, 2010, 32(3): 137-140 doi: 10.3969/j.issn.1007-130X.2010.03.036
    [5] 张德丰, 卢清华, 周燕.一种新型的动态模糊神经网络算法.控制工程, 2009, 16(4): 464-467, 471 doi: 10.3969/j.issn.1671-7848.2009.04.024

    Zhang De-Feng, Lu Qing-Hua, Zhou Yan. Novel dynamic fuzzy neural networks algorithm. Control Engineering of China, 2009, 16(4): 464-467, 471 doi: 10.3969/j.issn.1671-7848.2009.04.024
    [6] 马莉, 张德丰, 马子龙.滑动窗与修剪技术的动态模糊神经网络方法研究.中山大学学报(自然科学版), 2010, 49(1): 48-52 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201001011

    Ma Li, Zhang De-Feng, Ma Zi-Long. Dynamic fuzzy neural network method research of the glide window and pruning technology. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 49(1): 48-52 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201001011
    [7] 左军, 周灵, 李晓东.基于规则产生准则与修剪策略的D-FNN算法研究.中山大学学报(自然科学版), 2015, 54(5): 43-48 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201505010

    Zuo Jun, Zhou Ling, Li Xiao-Dong. The rule criteria and pruning strategy based on D-FNN algorithm research. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2015, 54(5): 43-48 http://d.old.wanfangdata.com.cn/Periodical/zsdxxb201505010
    [8] Platt J. A resource-allocating network for function interpolation. Neural Computation, 1991, 3: 213-225 doi: 10.1162/neco.1991.3.2.213
    [9] 孙俞超, 李德.基于节点特征的矢量地图零水印算法.地理与地理信息科学, 2017, 33(3): 17-21 doi: 10.3969/j.issn.1672-0504.2017.03.004

    Sun Yu-Chao, Li De. Vector map zero-watermark algorithm based on node feature. Geography and Geo-information Science, 2017, 33(3): 17-21 doi: 10.3969/j.issn.1672-0504.2017.03.004
    [10] Lu Y, Sundararajan N, Saratchandran P. A sequential learning scheme for function approximation by using minimal radial basis function networks. Neural Computation, 1997, 9: 461-478 doi: 10.1162/neco.1997.9.2.461
    [11] 王永杰, 白艳萍.基于主成分分析的PSO-BP算法在GDP和CPI预测中的应用.重庆理工大学学报(自然科学), 2017, 31(4): 150-154 http://d.old.wanfangdata.com.cn/Periodical/cqgxyxb201704025

    Wang Yong-Jie, Bai Yan-Ping. Application of PSO-BP algorithm based on principal component analysis in prediction of GDP and CPI. Journal of Chongqing University of Technology (Natural Science), 2017, 31(4): 150-154 http://d.old.wanfangdata.com.cn/Periodical/cqgxyxb201704025
    [12] Wu S, Er M J. Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B, Cybernetics, 2000, 30(2): 358-364 doi: 10.1109/3477.836384
    [13] Peng Y, Yue M. A zero-watermarkings scheme for vector map based on feature vertex distance ratio. Journal of Electrical and Computer Engineering, 2015, 2015(2): 1-6 https://www.hindawi.com/journals/jece/2015/421529/
    [14] Er M J, Wu S. A fast learning algorithm for parsimonious fuzzy neural systems. Fuzzy Sets and Systems, 2002, 126(3): 337-351 doi: 10.1016/S0165-0114(01)00034-3
    [15] 陈子豪, 龙华, 曹伟.基于改进型PSO-BP神经网络算法的水质评价.信息技术, 2017, (8): 11-15, 20 http://d.old.wanfangdata.com.cn/Periodical/xxjs201708003

    Chen Zi-Hao, Long Hua, Cao Wei. Based on the improved PSO-BP neural network algorithm in the quality assessment of water environment. Information Technology, 2017, (8): 11 -15, 20 http://d.old.wanfangdata.com.cn/Periodical/xxjs201708003
    [16] Polycarpou M, Conway J. Indirect adaptive nonlinear control of drug delivery systems. IEEE Transactions on Automatic Control, 1998, 43(6): 849-856 doi: 10.1109/9.679024
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  1247
  • HTML全文浏览量:  295
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-26
  • 录用日期:  2019-04-15
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回