2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于WTFMC算法的递归模糊神经网络结构设计

乔俊飞 丁海旭 李文静

赵志甲, 任志刚. 针对执行器非光滑反向间隙 − 饱和的柔性立管边界控制. 自动化学报, 2019, 45(11): 2050−2057 doi: 10.16383/j.aas.c190126
引用本文: 乔俊飞, 丁海旭, 李文静. 基于 WTFMC 算法的递归模糊神经网络结构设计. 自动化学报, 2020, 46(11): 2367−2378 doi: 10.16383/j.aas.c180847
Zhao Zhi-Jia, Ren Zhi-Gang. Boundary control of a flexible marine riser subject to nonsmooth actuator backlash-saturation constraints. Acta Automatica Sinica, 2019, 45(11): 2050−2057 doi: 10.16383/j.aas.c190126
Citation: Qiao Jun-Fei, Ding Hai-Xu, Li Wen-Jing. Structure design for recurrent fuzzy neural network based on wavelet transform fuzzy Markov chain. Acta Automatica Sinica, 2020, 46(11): 2367−2378 doi: 10.16383/j.aas.c180847

基于WTFMC算法的递归模糊神经网络结构设计

doi: 10.16383/j.aas.c180847
基金项目: 

国家自然科学基金 61533002

国家自然科学基金 61603009

北京市自然科学基金 4182007

北京市教委科技一般项目 KM201910005023

北京工业大学日新人计划 2017-RX(1)-04

详细信息
    作者简介:

    丁海旭  北京工业大学信息学部硕士研究生.主要研究方向为神经网络结构设计与优化, 污水处理过程特征建模. E-mail: dinghaixu@emails.bjut.edu.cn

    李文静  北京工业大学信息学部副教授. 2013年于中国科学院自动化研究所获得博士学位.主要研究方向为神经计算, 污水处理过程智能建模. E-mail: wenjing.li@bjut.edu.cn

    通讯作者:

    乔俊飞  北京工业大学信息学部教授.主要研究方向为污水处理过程智能控制, 神经网络结构设计与优化.本文通信作者. E-mail: junfeq@bjut.edu.cn

Structure Design for Recurrent Fuzzy Neural Network Based on Wavelet Transform Fuzzy Markov Chain

Funds: 

National Natural Science Foundation of China 61533002

National Natural Science Foundation of China 61603009

Beijing Natural Science Foundation 4182007

General Science and Technology Project of Beijing Education Commission KM201910005023

Beijing University of Technology0s New Day Program 2017-RX(1)-04

More Information
    Author Bio:

    DING Hai-Xu   Master student at the Faculty of Information Technology, Beijing University of Technology. His research interest covers structure design and optimization of neural networks, feature modelling in wastewater treatment process

    LI Wen-Jing   Associate professor at the Faculty of Information Technology, Beijing University of Technology. She received her Ph. D. degree from Institute of Automation, Chinese Academy of Sciences in 2013. Her research interest covers neural computation and intelligent modelling in wastewater treatment process

    Corresponding author: QIAO Jun-Fei   Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control of wastewater treatment process, structure design and optimization of neural networks. Corresponding author of this paper
  • 摘要: 针对递归模糊神经网络(Recurrent fuzzy neural network, RFNN)的递归量难以自适应的问题, 提出一种基于小波变换–模糊马尔科夫链(Wavelet transform fuzzy Markov chain, WTFMC)算法的RFNN模型.首先, 在时间维度上记录隐含层神经元的模糊隶属度, 并采用小波变换将该时间序列进行分解, 通过模糊马尔科夫链对子序列的未来时段进行预测, 之后将各预测量合并后代入递归函数中得到具有自适应性的递归量.其次, 利用梯度下降算法更新RFNN的参数来保证神经网络的精度.最后, 通过非线性系统建模中几个基准问题和实际污水处理中关键水质参数的预测实验, 证明了该神经网络模型的可行性和有效性.
    Recommended by Associate Editor LIU Yan-Jun
  • 在深海勘探开发生产中, 海洋柔性立管作为连接海面作业平台与海床井口的关键构件[1].在风、浪、洋流等外部载荷作用下, 海洋立管会产生振动现象, 而长期的振动则是造成柔性立管疲劳破损的主因[2-4].因此, 开展先进的海洋柔性立管振动主动控制系统研究, 对延长立管使用寿命、提高生产效率和保证海洋油气生产安全具有重要的理论和实际意义.

    从数学的观点看, 具有振动的海洋柔性立管系统可认为是典型的无限维分布参数系统[5-11].其动力学往往建模为耦合的偏微分–常微分方程, 这使得现有许多对传统刚性系统成熟的方法不能直接应用.对海洋柔性立管振动控制的研究主要包括模态控制和边界控制.模态控制是基于提取的有限维受控子系统进行控制设计, 而忽略掉的高频模态可能导致系统产生控制溢出效应.边界控制能克服上述方法的缺点, 且容易由系统机械能相关的Lyapunov函数得出, 因此边界控制与其他控制技术如PID控制、鲁棒控制、自适应控制、反步控制、输出反馈控制等相结合的方法广泛应用于柔性立管系统的振动控制领域[12-16].上述研究仅仅局限于柔性立管系统的振动控制, 而这些方法将不适用于具有输入非线性特性的柔性立管系统.

    在实际的海洋油气生产环境中, 柔性立管系统除了受到风浪扰动和海洋洋流分布式扰动影响外, 其面临的情况可能会比之前研究的问题更加复杂.如系统固有的物理约束和执行器的约束将使得系统产生死区、饱和、磁滞、反向间隙等不光滑的非线性特性[17-20].而这些不光滑的非线性特性将会限制系统的瞬态性能, 更为甚者, 将会致使系统不稳定.因此, 需要将这些不光滑的非线性约束特性考虑在控制设计中.为了解决海洋柔性立管系统的输入非线性约束问题, 一些学者基于立管原始无限维模型探索了不同的边界控制方法[13, 21-24].文献[13]面向具有系统不确定性、输出约束和输入饱和的海洋立管系统, 基于反推技术研发了障碍边界控制策略以抑制振动、补偿系统不确定性以及处理系统的输入输出限制.文献[21]针对具有执行器输入饱和非线性约束和外部海洋扰动的海洋柔性立管系统, 在顶端构建边界控制器以稳定其在平衡位置的小邻域并利用辅助系统补偿执行器饱和的影响.文献[22]设计了鲁棒自适应控制器用以稳定具有参数不确定性和输入受限的海洋柔性立管系统.文献[23]采用光滑的双曲正切函数、Nussbaum函数和辅助系统设计边界控制器以抑制立管振动并限制控制输入在给定范围内, 该方法解决了文献[2122]中应用符号函数限制控制输入所带来的震颤问题.文献[24]引入辅助函数和变量设计边界控制器来实现立管的振动减弱并消除混合的死区−饱和非线性约束影响.然而, 这些成果仅仅解决了柔性立管系统执行器输入饱和或输入饱和−死区非线性约束问题, 而对于具有输入反向间隙−饱和非线性约束的柔性立管系统, 上述方法将不能适用.

    本文针对执行器非光滑反向间隙−饱和约束特性的深海柔性立管系统(如图 1所示), 首先将反向间隙−饱和约束转换成虚拟的输入饱和约束, 其后引入辅助系统并采用Lyapunov理论, 构建边界控制以抑制柔性立管的振动并消除饱和非线性约束的影响.随后, 证明了闭环系统在Lyapunov意义下的一致有界稳定性.最后, 通过数值仿真, 验证了本文所提出控制能处理非光滑反向间隙−饱和约束非线性影响, 也能有效抑制立管系统振动.

    图 1  柔性立管系统
    Fig. 1  Flexible riser system

    注1.本文作如下简写: $ (\cdot)(x, t) = (\cdot) $, $ (\cdot)' = \dfrac{\partial(\cdot)}{\partial{x}} $, $ \dot{(\cdot)} $ = $ \dfrac{\partial(\cdot)}{\partial{t}} $.

    深海柔性立管系统如图 1所示, 其中$ l $为立管的长度, $ y(z, t) $为立管在位置$ z $时刻$ t $的偏移量, $ f(z, t) $为海洋洋流分布式扰动, $ d(t) $为外部环境扰动, $ u(t) $为边界控制输入.

    本研究所考虑立管系统动力学描述如下[1]:

    $\begin{split} \rho\ddot{y}(z,&t)-\left\{T[z, y'(z,t)]+\right.\\ & \left.3\psi(z)y'^2(z,t)\right\}y''(z,t)-\\ & \ T'[z, y'(z,t), y''(z,t)]y'(z,t)+c\dot{y}(z,t)-\\ & \ \psi'(z)y'^3(z,t)+ EIy''''(z,t)-\\ & \ f(z,t) = 0,\ \ \ 0<z<l \end{split} \hspace{33pt} $

    (1)

    $ \begin{align} y(0,t) = y'(0,t) = y''(l,t) = 0 \end{align} \hspace{78pt} $

    (2)

    $ \begin{split} m\ddot{y}(l,t)+& T[l, y'(l,t)]y'(l,t)+\psi(l)y'^3(l,t)-u(t)+\\ & d_a\dot{y}(l,t) = EIy'''(l,t)+d(t) \end{split} \hspace{5pt}$

    (3)

    其中, $ \rho $, $ c $和$ EI $分别为立管的单位长度质量、阻尼系数和弯曲刚度, $ d_a $和$ m $为船的质量和阻尼系数, $ T[z, y'(z, t)] $为立管的时空变化张力, 表示为

    $ \begin{align} T[z, y'(z,t)] = T_0(z)+\psi(z)y'^2(z,t) \end{align} $

    (4)

    其中, $ T_0(z) > 0 $为初始张力, $ \psi(z)\ge 0 $为非线性弹性模量.

    执行器输入饱和非线性描述为[25]

    $ \begin{align} \varphi(t) = sat(\varrho(t)) = \begin{cases} a , \qquad\quad\ \varrho(t)\ge a \\[2mm] \varrho(t) , \qquad -a < \varrho(t) < a \\[2mm] -a, \qquad\ \ \, \varrho(t)\ -a \end{cases} \end{align} $

    (5)

    其中, $ a > 0 $为饱和界限.

    执行器输入反向间隙非线性描述为[24]

    $\begin{array}{l} u(t) = D(\varphi (t)) = \\ \qquad\;\;\;\left\{ {\begin{aligned} &{\varphi (t) - b,\;\qquad \dot \varphi }{ > 0\;\text{且}\;u(t) = \varphi (t) - b}\\ &{\varphi (t) + b,\;\qquad \dot \varphi }{ < 0\;\text{且}\;u(t) = \varphi (t) + b}\\ &{u(t\_), \qquad\quad\;\; \text{其他}}&{} \end{aligned}} \right. \end{array}$

    (6)

    其中, $ b > 0 $为反向间隙参数.

    由输入饱和与反向间隙的表达式(5)和式(6)可知, 系统的非线性特征是相当复杂的, 因此很难直接对其处理.根据文献[25], 可知输入饱和与反向间隙可转换并表示为一个虚拟的输入饱和.因此, 为解决虚拟的输入非线性问题, 我们引入$ D $的右逆$ D^+ $为

    $ \begin{align} \varrho(t) = D^+(\tau(t)) = \left\{ \begin{aligned} & \tau(t)+b, \; \; \dot{\tau}(t)>0 \\ & \tau(t)-b, \; \; \dot{\tau}(t)<0 \\ & \varrho(t\_), \; \;\;\;\;\; \dot{\tau}(t) = 0 \end{aligned} \right. \end{align} $

    (7)

    根据上面的分析和文献[25], 我们可得混合的输入饱和−反向间隙非线性特性可描述为

    $ \begin{split} u(t) = & D(sat(D^+(\tau(t)))) = \\ &\left\{ \begin{aligned} & \,a-b, \qquad\;\;\, \tau(t)\ge a-b \\ & \, \tau(t), \qquad\quad\; |\tau(t)|<a-b \\ & -a+b, \quad\;\;\tau(t)\le-a+b \end{aligned} \right. \end{split} $

    (8)

    由式(8)可知, 我们可将系统的输入饱和−反向间隙非线性视为一个输入饱和来处理.

    引理1[26].设$ \chi_1(z, t) $, $ \chi_2(z, t)\in {\bf{R}} $, $ \varphi > 0 $, 其中$ (z, t)\in$ $[0, l]\times[0, +\infty) $, 则

    $ \begin{align} \chi_1(z,t)\chi_2(z,t)\le \frac{1}{\varphi}\chi^2_1(z,t)+\varphi\chi^2_2(z,t) \end{align} $

    (9)

    引理2[26].设$ \chi(z, t)\in {\bf{R}} $为定义在$ (z, t)\in[0, l]\times $ $[0, +\infty) $的函数, 且满足$ \chi(0, t) = 0, \forall t\in[0, +\infty) $, 则

    $ \begin{align} \chi^2(z,t) \le l\int^l_0\chi^{{\prime}2}(z,t){\rm{d}}z \end{align} $

    (10)

    假设1.假定存在常数$ {F} $, $ {D}\in {\bf{R}}^+ $, 使得$\mid f(z, t)\mid \leq $ $ {F, } $ $ \forall{(z, t)}\in{[0, l]\times[0, +\infty), } $ $\mid d(t)\mid \leq {D, } $ $ \forall{t}\in[0, +\infty). $这个假设是合理的, 由于$ f(z, t) $和$ d(t) $是有限能量的, 因此是有界的[21-24].

    假设2.假定存在正常数$ \underline{T}_0 $, $ \overline{T}_0 $, $ \underline{\psi}_0 $, $ \overline{\psi}_0 $, 使得$ \underline{T}_0\le T_0(z) \le \overline{T}_0 $, $ \underline{\psi}_0\le \psi(z)\leq \overline{\psi}_0 $.

    假设3.对于新的输入饱和表达式(8), 假定存在一个正常数$ \varpi $使得$ |\triangle u|\le \varpi $, 其中, $ \triangle u = u(t)-$ $\tau(t) $.

    本节将引入辅助函数和辅助系统用于构建边界控制器以抑制立管振动并消除输入非线性影响.

    首先, 设计辅助系统为

    $ \begin{split}\! \dot{\nu}(t) =&\ \frac{1}{m}\left(-k_1\nu(t)-\triangle u+T[l, y'(l,t)]y'(l,t)+ \right. \\ & \left. \psi(l)y'^3(l,t)+d_a\dot{y}(l,t)-EIy'''(l, t)\right) \end{split} $

    (11)

    其中, $ \nu(t) $为辅助系统的状态变量, $ k_1 $为正常数.

    为便于分析闭环立管系统的稳定性, 定义如下辅助变量

    $\begin{split} \mu(t) =\;& \dot{y}(l,t)-k_2y'''(l, t)+y'(l,t)+\\ &k_3y'^3(l,t)+\nu(t) \end{split}$

    (12)

    其中, $ k_2, k_3 $为正常数.

    对式(12)求导, 代入式(3)和式(11), 可得

    $ \begin{aligned} \dot{\mu}(t) =\;& \frac{1}{m}(\tau(t)+d(t)-mk_2\dot{y}'''(l, t)+m\dot{y}'(l,t)+\\ & 3mk_3y'^2(l,t)\dot{y}'(l,t)-k_1\nu(t)) \end{aligned} $

    (13)

    根据上述分析, 提出控制律$ \tau(t) $为

    $ \begin{aligned} \tau(t) = & -k_4\mu(t)+k_1\nu(t)+mk_2\dot{y}'''(l, t)-m\dot{y}'(l,t) -\\ & \ 3mk_3y'^2(l,t)\dot{y}'(l,t)-{\rm{sgn}}(\mu(t)){D} \end{aligned} $

    (14)

    其中, $ k_4 $为正常数.

    注2.所设计的控制器(14)是由可获得的边界信号组成的, 其中$ y'''(l, t) $、$ y'(l, t) $和$ y(l, t) $分别可由剪切力传感器、倾角计和位移传感器获得.此外, 控制器中这些信号的一阶时间微分信号$ \dot{y}'''(l, t), $ $ \dot{y}'(l, t) $和$ \dot{y}(l, t) $分别可对已获得信号进行后向差分算法得到[21-24].

    选取如下Lyapunov函数为

    $ Y(t) = {{Y}_{e}}(t)+{{Y}_{f}}(t)+{{Y}_{g}}(t) $

    (15)

    其中,

    $ \begin{align} {{Y}_{e}}(t) = \frac{\varsigma}{2}\rho\int_{0}^{l}{{{{\dot{y}}}^{2}}(z,t){\rm{d}}z} +\frac{\varsigma}{2}\int_{0}^{l}T_0(z){{{ {y}^{\prime2}\left( z,t\right) }}{\rm{d}}z}+\\ \frac{\varsigma}{2}\int_{0}^{l}\psi(z){{{ {y}^{\prime4}\left( z,t\right) }}{\rm{d}}z}+\frac{\varsigma}{2}EI\int_{0}^{l}y^{\prime\prime 2}(z,t){\rm{d}}z \end{align} $

    (16)

    $ \begin{align} {{Y}_{g}}(t) = \frac{\varsigma m}{2}\nu^2(t)+\frac{\varsigma m}{2}\mu^2(t) \end{align} \hspace{78pt}$

    (17)

    $ \begin{align} {{Y}_{f}}(t) = \lambda\rho\int_{0}^{l} z \phi(z){\dot{y} (z,t){y}'(z,t){\rm{d}}z} \end{align} $

    (18)

    其中, $ \varsigma, \lambda > 0 $.

    引理3.选取的Lyapunov函数(16)是一个正定的函数:

    $ \begin{split} 0\le\; & \delta_1[Y_e(t)+Y_f(t)]\le Y(t)\le \\ &\delta_2[Y_e(t)+Y_f(t)] \end{split} $

    (19)

    其中, $ \delta_1 > 0, \; \delta_2 > 1 $.

    证明.根据引理1, 式(18)可放缩为

    $ \begin{split} \mid Y_g(t)\mid\ \le\ & \frac{\lambda\rho \overline{\phi}l}{2}\int^l_0[\dot{y}^2(z,t)+\\ &\ y^{{\prime}2}(z,t)]{\rm{d}}z \le \delta_0{Y_e(t)} \end{split} $

    (20)

    其中

    $ \begin{align} \delta_0 = \frac{\lambda \rho \overline{\phi}l}{\min\left({\varsigma}\rho, {\varsigma}\underline{T_0}\right)} \end{align} $

    (21)

    通过恰当地选取$ \varsigma $和$ \beta $得出

    $ \begin{align} \delta_1 = 1-\delta_0>0, \;\delta_2 = 1+\beta_0>1 \end{align} $

    (22)

    式(22)表明$ 0 < \delta < 1 $, 应用式(21)可得

    $ \begin{align} {\varsigma}>\frac{\lambda \rho \overline{\phi}l}{\min\left(\rho, \underline{T_0}\right)} \end{align} $

    (23)

    重排式(20), 有

    $ \begin{align} -{\delta}Y_e(t)\le Y_g(t)\le {\delta}Y_e(t) \end{align} $

    (24)

    将式(22)代入式(24)得出

    $ \begin{align} 0\le \delta_1 Y_e(t)\le Y_e(t)+Y_g(t)\leq \delta_2 Y_e(t) \end{align} $

    (25)

    结合式(15), 有

    $ \begin{aligned} 0\le\;& \delta_1[Y_e(t)+Y_f(t)]\le Y(t)\leq\\ &\delta_2[Y_e(t)+Y_f(t)] \end{aligned} $

    (26)

    其中, $ \delta_1 > 0, \; \delta_2 > 1 $.

    引理4.选取Lyapunov函数(16)的导数是有上界的:

    $ \begin{align} \dot{Y}(t)\le -\delta Y(t)+\alpha \end{align} $

    (27)

    其中, $ \delta, \alpha > 0 $.

    证明.对式(16)求导, 可得:

    $ \begin{align} \dot{Y}(t) = \dot{Y}_e(t)+\dot{Y}_f(t)+\dot{Y}_g(t) \end{align} $

    (28)

    将式(16)求导, 代入式(1)并应用引理1, 可得

    $ \begin{aligned} \dot{Y}_e(t)\leq \; &\frac{\varsigma T_0(l)}{2}\mu^2(t)-\frac{\varsigma T_0(l)}{2}\nu^2(t)-\frac{\varsigma T_0(l)}{2}\dot{y}^2(l,t)-\\& \frac{\varsigma T_0(l)k^2_2}{2}y'''^2(l,t)-\frac{\varsigma T_0(l)}{2}y'^2(l,t)-\\ & \frac{\varsigma T_0(l)k^2_3}{2}y'^6(l,t)+{\varsigma T_0(l)}{k_2}\nu(t){y}'''(l,t)-\\ & ({\varsigma EI}-{\varsigma T_0(l)}{k_2})y'''(l,t)\dot{y}(l,t)-\\ & \varsigma k_3T_0(l)y'^4(l,t)-{\varsigma}(c-{\sigma_1})\int^l_0\dot{y}^2(z, t){\rm{d}}z+\\ & (2\varsigma\psi(l)-{\varsigma k_3T_0(l)})y'^3(l,t)\dot{y}(l,t)+\\ &{\varsigma k_2k_3T_0(l)}{y}'''(l,t)y'^3(l,t)-{\varsigma T_0(l)}\nu(t)\dot{y}(l,t)+\\ &{\varsigma k_2T_0(l)}y'''(l,t){y}'(l,t)-{\varsigma k_3T_0(l)}y'^3(l,t)\nu(t)-\\ &{\varsigma T_0(l)}\nu(t){y}'(l,t)+\frac{\varsigma}{\sigma_1} \int^l_0f^2(z,t){\rm{d}}z \end{aligned} $

    (29)

    其中, $ \delta_1 > 0 $.

    对$ Y_f(t) $求导, 代入式(11)和式(14), 应用引理1, 可得

    $ \begin{split} \dot{Y}_g(t)\le& -\varsigma k_4\mu^2(t)-\varsigma \nu(t)\triangle u-\varsigma k_1\nu^2(t)+\\& \varsigma T_0(l)\nu(t)y'(l,t)-\varsigma EI \nu(t)y'''(l, t)+\\& 2\varsigma \psi(l)\nu(t)y'^3(l,t)+\varsigma d_a \nu(t)\dot{y}(l,t) \end{split} $

    (30)

    对$ Y_g(t) $求微分, 代入式(4)并利用引理1, 有

    $ \begin{aligned} \dot{Y}_f(t)\le & -l\lambda EI\phi(l) y'''(l,t){y}'(l,t)+\frac{\lambda \rho l\phi(l)}{2}\dot{y}^2(l,t)-\\ &\frac{3\lambda EI}{2}\int^l_0(\phi(z)+z\phi'(z)){y}^{{\prime\prime}2}(z, t){\rm{d}}z-\\ &\left[\frac{\lambda \rho}{2}(\phi(z)+z\phi'(z))-\frac{l\lambda c}{\sigma_2}\right]\int^l_0\dot{y}^2(z, t){\rm{d}}z-\\ &\bigg[\frac{\lambda }{2}(\phi(z)T_0(z)+z\phi'(z)T_0(z)-z\phi(z)T_0'(z))-\\ & {\lambda\sigma_2cl\phi^2(z)}-{\lambda\sigma_3l\phi^2(z)}\bigg]\int^l_0{y}^{{\prime}2}(z, t){\rm{d}}z-\\ & \frac{\lambda }{2}\int^l_0[3\phi(z)\psi'(z)+3z\phi'(z)\psi(z)-\\ &z\phi(z)\psi'(z)]{y}^{{\prime}4}(z, t){\rm{d}}z+\frac{3\lambda \phi(l)\psi(l)l}{2}y'^4(l,t)+\\ & \frac{l\lambda}{\sigma_3} \int^l_0f^2(x,t){\rm{d}}x+\frac{\lambda \phi(l)T_0(l) l}{2}y'^2(l,t) \end{aligned} $

    (31)

    其中, $ \sigma_2, \sigma_3 > 0 $.

    将式(29)和式(30)代入式(28), 应用引理1, 可得

    $ \begin{aligned} \dot{Y}(t)\le\;& -\varsigma\left( k_1+\frac{ T_0(l)}{2}-\frac{1}{\sigma_4}-\frac{|T_0(l)k_2-EI|}{2\sigma_5}-\right.\\ &\left.\frac{|T_0(l)-d_a|}{2\sigma_6}-\frac{| k_3T_0(l)-2 \psi(l)|\sigma_9}{2}\right)\nu^2(t)-\\ & \frac{3\lambda EI}{2}\int^l_0(\phi(z)+z\phi'(z)){y}^{{\prime\prime}2}(z, t){\rm{d}}z +\\ &{\varsigma}{\sigma_4}\triangle u^2-\varsigma\left( k_4-\frac{ T_0(l)}{2}\right)\mu^2(t)-\left(\frac{\varsigma T_0(l)}{2}-\right.\\ &\left.\frac{{|\varsigma T_0(l)k_2-l\lambda{EI}\phi(l)|}{\sigma_8}}{2}-\frac{\lambda \phi(l)T_0(l) l}{2}\right)\times\\ &y'^2(l,t)-\left(\varsigma k_3T_0(l)-\frac{3\lambda \phi(l)\psi(l)l}{2}\right)y'^4(l,t)-\\ &\left(\frac{\varsigma T_0(l)}{2}-\right.\frac{{\varsigma|T_0(l)-d_a|}{\sigma_6}}{2}-\\ &\left.\frac{{\varsigma|T_0(l)k_2-EI|}{\sigma_7}}{2}-\frac{{\varsigma|k_3T_0(l)-2\psi(l)|}{\sigma_{10}}}{2}-\right.\\ &\left.\frac{\lambda \rho l\phi(l)}{2}\right)\dot{y}^2(l,t)-\varsigma\left(\frac{ T_0(l)k^2_3}{2}-\right.\\ &\left.\frac{| k_3T_0(l)-2 \psi(l)|}{2\sigma_9}-\frac{ k_2k_3T_0(l)}{2\sigma_{11}}-\right.\\ &\left.\frac{|k_3T_0(l)-2\psi(l)|}{2\sigma_{10}}\right)y'^6(l,t)-\left(\frac{\varsigma T_0(l)}{2}-\right.\\ &\left.\frac{{\varsigma|T_0(l)k_2-EI|}{\sigma_5}}{2}-\frac{{\varsigma|T_0(l)k_2-EI|}}{2{\sigma_7}}-\right.\\ &\left.\frac{{|\varsigma T_0(l)k_2-l\lambda{EI}\phi(l)|}}{2{\sigma_8}}-\frac{\varsigma k_2k_3T_0(l)\sigma_{11}}{2}\right)\times\\ &\left.y'''^2(l,t)-\left[\frac{\lambda }{2}(\phi(z)T_0(z)+z\phi'(z)T_0(z)-\right.\right.\\ &\left.z\phi(z)T_0'(z))-\right.{\lambda\sigma_2cl\phi^2(z)}-{\lambda\sigma_3l\phi^2(z)}\bigg]\\ &\left.\int^l_0{y}^{{\prime}2}(z, t){\rm{d}}z+\left(\frac{\varsigma}{\sigma_1}+\frac{l\lambda}{\sigma_3}\right)\int^l_0f^2(z,t){\rm{d}}z-\right.\\ &\left.\bigg({\varsigma}c-{\varsigma}{\sigma_1}+\frac{\lambda \rho}{2}(\phi(z)+z\phi'(z))-\frac{l\lambda c}{\sigma_2}\right)\times\\ &\int^l_0\dot{y}^2(z, t){\rm{d}}z-\frac{\lambda }{2}\int^l_0[3\phi(z)\psi'(z)+\\ &3z\phi'(z)\psi(z)-z\phi(z)\psi'(z)]{y}^{{\prime}4}(z, t){\rm{d}}z \end{aligned} $

    (32)

    其中, $ \sigma_4\sim\sigma_{11} > 0, $选择恰当的参数值$ \varsigma, $ $ \lambda, $ $ k_i, $ $ i = 1, $ $\cdots, 4, \delta_j, j = 1, \cdots, 11, $满足下列条件:

    $ \begin{split} \frac{\varsigma T_0(l)}{2}-\;&\frac{{|\varsigma T_0(l)k_2-l\lambda{EI}\phi(l)|}{\sigma_8}}{2}-\\ &\frac{\lambda \phi(l)T_0(l) l}{2}\ge 0 \end{split} \hspace{51pt}$

    (33)

    $ \begin{split} \frac{\varsigma T_0(l)}{2}-\;&\frac{{\varsigma|T_0(l)-d_a|}{\sigma_6}}{2}-\frac{{\varsigma|T_0(l)k_2-EI|}{\sigma_7}}{2}-\\ &\frac{{\varsigma|k_3T_0(l)-2\psi(l)|}{\sigma_{10}}}{2}-\frac{\lambda \rho l\phi(l)}{2}\ge 0 \end{split} \hspace{20pt}$

    (34)

    $ \begin{split} \frac{\varsigma T_0(l)}{2}-\;&\frac{{\varsigma|T_0(l)k_2-EI|}{\sigma_5}}{2}-\frac{{\varsigma|T_0(l)k_2-EI|}}{2{\sigma_7}}-\\ &\frac{{|\varsigma T_0(l)k_2-l\lambda{EI}\phi(l)|}}{2{\sigma_8}}-\frac{\varsigma k_2k_3T_0(l)\sigma_{11}}{2}\ge 0 \end{split} $

    (35)

    $ \begin{split} \frac{ T_0(l)k^2_3}{2}-\;&\frac{| k_3T_0(l)-2 \psi(l)|}{2\sigma_9}-\\ &\frac{|k_3T_0(l)-2\psi(l)|}{2\sigma_{10}}-\frac{ k_2k_3T_0(l)}{2\sigma_{11}}\ge 0 \end{split} \hspace{11pt}$

    (36)

    $ \begin{align} \varsigma k_3T_0(l)-\frac{3\lambda \phi(l)\psi(l)l}{2}\ge 0 \end{align} \hspace{86pt}$

    (37)

    $ \begin{split} \omega_1 =& \min\{ {\varsigma}c-{\varsigma}{\sigma_1}-\frac{l\lambda c}{\sigma_2}+ \\& \frac{\lambda \rho}{2}(\phi(z)+z\phi'(z))\}>0 \end{split} \hspace{78pt}$

    (38)

    $ \begin{aligned} \omega_2 = &\min\bigg\{\frac{\lambda}{2}(\phi(z)T_0(z)+z\phi'(z)T_0(z)-\\& z\phi(z)T_0'(z))-\lambda\sigma_2cl\phi^2(z)-\lambda\sigma_3l\phi^2(z) \bigg\}>0 \end{aligned} $

    (39)

    $ \begin{split} \omega_3 = &\min\{3\phi(z)\psi'(z)+3z\phi'(z)\psi(z)-\\ &z\phi(z)\psi'(z)\} >0 \end{split} \hspace{32pt}$

    (40)

    $ \begin{align} \omega_4 = \min\{\phi(z)+z\phi'(z)\} >0 \end{align}\hspace{67pt} $

    (41)

    $ \begin{split} \omega_5 =\;& k_1+\frac{ T_0(l)}{2}-\frac{1}{\sigma_4}-\frac{| k_3T_0(l)-2 \psi(l)|\sigma_9}{2}-\\ &\frac{|T_0(l)k_2-EI|}{2\sigma_5}-\frac{|T_0(l)-d_a|}{2\sigma_6}>0 \end{split} $

    (42)

    $ \begin{align} \omega_6 = k_4-\frac{ T_0(l)}{2} >0 \end{align} \hspace{105pt}$

    (43)

    $ \begin{align} \alpha = \left(\frac{\varsigma}{\sigma_1}+\frac{l\lambda}{\sigma_3}\right)lF^2+{\varsigma}{\sigma_4}\varpi^2<+\infty \end{align} \hspace{33pt}$

    (44)

    结合式(33) ~(44), 可得

    $ \begin{aligned} \dot{Y}(t) \le & \ \alpha-\omega_1\int^l_0\dot{y}^2(z, t){\rm{d}}z-\omega_2\int^l_0{y}^{{\prime}2}(z, t){\rm{d}}z-\\ & \frac{\lambda }{2}\omega_3\int^l_0{y}^{{\prime}4}(z, t){\rm{d}}z-\frac{3\lambda EI}{2}\omega_4\int^l_0{y}^{{\prime\prime}2}(z, t){\rm{d}}z-\\& \ \varsigma\omega_5\nu^2(t)-\varsigma\omega_6\mu^2(t)\le\\ & \ \delta_3[Y_e(t)+Y_f(t)]+\alpha \end{aligned} $

    (45)

    其中, $ \delta_3 = {\min}\left(\dfrac{2\omega_1}{{\varsigma}\rho}, \dfrac{2\omega_2}{{\varsigma}\overline{T}_0}, \dfrac{\lambda\omega_3}{\varsigma\overline{\psi}}, \dfrac{3\lambda\pi_4}{\varsigma}, \dfrac{2\pi_5}{m}, \dfrac{2\pi_6}{m}\right) $.

    根据式(26)和式(45), 有

    $ \begin{align} \dot{Y}(t)\le -\delta{Y}(t)+\alpha \end{align} $

    (46)

    其中, $ \delta = \delta_3/\delta_2 $.

    定理1.针对执行器非光滑反向间隙−饱和约束特性的深海柔性立管系统, 如果系统初始条件是有界的且所选取参数满足约束条件式(33) ~(44), 在设计控制器(14)、假设1和假设2作用下, 闭环系统是一致有界稳定的.

    证明.将式(27)乘以$ {\rm{e}}^{{\vartheta}t} $, 得出:

    $ \begin{align} \frac{\partial}{\partial t}\left({Y}(t){\rm{e}}^{\delta t}\right)\le \alpha {\rm{e}}^{\delta t} \end{align} $

    (47)

    积分上式并变换, 有:

    $ \begin{align} {Y}(t)\le Y(0){\rm{e}}^{-\delta t}+\frac{\alpha}{\delta}\left(1-{\rm{e}}^{-\delta t}\right)\le Y(0){\rm{e}}^{-\delta t}+\frac{\alpha}{\delta} \end{align} $

    (48)

    求助于$ Y_{e}(t) $, 式(19)和引理2, 可得

    $ \begin{split} \frac{{\varsigma}\underline{T}_0}{2l}y^2(z,t)\le &\frac{{\varsigma}}{2}\int^l_0T_0(z){y}^{{\prime}2}(z,t){\rm{d}}z\le\\ &{Y_e(t)}\le\frac{1}{\delta_1}Y(t) \end{split} $

    (49)

    将式(48)代入式(49), 产生

    $ \begin{split} \mid y(z,t)\mid \le \sqrt{\frac{2l}{{\varsigma}\delta_1\underline{T}_0}\left[Y(0){\rm{e}}^{-\delta t} +\frac{\alpha}{\delta}\right]}, \\ \forall (z,t) \in[0,l]\times[0,+\infty) \end{split} $

    (50)

    进一步得出

    $ \begin{split} \underset{t\to\infty}{\mathop{\lim }} \,\left| y(z,t) \right| \le\sqrt{\frac{2l\alpha}{\varsigma{\underline{T}_0}{\delta}_{1}\delta}}, \ \ \ \forall z\in[0,l] \end{split} $

    (51)

    为验证所设计控制器的性能, 本节在MATLAB软件中采用有限差分法[27-30]来近似闭环系统的数值解.柔性立管系统的参数为$ l = 1\; 000\, \rm{m}, $ $ \rho = 500\, \rm{kg/m}, $ $ c = 1.0\, \rm{Ns/m^2}, $ $ T_0(z) = 4.5\times10^5\times(1\; 000+z)\, \rm{N}, $ $\psi(z)=$ $ 1\times10^3 (1\; 000+z), $ $ EI $ = $ 1.5\times10^7\, {\rm N m^2}, ~{m}$ $=9.6\times10^6\, \rm{kg}, $ $ d_a = 1\; 000\, \rm{Ns/m}. $系统的初始条件描述为: $ y(z, 0) =$ $ \dfrac{12z}{l}, ~ \dot{y}(z, 0) = 0 $.

    外部环境扰动$ d(t) $为

    $ \begin{split} d(t) =\;& [3+0.8\sin(0.7t)+0.8\sin(0.5t)+\\& 0.8\sin(0.9t)]\times10^5 \end{split} $

    (52)

    柔性立管系统在自由振动时, 即$ u(t) = 0 $, 图 2给出了其时空的表示.在所示设计控制器(14)作用下, 选取控制设计参数$ k_1 $ = $ 1\times10^7 $, $ k_2 = {1}/{60}, $ $ k_3= {1}/{225}, $ $ k_4 $ = $ 5\times10^8, $ $ a $ = $ 1\times10^6 $, $ b = 5~\times $ $10^6 $, 立管三维响应显示在图 3中. 图 4则给出了立管中部顶端$ (x = 1\; 000\; {\rm{m}}) $的二维偏移图, 图 5图 6分别描绘了所设计的控制命令和反向间隙−饱和控制输入.

    图 2  未受控的立管偏移量
    Fig. 2  Displacement of the uncontrolled riser
    图 3  受控的立管偏移量
    Fig. 3  Displacement of the controlled riser
    图 4  立管的端点偏移量
    Fig. 4  Endpoint displacement of the riser
    图 5  设计的控制命令
    Fig. 5  Designed control command
    图 6  非线性的控制输入
    Fig. 6  Control input with nonlinearities

    仿真图 2图 3表明, 在外部扰动和执行器非光滑反向间隙−饱和约束条件下, 所设计控制器(14)能有效抑制立管振动; 由仿真图 4可得, 立管端点的偏移量稳定在平衡位置附近的小邻域; 仿真图 5图 6得出, 控制器的输入是非线性的, 执行器非光滑反向间隙−饱和约束特性也相当地明显.根据上述分析, 可得如下结论:由于混合的输入非线性影响, 立管的振动偏移量需要相对长的收敛时间; 本文所构建的控制策略能较好地处理执行器非光滑反向间隙−饱和约束并能有效地抑制立管振动.

    本文解决了具有执行器非光滑反向间隙−饱和约束特性的深海柔性立管边界控制问题.首先, 基于Lyapunov理论和边界控制技术, 采用辅助系统和函数在立管顶端构建了边界控制器以实现立管系统的振动抑制和输入非线性的补偿.其后, 应用严格的分析且没有离散化或简化系统的偏微分方程动力学, 证明了受控系统的一致有界性.最后所呈现的仿真结果验证了提出控制能较好地稳定立管系统并有效消除执行器非光滑反向间隙−饱和约束影响.下一步值得探索的研究方向可以为海洋柔性立管系统的有限时间稳定[31]以及基于不确定性和干扰估计[32]的控制设计.


  • 本文责任编委  刘艳军
  • 图  1  WTFMC-RFNN预测模型

    Fig.  1  WTFMC-RFNN prediction model

    图  2  Henon混沌系统训练样本RMSE

    Fig.  2  RMSE values in the training process of the Henon chaotic system

    图  3  Henon混沌系统测试样本拟合效果

    Fig.  3  Desired and predicted outputs of the Henon chaotic system

    图  4  Henon混沌系统测试样本的预测误差

    Fig.  4  Prediction error in the testing process of the Henon chaotic system

    图  5  动态系统训练样本RMSE

    Fig.  5  RMSE values in the training process of the dynamic system

    图  6  动态系统样本拟合效果

    Fig.  6  Sample fitting effect of dynamic system

    图  7  动态系统测试样本的预测误差

    Fig.  7  Prediction error in the testing process of dynamic system

    图  8  Mackey-Glass时间序列训练样本RMSE

    Fig.  8  RMSE values in the training process of Mackey-Glass time series

    图  9  Mackey-Glass时间序列拟合效果

    Fig.  9  Sample fitting effect of Mackey-Glass time series

    图  10  Mackey-Glass时间序列测试样本的预测误差

    Fig.  10  Prediction error in the testing process of Mackey-Glass time series

    图  11  非线性系统训练样本RMSE

    Fig.  11  RMSE values in the training process of nonlinear systems

    图  12  非线性系统拟合效果

    Fig.  12  Sample fitting effect of nonlinear system

    图  13  非线性系统测试样本的预测误差

    Fig.  13  Prediction error in the testing process of nonlinear system

    图  14  出水氨氮训练样本RMSE

    Fig.  14  RMSE values in the training process of effluent NH$_4$-N

    图  15  出水氨氮拟合效果

    Fig.  15  Sample fitting effect of effluent NH$_4$-N

    图  16  出水氨氮测试样本的预测误差

    Fig.  16  Prediction error in the testing process of effluent NH$_4$-N

    表  1  不同网络对Henon混沌时间序列的预测结果

    Table  1  Prediction results of Henon chaotic time series with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 3 0.0030 0.0057
    IRSFNN(Ful) [26] 3 0.0160 0.0140
    IRSFNN(TSK) [26] 4 0.0170 0.0150
    RSEFNN-LF [27] 9 0.0320 0.0230
    TRFN-S [28] 6 0.0280 0.0270
    WRFNN [29] 7 0.1910 0.1880
    RFNN 3 0.0088 0.0136
    下载: 导出CSV

    表  2  不同网络对动态系统的预测结果

    Table  2  Prediction results of dynamic network with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 4 0.0021 0.011
    IRSFNN(Ful) [26] 3 0.011 0.031
    IRSFNN(TSK) [26] 3 0.015 0.036
    RSEFNN-LF [27] 4 0.020 0.040
    TRFN-S [28] 3 0.032 0.047
    WRFNN [29] 5 0.064 0.098
    RSONFIN [30] 4 0.025 0.078
    HO-RNFS [31] 3 0.054 0.082
    RFNN 4 0.0047 0.025
    下载: 导出CSV

    表  3  不同网络对Mackey-Glass时间序列的预测结果

    Table  3  Prediction results of Mackey-Glass time series with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 6 0.0070 0.0079
    TRFN-S [28] 5 0.0124
    D-FNN [32] 10 0.0082
    LRFNN-SVR [12] 3 0.0407 0.0550
    FLNFN-CCPSO [33] 0.0083 0.0084
    FAOS-PFNN [34] 11 0.0073 0.0127
    RFNN 6 0.0098 0.0171
    下载: 导出CSV

    表  4  不同网络对非线性系统的预测结果

    Table  4  Prediction results of nonlinear system identification with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 6 0.0023 0.0048
    IRSFNN(TSK) 8 0.0065 0.0131
    RSEFNN-LF 7 0.0077 0.0125
    TRFN-S 6 0.0048 0.0104
    WRFNN 10 0.0059 0.0146
    HO-RNFS 6 0.0051 0.0097
    FAOS-PFNN [34] 5 0.0252
    DFNN [35] 6 0.0283
    GDFNN [36] 8 0.0108
    RFNN 6 0.0087 0.0167
    下载: 导出CSV

    表  5  不同网络对出水氨氮的预测结果

    Table  5  Prediction results of effluent NH$_4$-N with different networks with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 12 0.0041 0.0351
    IRSFNN (TSK) 16 0.0052 0.0468
    RSEFNN-LF 12 0.0048 0.0404
    TRFN-S 14 0.0045 0.0394
    WRFNN 15 0.0053 0.0529
    HO-RNFS 15 0.0047 0.0458
    RFNN 12 0.0041 0.0437
    下载: 导出CSV
  • [1] Shihabudheen K V, Pillai G N. Recent advances in neuro-fuzzy system:a survey. Knowledge-Based Systems, 2018, 152: 136-162 doi: 10.1016/j.knosys.2018.04.014
    [2] Wang J J. A new type of fuzzy membership function designed for interval type-2 fuzzy neural network. Acta Automatica Sinica, 2017, 43(8): 1425-1433 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201708014
    [3] Ebadzadeh M M, Salimibadr A. IC-FNN: A novel fuzzy neural network with interpretable intuitive and correlated-contours fuzzy rules for function approximation. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1288-1302 doi: 10.1109/TFUZZ.2017.2718497
    [4] Tang J J, Liu F, Zhang W H, Ke R M, Zou Y J. Lane-changes prediction based on adaptive fuzzy neural network. Expert Systems with Applications, 2018, 91: 452-463 doi: 10.1016/j.eswa.2017.09.025
    [5] Qiao J F, Cai J, Han H G, Cai J X. Predicting PM2.5 concentrations at a regional background station using second order self-organizing fuzzy neural network. Atmosphere, 2017, 8(12): 10-26 doi: 10.3390/atmos8010010
    [6] Premkumar K, Manikandan B V, Kumar C A. Antlion algorithm optimized fuzzy PID supervised on-line recurrent fuzzy neural network based controller for brushless DC motor. Electric Power Components and Systems, 2017, 45(20): 2304-2317 doi: 10.1080/15325008.2017.1402395
    [7] Zhu Q D, Yu H, Cai C T, Xiao Y. Robust optimal navigation using nonlinear model predictive control method combined with recurrent fuzzy neural network. Mathematical Problems in Engineering, 2018, 2018: 1-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbcd788ee3726c5ee9168a9b36271452
    [8] El-sousy F F M. Adaptive hybrid control system using a recurrent RBFN-based self-evolving fuzzy-neural-network for PMSM servo drives. Applied Soft Computing, 2014, 21(8): 509-532 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d4fc69ba07453caac6b4cc5ad1850b0
    [9] Xue A, Peng D, Guo Y. Modeling of pH neutralization process using fuzzy recurrent neural network and DNA based NSGA-Ⅱ. Journal of the Franklin Institute, 2014, 351(7): 3847-3864 doi: 10.1016/j.jfranklin.2013.03.014
    [10] Pratama M, Lu J, Lughofer E. An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 2017, 25(5): 1175-1192 doi: 10.1109/TFUZZ.2016.2599855
    [11] Han S I, Lee J M. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems. ISA Transactions, 2014, 53(1): 33-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e529f262e1341efe49530c467cd74c7
    [12] Juang C F, Hsieh C D. A Locally Recurrent fuzzy neural network with support vector regression for dynamic-system modeling. IEEE Transactions on Fuzzy Systems, 2010, 18(2): 261-273 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90839892df2adf02ac77881e12a73ba6
    [13] Wai R J, Lin Y W. Adaptive moving-target tracking xontrol of a vision-based mobile robot via a dynamic petri recurrent fuzzy neural network. IEEE Transactions on Fuzzy Systems, 2013, 21(4): 688-701 doi: 10.1109/TFUZZ.2012.2227974
    [14] Lin F J, Shyu K K, Wai R J. Recurrent-fuzzy-neural-network sliding-mode controlled motor-toggle servome-chanism. IEEE/ASME Transactions on Mechatronics, 2010, 6(4): 453-466 http://ieeexplore.ieee.org/document/974859
    [15] Wu G D, Zhu Z W. An enhanced discriminability recurrent fuzzy neural network for temporal classification problems. Fuzzy Sets and Systems, 2014, 237(2): 47-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a602f825b73d4d2f559367279b270377
    [16] Qiao J F, Han G T, Han H G. Wastewater treatment control method based on a rule adaptive recurrent fuzzy neural network. International Journal of Intelligent Computing and Cybernetics, 2017, 10(2): 94-110. doi: 10.1108/IJICC-12-2016-0069
    [17] Jang J S R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Vehicular Technology, 1993, 23(3): 665-685 http://psycnet.apa.org/psycinfo/1994-15814-001
    [18] Zhang Y, Xiong R, He H, Pecht M G. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705 doi: 10.1109/TVT.2018.2805189
    [19] Kam H J, Jin O S, Park R W. Prediction of daily patient numbers for a regional emergency medical center using time series analysis. Healthcare Informatics Research, 2010, 16(3): 158-165 doi: 10.4258/hir.2010.16.3.158
    [20] Joo T W, Kim S B. Time series forecasting based on wavelet filtering. Expert Systems with Applications, 2015, 42(8): 3868-3874 doi: 10.1016/j.eswa.2015.01.026
    [21] Sun W, Xu Y. Research on China's energy supply and demand using an improved Grey-Markov chain model based on wavelet transform. Energy, 2017, 118: 969-984 doi: 10.1016/j.energy.2016.10.120
    [22] 薛婷, 钟麦英.基于SWT与等价空间的LDTV系统故障检测.自动化学报, 2017, 43(11): 1920-1930 doi: 10.16383/j.aas.2017.c160479

    Xue Ting, Zhong Mai-Ying. SWT and parity space based fault detection for linear discrete time-varying systems. Acta Automatica Sinica, 2017, 43(11): 1920-1930 doi: 10.16383/j.aas.2017.c160479
    [23] Bardenet R, Doucet A, Holmes C. On Markov chain Monte Carlo methods for tall data. The Journal of Machine Learning Research, 2017, 18(1): 1515-1557 http://www.oalib.com/paper/4116218
    [24] 张熙来, 赵俭辉, 蔡波.针对PM2.5单时间序列数据的动态调整预测模型.自动化学报, 2018, 44(10): 1790-1798 doi: 10.16383/j.aas.2017.c170026

    Zhang Xi-Lai, Zhao Jian-Hui, Cai Bo. Prediction model with dynamic adjustment for single time series of PM2.5. Acta Automatica Sinica, 2018, 44(10): 1790-1798 doi: 10.16383/j.aas.2017.c170026
    [25] 周杉杉, 李文静, 乔俊飞.基于自组织递归模糊神经网络的PM2.5浓度预测.智能系统学报, 2018, 13(4): 509-516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdkjyc201804003

    Zhou Shan-Shan, Li Wen-Jing, Qiao Jun-Fei. Prediction of PM2.5 concentration based on self-organizing recurrent fuzzy neural network. CAAI Transactions on Intelligent Systems, 2018, 13(4): 509-516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdkjyc201804003
    [26] Lin Y Y, Chang J Y, Lin C T. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(2): 310-321 doi: 10.1109/TNNLS.2012.2231436
    [27] Juang C F, Lin Y Y, Tu C C. A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets and Systems, 2010, 161(19): 2552-2568 doi: 10.1016/j.fss.2010.04.006
    [28] Juang C F. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Transactions on Fuzzy Systems, 2002, 10(2): 155-170 doi: 10.1109/91.995118
    [29] Lin C J, Chin C C. Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(5): 2144-2154 doi: 10.1109/TSMCB.2004.833330
    [30] Juang C F, Lin C T. A recurrent self-organizing neural fuzzy inference network. IEEE Transactions on Neural Networks, 1999, 10(4): 828-845 doi: 10.1109/72.774232
    [31] Theocharis J B. A high-order recurrent neuro-fuzzy system with internal dynamics:application to the adaptive noise cancellation. Fuzzy Sets and Systems, 2006, 157(4): 471-500 doi: 10.1016/j.fss.2005.07.008
    [32] Mastorocostas P A, Theocharis J B. A recurrent fuzzy-neural model for dynamic system identification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2002, 32(2): 176-190 doi: 10.1109/3477.990874
    [33] Lin C J, Chen C H, Lin C T. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(1): 55-68 doi: 10.1109/TSMCC.2008.2002333
    [34] Wang N, Er M J, Meng X. A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks. Neurocomputing, 2009, 72(16-18): 3818-3829 doi: 10.1016/j.neucom.2009.05.006
    [35] Wu S, Er M J. Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2000, 30(2): 358-364 doi: 10.1109/3477.836384
    [36] Wu S, Er M J, Gao Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 578-594 doi: 10.1109/91.940970
  • 期刊类型引用(18)

    1. 翟漪璇,宋丽梅,贺瑾胜,朱新军. 低重叠率人体点云拼接方法研究. 应用激光. 2024(03): 204-213 . 百度学术
    2. 毕淳锴,张远辉,付铎. 基于多视角热像图序列的物体表面温度场重建. 计量学报. 2024(07): 997-1006 . 百度学术
    3. 王耀南,谢核,邓晶丹,毛建旭,李文龙,张辉. 智能制造测量机器人关键技术研究综述. 机械工程学报. 2024(16): 1-18 . 百度学术
    4. 梁循,李志莹,蒋洪迅. 基于图的点云研究综述. 计算机研究与发展. 2024(11): 2870-2896 . 百度学术
    5. 冯站银. 三维点云语义分割方法综述. 电视技术. 2023(03): 140-143+148 . 百度学术
    6. 李颀,郭梦媛. 基于深度学习的休眠期苹果树点云语义分割. 江苏农业学报. 2023(05): 1189-1198 . 百度学术
    7. 黄淞宣,李新春,刘玉珍. 邻域多维度特征点结合相关熵的点云配准. 激光与红外. 2023(08): 1163-1170 . 百度学术
    8. 单铉洋,孙战里,曾志刚. RFNet:用于三维点云分类的卷积神经网络. 自动化学报. 2023(11): 2350-2359 . 本站查看
    9. 马洁莹,田暄,翟庆,王丞. 基于点到面度量的多视角点云配准方法. 西安交通大学学报. 2022(06): 120-132 . 百度学术
    10. 杨宜林,李积英,王燕,俞永乾. 基于NDT和特征点检测的点云配准算法研究. 激光与光电子学进展. 2022(08): 198-204 . 百度学术
    11. 鲁斌,范晓明. 基于改进自适应k均值聚类的三维点云骨架提取的研究. 自动化学报. 2022(08): 1994-2006 . 本站查看
    12. 陈亚超,樊彦国,樊博文,禹定峰. 基于相对几何不变性的点云粗配准算法研究. 计算机工程与应用. 2022(24): 233-238 . 百度学术
    13. 庄仁诚,陈鹏,傅瑶,黄运华. 列车车轮三维结构光检测中的点云处理研究. 中国测试. 2021(02): 19-25 . 百度学术
    14. 沈小军,于忻乐,王远东,程林,王东升,陈佳. 变电站电力设备红外热像测温数据三维可视化方案. 高电压技术. 2021(02): 387-395 . 百度学术
    15. 杨贵强,李瑞,刘玉君,汪骥,周玉松. 最大相关熵的船体分段扫描数据配准算法. 中国造船. 2021(01): 183-191 . 百度学术
    16. 元沐南,李晓风,李皙茹,许金林. 基于压缩感知的三维足型重建平台. 电子测量技术. 2020(09): 94-98 . 百度学术
    17. 林伟,孙殿柱,李延瑞,沈江华. 复杂型面约束的点云配准序列确定方法. 小型微型计算机系统. 2020(09): 2012-2016 . 百度学术
    18. 黄思捷,梁正友,孙宇,李轩昂. 单Kinect+圆盒的多视角三维点云配准方法研究. 现代计算机. 2020(31): 38-45 . 百度学术

    其他类型引用(17)

  • 加载中
  • 图(16) / 表(5)
    计量
    • 文章访问数:  1201
    • HTML全文浏览量:  250
    • PDF下载量:  172
    • 被引次数: 35
    出版历程
    • 收稿日期:  2018-12-22
    • 录用日期:  2019-03-08
    • 刊出日期:  2020-11-24

    目录

    /

    返回文章
    返回