2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于WTFMC算法的递归模糊神经网络结构设计

乔俊飞 丁海旭 李文静

乔俊飞, 丁海旭, 李文静. 基于 WTFMC 算法的递归模糊神经网络结构设计. 自动化学报, 2020, 46(11): 2367−2378 doi: 10.16383/j.aas.c180847
引用本文: 乔俊飞, 丁海旭, 李文静. 基于 WTFMC 算法的递归模糊神经网络结构设计. 自动化学报, 2020, 46(11): 2367−2378 doi: 10.16383/j.aas.c180847
Qiao Jun-Fei, Ding Hai-Xu, Li Wen-Jing. Structure design for recurrent fuzzy neural network based on wavelet transform fuzzy Markov chain. Acta Automatica Sinica, 2020, 46(11): 2367−2378 doi: 10.16383/j.aas.c180847
Citation: Qiao Jun-Fei, Ding Hai-Xu, Li Wen-Jing. Structure design for recurrent fuzzy neural network based on wavelet transform fuzzy Markov chain. Acta Automatica Sinica, 2020, 46(11): 2367−2378 doi: 10.16383/j.aas.c180847

基于WTFMC算法的递归模糊神经网络结构设计

doi: 10.16383/j.aas.c180847
基金项目: 

国家自然科学基金 61533002

国家自然科学基金 61603009

北京市自然科学基金 4182007

北京市教委科技一般项目 KM201910005023

北京工业大学日新人计划 2017-RX(1)-04

详细信息
    作者简介:

    丁海旭  北京工业大学信息学部硕士研究生.主要研究方向为神经网络结构设计与优化, 污水处理过程特征建模. E-mail: dinghaixu@emails.bjut.edu.cn

    李文静  北京工业大学信息学部副教授. 2013年于中国科学院自动化研究所获得博士学位.主要研究方向为神经计算, 污水处理过程智能建模. E-mail: wenjing.li@bjut.edu.cn

    通讯作者:

    乔俊飞  北京工业大学信息学部教授.主要研究方向为污水处理过程智能控制, 神经网络结构设计与优化.本文通信作者. E-mail: junfeq@bjut.edu.cn

Structure Design for Recurrent Fuzzy Neural Network Based on Wavelet Transform Fuzzy Markov Chain

Funds: 

National Natural Science Foundation of China 61533002

National Natural Science Foundation of China 61603009

Beijing Natural Science Foundation 4182007

General Science and Technology Project of Beijing Education Commission KM201910005023

Beijing University of Technology0s New Day Program 2017-RX(1)-04

More Information
    Author Bio:

    DING Hai-Xu   Master student at the Faculty of Information Technology, Beijing University of Technology. His research interest covers structure design and optimization of neural networks, feature modelling in wastewater treatment process

    LI Wen-Jing   Associate professor at the Faculty of Information Technology, Beijing University of Technology. She received her Ph. D. degree from Institute of Automation, Chinese Academy of Sciences in 2013. Her research interest covers neural computation and intelligent modelling in wastewater treatment process

    Corresponding author: QIAO Jun-Fei   Professor at the Faculty of Information Technology, Beijing University of Technology. His research interest covers intelligent control of wastewater treatment process, structure design and optimization of neural networks. Corresponding author of this paper
  • 摘要: 针对递归模糊神经网络(Recurrent fuzzy neural network, RFNN)的递归量难以自适应的问题, 提出一种基于小波变换–模糊马尔科夫链(Wavelet transform fuzzy Markov chain, WTFMC)算法的RFNN模型.首先, 在时间维度上记录隐含层神经元的模糊隶属度, 并采用小波变换将该时间序列进行分解, 通过模糊马尔科夫链对子序列的未来时段进行预测, 之后将各预测量合并后代入递归函数中得到具有自适应性的递归量.其次, 利用梯度下降算法更新RFNN的参数来保证神经网络的精度.最后, 通过非线性系统建模中几个基准问题和实际污水处理中关键水质参数的预测实验, 证明了该神经网络模型的可行性和有效性.
    Recommended by Associate Editor LIU Yan-Jun
    1)  本文责任编委  刘艳军
  • 图  1  WTFMC-RFNN预测模型

    Fig.  1  WTFMC-RFNN prediction model

    图  2  Henon混沌系统训练样本RMSE

    Fig.  2  RMSE values in the training process of the Henon chaotic system

    图  3  Henon混沌系统测试样本拟合效果

    Fig.  3  Desired and predicted outputs of the Henon chaotic system

    图  4  Henon混沌系统测试样本的预测误差

    Fig.  4  Prediction error in the testing process of the Henon chaotic system

    图  5  动态系统训练样本RMSE

    Fig.  5  RMSE values in the training process of the dynamic system

    图  6  动态系统样本拟合效果

    Fig.  6  Sample fitting effect of dynamic system

    图  7  动态系统测试样本的预测误差

    Fig.  7  Prediction error in the testing process of dynamic system

    图  8  Mackey-Glass时间序列训练样本RMSE

    Fig.  8  RMSE values in the training process of Mackey-Glass time series

    图  9  Mackey-Glass时间序列拟合效果

    Fig.  9  Sample fitting effect of Mackey-Glass time series

    图  10  Mackey-Glass时间序列测试样本的预测误差

    Fig.  10  Prediction error in the testing process of Mackey-Glass time series

    图  11  非线性系统训练样本RMSE

    Fig.  11  RMSE values in the training process of nonlinear systems

    图  12  非线性系统拟合效果

    Fig.  12  Sample fitting effect of nonlinear system

    图  13  非线性系统测试样本的预测误差

    Fig.  13  Prediction error in the testing process of nonlinear system

    图  14  出水氨氮训练样本RMSE

    Fig.  14  RMSE values in the training process of effluent NH$_4$-N

    图  15  出水氨氮拟合效果

    Fig.  15  Sample fitting effect of effluent NH$_4$-N

    图  16  出水氨氮测试样本的预测误差

    Fig.  16  Prediction error in the testing process of effluent NH$_4$-N

    表  1  不同网络对Henon混沌时间序列的预测结果

    Table  1  Prediction results of Henon chaotic time series with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 3 0.0030 0.0057
    IRSFNN(Ful) [26] 3 0.0160 0.0140
    IRSFNN(TSK) [26] 4 0.0170 0.0150
    RSEFNN-LF [27] 9 0.0320 0.0230
    TRFN-S [28] 6 0.0280 0.0270
    WRFNN [29] 7 0.1910 0.1880
    RFNN 3 0.0088 0.0136
    下载: 导出CSV

    表  2  不同网络对动态系统的预测结果

    Table  2  Prediction results of dynamic network with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 4 0.0021 0.011
    IRSFNN(Ful) [26] 3 0.011 0.031
    IRSFNN(TSK) [26] 3 0.015 0.036
    RSEFNN-LF [27] 4 0.020 0.040
    TRFN-S [28] 3 0.032 0.047
    WRFNN [29] 5 0.064 0.098
    RSONFIN [30] 4 0.025 0.078
    HO-RNFS [31] 3 0.054 0.082
    RFNN 4 0.0047 0.025
    下载: 导出CSV

    表  3  不同网络对Mackey-Glass时间序列的预测结果

    Table  3  Prediction results of Mackey-Glass time series with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 6 0.0070 0.0079
    TRFN-S [28] 5 0.0124
    D-FNN [32] 10 0.0082
    LRFNN-SVR [12] 3 0.0407 0.0550
    FLNFN-CCPSO [33] 0.0083 0.0084
    FAOS-PFNN [34] 11 0.0073 0.0127
    RFNN 6 0.0098 0.0171
    下载: 导出CSV

    表  4  不同网络对非线性系统的预测结果

    Table  4  Prediction results of nonlinear system identification with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 6 0.0023 0.0048
    IRSFNN(TSK) 8 0.0065 0.0131
    RSEFNN-LF 7 0.0077 0.0125
    TRFN-S 6 0.0048 0.0104
    WRFNN 10 0.0059 0.0146
    HO-RNFS 6 0.0051 0.0097
    FAOS-PFNN [34] 5 0.0252
    DFNN [35] 6 0.0283
    GDFNN [36] 8 0.0108
    RFNN 6 0.0087 0.0167
    下载: 导出CSV

    表  5  不同网络对出水氨氮的预测结果

    Table  5  Prediction results of effluent NH$_4$-N with different networks with different networks

    网络 规则数 训练RMSE 测试RMSE
    WTFMC-RFNN 12 0.0041 0.0351
    IRSFNN (TSK) 16 0.0052 0.0468
    RSEFNN-LF 12 0.0048 0.0404
    TRFN-S 14 0.0045 0.0394
    WRFNN 15 0.0053 0.0529
    HO-RNFS 15 0.0047 0.0458
    RFNN 12 0.0041 0.0437
    下载: 导出CSV
  • [1] Shihabudheen K V, Pillai G N. Recent advances in neuro-fuzzy system:a survey. Knowledge-Based Systems, 2018, 152: 136-162 doi: 10.1016/j.knosys.2018.04.014
    [2] Wang J J. A new type of fuzzy membership function designed for interval type-2 fuzzy neural network. Acta Automatica Sinica, 2017, 43(8): 1425-1433 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201708014
    [3] Ebadzadeh M M, Salimibadr A. IC-FNN: A novel fuzzy neural network with interpretable intuitive and correlated-contours fuzzy rules for function approximation. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1288-1302 doi: 10.1109/TFUZZ.2017.2718497
    [4] Tang J J, Liu F, Zhang W H, Ke R M, Zou Y J. Lane-changes prediction based on adaptive fuzzy neural network. Expert Systems with Applications, 2018, 91: 452-463 doi: 10.1016/j.eswa.2017.09.025
    [5] Qiao J F, Cai J, Han H G, Cai J X. Predicting PM2.5 concentrations at a regional background station using second order self-organizing fuzzy neural network. Atmosphere, 2017, 8(12): 10-26 doi: 10.3390/atmos8010010
    [6] Premkumar K, Manikandan B V, Kumar C A. Antlion algorithm optimized fuzzy PID supervised on-line recurrent fuzzy neural network based controller for brushless DC motor. Electric Power Components and Systems, 2017, 45(20): 2304-2317 doi: 10.1080/15325008.2017.1402395
    [7] Zhu Q D, Yu H, Cai C T, Xiao Y. Robust optimal navigation using nonlinear model predictive control method combined with recurrent fuzzy neural network. Mathematical Problems in Engineering, 2018, 2018: 1-19 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fbcd788ee3726c5ee9168a9b36271452
    [8] El-sousy F F M. Adaptive hybrid control system using a recurrent RBFN-based self-evolving fuzzy-neural-network for PMSM servo drives. Applied Soft Computing, 2014, 21(8): 509-532 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0d4fc69ba07453caac6b4cc5ad1850b0
    [9] Xue A, Peng D, Guo Y. Modeling of pH neutralization process using fuzzy recurrent neural network and DNA based NSGA-Ⅱ. Journal of the Franklin Institute, 2014, 351(7): 3847-3864 doi: 10.1016/j.jfranklin.2013.03.014
    [10] Pratama M, Lu J, Lughofer E. An incremental learning of concept drifts using evolving type-2 recurrent fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 2017, 25(5): 1175-1192 doi: 10.1109/TFUZZ.2016.2599855
    [11] Han S I, Lee J M. Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems. ISA Transactions, 2014, 53(1): 33-43 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9e529f262e1341efe49530c467cd74c7
    [12] Juang C F, Hsieh C D. A Locally Recurrent fuzzy neural network with support vector regression for dynamic-system modeling. IEEE Transactions on Fuzzy Systems, 2010, 18(2): 261-273 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90839892df2adf02ac77881e12a73ba6
    [13] Wai R J, Lin Y W. Adaptive moving-target tracking xontrol of a vision-based mobile robot via a dynamic petri recurrent fuzzy neural network. IEEE Transactions on Fuzzy Systems, 2013, 21(4): 688-701 doi: 10.1109/TFUZZ.2012.2227974
    [14] Lin F J, Shyu K K, Wai R J. Recurrent-fuzzy-neural-network sliding-mode controlled motor-toggle servome-chanism. IEEE/ASME Transactions on Mechatronics, 2010, 6(4): 453-466 http://ieeexplore.ieee.org/document/974859
    [15] Wu G D, Zhu Z W. An enhanced discriminability recurrent fuzzy neural network for temporal classification problems. Fuzzy Sets and Systems, 2014, 237(2): 47-62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a602f825b73d4d2f559367279b270377
    [16] Qiao J F, Han G T, Han H G. Wastewater treatment control method based on a rule adaptive recurrent fuzzy neural network. International Journal of Intelligent Computing and Cybernetics, 2017, 10(2): 94-110. doi: 10.1108/IJICC-12-2016-0069
    [17] Jang J S R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Vehicular Technology, 1993, 23(3): 665-685 http://psycnet.apa.org/psycinfo/1994-15814-001
    [18] Zhang Y, Xiong R, He H, Pecht M G. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705 doi: 10.1109/TVT.2018.2805189
    [19] Kam H J, Jin O S, Park R W. Prediction of daily patient numbers for a regional emergency medical center using time series analysis. Healthcare Informatics Research, 2010, 16(3): 158-165 doi: 10.4258/hir.2010.16.3.158
    [20] Joo T W, Kim S B. Time series forecasting based on wavelet filtering. Expert Systems with Applications, 2015, 42(8): 3868-3874 doi: 10.1016/j.eswa.2015.01.026
    [21] Sun W, Xu Y. Research on China's energy supply and demand using an improved Grey-Markov chain model based on wavelet transform. Energy, 2017, 118: 969-984 doi: 10.1016/j.energy.2016.10.120
    [22] 薛婷, 钟麦英.基于SWT与等价空间的LDTV系统故障检测.自动化学报, 2017, 43(11): 1920-1930 doi: 10.16383/j.aas.2017.c160479

    Xue Ting, Zhong Mai-Ying. SWT and parity space based fault detection for linear discrete time-varying systems. Acta Automatica Sinica, 2017, 43(11): 1920-1930 doi: 10.16383/j.aas.2017.c160479
    [23] Bardenet R, Doucet A, Holmes C. On Markov chain Monte Carlo methods for tall data. The Journal of Machine Learning Research, 2017, 18(1): 1515-1557 http://www.oalib.com/paper/4116218
    [24] 张熙来, 赵俭辉, 蔡波.针对PM2.5单时间序列数据的动态调整预测模型.自动化学报, 2018, 44(10): 1790-1798 doi: 10.16383/j.aas.2017.c170026

    Zhang Xi-Lai, Zhao Jian-Hui, Cai Bo. Prediction model with dynamic adjustment for single time series of PM2.5. Acta Automatica Sinica, 2018, 44(10): 1790-1798 doi: 10.16383/j.aas.2017.c170026
    [25] 周杉杉, 李文静, 乔俊飞.基于自组织递归模糊神经网络的PM2.5浓度预测.智能系统学报, 2018, 13(4): 509-516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdkjyc201804003

    Zhou Shan-Shan, Li Wen-Jing, Qiao Jun-Fei. Prediction of PM2.5 concentration based on self-organizing recurrent fuzzy neural network. CAAI Transactions on Intelligent Systems, 2018, 13(4): 509-516 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdkjyc201804003
    [26] Lin Y Y, Chang J Y, Lin C T. Identification and prediction of dynamic systems using an interactively recurrent self-evolving fuzzy neural network. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(2): 310-321 doi: 10.1109/TNNLS.2012.2231436
    [27] Juang C F, Lin Y Y, Tu C C. A recurrent self-evolving fuzzy neural network with local feedbacks and its application to dynamic system processing. Fuzzy Sets and Systems, 2010, 161(19): 2552-2568 doi: 10.1016/j.fss.2010.04.006
    [28] Juang C F. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Transactions on Fuzzy Systems, 2002, 10(2): 155-170 doi: 10.1109/91.995118
    [29] Lin C J, Chin C C. Prediction and identification using wavelet-based recurrent fuzzy neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(5): 2144-2154 doi: 10.1109/TSMCB.2004.833330
    [30] Juang C F, Lin C T. A recurrent self-organizing neural fuzzy inference network. IEEE Transactions on Neural Networks, 1999, 10(4): 828-845 doi: 10.1109/72.774232
    [31] Theocharis J B. A high-order recurrent neuro-fuzzy system with internal dynamics:application to the adaptive noise cancellation. Fuzzy Sets and Systems, 2006, 157(4): 471-500 doi: 10.1016/j.fss.2005.07.008
    [32] Mastorocostas P A, Theocharis J B. A recurrent fuzzy-neural model for dynamic system identification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2002, 32(2): 176-190 doi: 10.1109/3477.990874
    [33] Lin C J, Chen C H, Lin C T. A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2009, 39(1): 55-68 doi: 10.1109/TSMCC.2008.2002333
    [34] Wang N, Er M J, Meng X. A fast and accurate online self-organizing scheme for parsimonious fuzzy neural networks. Neurocomputing, 2009, 72(16-18): 3818-3829 doi: 10.1016/j.neucom.2009.05.006
    [35] Wu S, Er M J. Dynamic fuzzy neural networks-a novel approach to function approximation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2000, 30(2): 358-364 doi: 10.1109/3477.836384
    [36] Wu S, Er M J, Gao Y. A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks. IEEE Transactions on Fuzzy Systems, 2001, 9(4): 578-594 doi: 10.1109/91.940970
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  1134
  • HTML全文浏览量:  221
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-22
  • 录用日期:  2019-03-08
  • 刊出日期:  2020-11-24

目录

    /

    返回文章
    返回