-
摘要: 机器人技能学习是人工智能与机器人学的交叉领域,目的是使机器人通过与环境和用户的交互得到经验数据,基于示教学习或强化学习,从经验数据中自主获取和优化技能,并应用于以后的相关任务中.技能学习使机器人的任务部署更加灵活快捷和用户友好,而且可以让机器人具有自我优化的能力.技能模型是技能学习的基础和前提,决定了技能效果的上限.日益复杂和多样的机器人操作任务,对技能操作模型的设计实现带来了很多挑战.本文给出了技能操作模型的概念与性质,阐述了流程、运动、策略和效果预测四种技能表达模式,并对其典型应用和未来趋势做出了概括.Abstract: Robot skill learning is an interdisciplinary field of artificial intelligence and robotics. The aim is to enable that a robot autonomously obtains a certain manipulation skill via imitation learning or reinforcement learning, based on the experience data generated by the robot's interaction with the environment or human users. Skill learning can make the robot task deployments more flexible, efficient and user-friendly, even realize the sustainable self-improvement of robot. Robot skill model is the foundation of skill learning, which determines upper limit of the skill outcome. The complexity and variety of the modern robot manipulation tasks pose many challenges to the robot skill modeling. This paper describes the definition and characteristics of robot manipulation skill model, introduces the four skill representation methods considering procedure, motion, policy and outcome, respectively. Finally, the typical application and future tendency of robot manipulation skill models are presented.
-
Key words:
- Robot manipulation /
- intelligent robot /
- robot learning /
- skill learning /
- autonomous system
-
图的同构判定在有机化学、计算机科学和人工智能(机器学习或模式识别中常使用图的邻接矩阵特征值来判定两个对象是否为同一个对象)等领域有着重要的应用[1−3]. 上世纪前半叶, 与图同构相关的问题主要围绕图的邻接矩阵特征值及其应用展开[4], 取得若干重要的理论成果和一批应用成果; 其中一个重要的发现是, 两个互不同构的无向图却具有相同的邻接矩阵特征多项式, 即用邻接矩阵特征多项式判定两个无向图是否同构有时会得出错误的结果[4].
上世纪70年代, Karp和Johnson认为图的同构判定问题是少数几个既不能归类为 P 问题也不能归类为 NP 的问题[1, 3]. 此后, 该问题成为理论计算机领域的公开问题并受到广泛重视. 1982年, Luks给出一个当时最好的两图同构判定算法, 其时间复杂度是$\exp ({\text{O(}}\sqrt {n\log n} {\text{)}}$)[5−6] ($ n $为图的顶点数). 此后40多年来, 几百篇这方面的文章得以在不同的学术期刊上发表[1]. 2015年, Babai[6]在Luks算法的基础上, 给出两图同构判定问题的拟多项式算法, 其时间复杂度是$ \exp ({(\log n)^{{\text{O(1)}}}}) $. Babai的工作虽然是一个重要进展, 但图的同构判定问题是否在多项式时间内可解仍然悬而未决[1, 3].
图的同构判定问题的另一研究路径是设计可执行的判定算法, 大致可以分为传统和非传统两类判定算法. 传统判定算法有两类: 1) 针对一些特殊图[7−8] (如树和极大外平面图)的同构判定算法(如Ullman算法和Schmidt算法等[9]). 2) 针对一般简单图的同构判定算法, 如一些放在因特网上用于测试两图是否同构的程序(如Nauty和Saucy等[3, 6]). 非传统判定算法也有两类: 1) 基于遗传算法和神经网络的智能判定算法. 这些算法将图的同构判定问题转化为一类优化求解问题, 但其判定结果并不完全可靠. 2) 基于DNA计算[9]和量子计算的判定算法. 这类算法虽然高效, 但不能回答图的同构判定是 P 问题还是 NP 问题. 无向连通图的距离矩阵是素矩阵(邻接矩阵一般不是素矩阵), 它具有邻接矩阵所没有的独特性质[10]. 文献[10]揭示了简单无向图同构与距离矩阵同构之间的一般关系, 将基于邻接矩阵的同构判定条件推广到距离矩阵, 给出几个适合一般简单无向图的同构判定条件. 这些条件均是充要条件且均具有多项式时间复杂度. 上述成果是近年来图同构研究方面的一个重要进展.
简单无向图的同构关系可由其距离矩阵的同构关系确定, 但复杂无向图却不能. 其根本原因在于: 复杂无向图中的自环和顶点间的重边对顶点间的距离没有影响[10]; 换言之, 自环数或重边数不同的复杂无向图可能具有完全相同的距离矩阵. 因文献[10]所给的判定条件不能用于复杂无向图, 故寻找和发现复杂无向图的同构判定条件既是必须的也是重要的. 本文的主要贡献是: 1) 针对一般复杂无向图的同构判定问题, 给出了基于邻接矩阵之和的特征多项式判定条件. 2) 针对复杂无向连通图的同构判定问题, 给出了基于距离矩阵特征多项式和邻接矩阵特征多项式的同构判定条件. 将该条件用于复杂无向不连通图的各个连通子图, 就可解决复杂无向不连通图的同构判定问题. 上述两个判定条件均是充要条件且均具有多项式时间复杂度. 此外, 当复杂无向图退化为简单无向图时, 上述两个判定条件仍然适用.
1. 相关概念和预备知识
定义1[4, 11−12]. 图$ G $是一个二元组, 记作$ G = \langle V, E \rangle $, 其中:
1) $ V = \{ {v_1},\;{v_2},\; \cdots ,\;{v_n}\left| {\left| V \right| = n,\;{\text{ 1}} \le n < \infty } \right.\} $, $ {v_i} \in V $称为$ G $的顶点, $ V $称为$ G $的顶点集.
2) $ E = \{ {e_1},\;{e_2},\; \cdots ,\;{e_m}\left| {\left| E \right| = m,\;{\text{ 0}} \le m < \infty } \right.\} $, $ {e_j} \in E $称为$ G $的边, $ E $称为$ G $的边集.
3) $ \forall {e_j} \in E $: $ {e_j} $为无向边时, 称$ G $为无向图, $ {e_j} $为有向边时, 称$ G $为有向图.
4) 连接同一顶点的边称为自环, 两顶点间的多条无向边或多条方向相同的有向边称为重边. 既无自环也无重边的图称为简单图, 否则称为复杂图.
在现有文献报道的复杂无向图中, 每个顶点最多有一个自环. 若无特别声明, 本文讨论的均是顶点最多有一个自环的复杂无向图.
定义2[11−13]. 设$ G = \left\langle {V,\;E} \right\rangle $是无向图, $ V = \{ {v_1}, {v_2},\; \cdots ,\;{v_n}\} $. 若$ {v_i} $和$ {v_j} $之间有$ k $ ($ k = 0,\;1,\; \cdots $)条边, 令$ {a_{ij}} = k $; 称由元素$ {a_{ij}} $构成的矩阵$ A({a_{ij}}) \in {{\bf{R}}^{n \times n}} $为无向图$ G $的邻接矩阵.
定义2既适合简单无向图也适合复杂无向图($ {a_{ij}} \in \{ 0,\;1,\;2,\; \cdots \} $). 无向图的邻接矩阵是非负整数对称矩阵.
定义3[14]. 设$ {I_n} \in {{\bf{R}}^{n \times n}} $为单位矩阵, 交换$ {I_n} $的第$ i $行和第$ j $行(或第$ i $列与第$ j $列)所得的矩阵$ P(i,\;j) $称为对换矩阵, 对换矩阵的乘积称为置换矩阵.
引理1[14]. 对换矩阵和置换矩阵具有如下性质:
1) 置换矩阵的乘积仍是置换矩阵;
2) 设$ Q $是置换矩阵, 则$ \det (Q) = \pm 1 $;
3) 设$ Q $是置换矩阵, 则$ {Q^{\text{T}}} $和$ {Q^{ - 1}} $也是置换矩阵, 且$ {Q^{\text{T}}} = {Q^{ - 1}} $;
4) 置换矩阵是正交矩阵;
5) 置换矩阵是幂幺矩阵, 即若$ Q $是置换矩阵, 则$ {Q^m} = {I_n} $, $ m $是某自然数.
由定义3和引理1可知, 对换矩阵和$ {I_n} $也是置换矩阵.
定义4[10]. 设$ A,\;B \in {{\bf{R}}^{n \times n}} $, $ \Omega \subset {{\bf{R}}^{n \times n}} $为全体$ n $阶置换矩阵的集合. 若存在置换矩阵$ Q \in \Omega $, 使得$ A = {Q^{\text{T}}}BQ $, 则称$ A $与$ B $同构, 记作$ A \cong B $; 此外, 称$ {Q^{\text{T}}}BQ $是对$ B $的同构变换.
图的同构问题可以这样表述: 给定两个图, 当忽略图中顶点标号、顶点间相对位置、边的长短和曲直信息时, 问这两个图是否具有相同的结构?
定义5[4, 12−13]. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_2} = $ $ \langle {V_2}, {E_{\text{2}}} \rangle $是两个图. 若存在一个从$ {V_1} $到$ {V_2} $的一一映射$ g $: $ \forall {v_i},\;{v_j} \in {V_1} $, $ {v_i} $至$ {v_j} $有$ k $条边, 当且仅当$ g({v_i}), g({v_j}) \in {V_2} $, 且$ g({v_i}) $至$ g({v_j}) $也有$ k $条边, 则称$ {G_1} $和$ {G_2} $同构, 记作$ {G_1} \cong {G_2} $.
定义5既适合简单图也适合复杂图($ k \in \{ 0, 1,\;2,\; \cdots \} $).
引理2[10−11]. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_2} = $$ \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个图, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n $, $ A $与$ B $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, 则$ {G_1} \cong {G_2} $的充要条件是存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ A = {Q^{\text{T}}}BQ $.
引理2适合一切无向和有向图. 由定义4和引理2可知, 两图同构与该两图的邻接矩阵同构等价.
定义6[4, 10−13]. 设$ G = \left\langle {V,\;E} \right\rangle $是无向图, $ V = \{ {v_1},\;{v_2},\; \cdots ,\;{v_n}\} $, $ E = \{ {e_1},\;{e_2},\; \cdots ,\;{e_m}\} $: 1) $ G $中顶点与边的交替序列$ W = {v_1}{e_1}{v_2}{e_2} \cdots {v_k}{e_k}{v_{k + 1}} $ ($ k \le n - 1 $)称为$ G $的链, 各边互异的链称为迹, 各顶点互异的链称为路, 当$ W $是路时, $ W $中的边数$ k $称为$ W $的长度, 记作$ k = \left| W \right| $; 2) 设$ {v_i} $和$ {v_j} $是$ V $中任意两个顶点, 当$ {v_i} $和$ {v_j} $之间有$ s $条路$ {W_s}{\text{ }} $时, 称$ d({v_i},\;{v_j}) = $$ \min \{ {k_p} = \left| {{W_p}} \right|\left| {1 \le p \le s} \right.\} $为$ {v_i} $和$ {v_j} $之间的距离; 若$ {v_i} $和$ {v_j} $之间无路($ G $不连通), 约定$ d({v_i},\;{v_j}) = \infty $.
定义7[10, 13]. 设$ G = \left\langle {V,\;E} \right\rangle $是无向图, $ V = \{ {v_1}, {v_2},\; \cdots ,\;{v_n}\} $, $ {d_{ij}} = d({v_i},\;{v_j}) $表示顶点$ {v_i} $和$ {v_j} $($ 1 \le i, j \le n $)之间的距离: 当$ i = j $时, 令$ {d_{ii}} = 0 $; 当$ i \ne j $且$ d({v_i},\;{v_j}) = k $ ($ d({v_i},\;{v_j}) = \infty $)时, 令$ {d_{ij}} = k $$ ({d_{ij}} = \infty ) $, 其中$ k \ge 1 $为正整数, 称由元素$ {d_{ij}} $构成的矩阵$ D({d_{ij}}) \in {{\bf{R}}^{n \times n}} $为无向图$ G $的距离矩阵.
由定义6和定义7可知: 1) 复杂无向图中的自环和顶点间的重边对顶点间的距离没有影响; 2) 当$ G $是无向连通图时, 距离矩阵$ D $是对角线元素均为零而其他元素均为正整数的对称矩阵.
定义8[12−13]. 设$ {G_n} = \left\langle {V,\;E} \right\rangle $是简单无向图, $ V = \{ {v_1},\;{v_2},\; \cdots ,\;{v_n}\} $, $ n \ge 2 $, 若$ \forall i \ne j $, $ {v_i} $和$ {v_j} $之间恰有一条边, 则称$ {G_n} $为无向完全图, 其邻接矩阵记为$ {A_n} $.
由定义2和定义8可知, $ {A_n} $的对角线元素均为0而其他元素均为1. 设$ {G_n} $的距离矩阵为$ {D_n} $, 由定义7可知, $ {D_n} = {A_n} $, 即$ {A_n} $既是$ {G_n} $的邻接矩阵又是$ {G_n} $的距离矩阵.
定义9. 设$ { T} \subset {{\bf{R}}^{n \times n}} $$ (n \ge 2) $表示全体$ n $阶正交矩阵的集合; $ {\Omega ^ - } = \{ - S\left| {S \in \Omega } \right.\} $表示全体$ n $阶负置换矩阵的集合; $ \Phi = \Omega \cup {\Omega ^ - } $表示全体$ n $阶置换矩阵和全体$ n $阶负置换矩阵的并集; $ \Theta = { T} - \Phi $表示$ { T} $中除$ \Phi $之外全体$ n $阶正交矩阵的集合.
由定义9和正交矩阵的性质可知: $ \Theta \cap \Phi = \emptyset $($ \emptyset $为空集), $ \Theta \cup \Phi = { T} $; $ \forall {Q_1},\;{Q_2} \in \Phi $, $ {Q_1}{Q_2} \in \Phi $; $ \forall Q \in \Phi $, $ \forall P \in \Theta $, $ QP,\;{\text{ }}PQ \in \Theta $; $ \forall P \in \Theta $, $ \forall E \in \Phi $, $ \forall Q \in { T} $且$ Q \ne E{P^{\text{T}}} $, $ QP,\;{\text{ }}PQ \in \Theta $.
2. 复杂无向图的同构判定方法
为简便计, $ \forall A \in {{\bf{R}}^{n \times n}} $$ (n \ge 2) $, 本文用$ {f_\lambda }(A) $表示$ A $的特征多项式 $ \det (\lambda {I_n} - A) $, 即$ {f_\lambda }(A) = \det (\lambda {I_n} - A) $.
推论1. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_{\text{2}}} = \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个无向图, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n $, $ A $与$ B $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, 若$ {f_\lambda }(A) \ne {f_\lambda }(B) $, 则$ {G_1} $和$ {G_2} $不同构.
证明. 设$ {f_\lambda }(A) \ne {f_\lambda }(B) $时, $ {G_1} \cong {G_2} $. 由引理2可知, 当$ {G_1} \cong {G_2} $时, 存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ A = {Q^{\text{T}}}BQ $. 由此, $ {f_\lambda }(A) = $ $ {f_\lambda }({Q^{\text{T}}}BQ) = {f_\lambda }(B) $, 与假设相矛盾. 故$ {f_\lambda }(A) \ne {f_\lambda }(B) $时, $ {G_1} $和$ {G_2} $不同构.
□ 推论1既适合简单无向图也适合复杂无向图. 需要强调的是, 即使$ {f_\lambda }(A) = {f_\lambda }(B) $, 也不能保证$ {G_1} $和$ {G_2} $同构. 邻接矩阵特征多项式相等仅是两个无向图同构的必要条件[10, 15].
设$ A({a_{ij}}) \in {{\bf{R}}^{n \times n}} $$ (n \ge 2) $是对称矩阵: 若$ {a_{ij}} $全是正整数, 则称$ A $为正整数对称矩阵; 若$ {a_{ij}} $为零或正整数, 则称$ A $为非负整数对称矩阵.
引理3[10]. 设$ A \in {{\bf{R}}^{n \times n}} $$ (n \ge 2) $是对角线元素均为1而其他元素均为正整数的对称矩阵, 则$ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是正整数对称矩阵.
引理4[14]. 设$ A \in {{\bf{R}}^{n \times n}} $, 则$ A $为正交矩阵的充要条件是存在正交矩阵$ P \in { T} $, 使得
$$ {P^{\text{T}}}AP = {P^{ - 1}}AP = \left[ {\begin{array}{*{20}{c}} {{I_s}}&{}&{} \\ {}&{ - {I_t}}&{} \\ {}&{}&{{H_\theta }} \end{array}} \right] = {P_\theta } $$ 其中, $ {I_s} $与$ I_{t} $分别是$ s $阶和$ t $阶单位矩阵,
$$ {H_\theta } = \left[ {\begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} {\cos {\theta _1}}&{\sin {\theta _1}} \\ { - \sin {\theta _1}}&{\cos {\theta _1}} \end{array}} \right]}&{}&{} \\ {}& \ddots &{} \\ {}&{}&{\left[ {\begin{array}{*{20}{c}} {\cos {\theta _k}}&{\sin {\theta _k}} \\ { - \sin {\theta _k}}&{\cos {\theta _k}} \end{array}} \right]} \end{array}} \right] $$ $ s + t + 2k = n $, $ {\theta _j} \in {\bf{R}} $$ (1 \le j \le k) $为实数.
由正交矩阵的定义可知, $ {P_\theta } $和$ {H_\theta } $均是正交矩阵.
定理1. 设$ A \in {{\bf{R}}^{n \times n}} $$ (n \ge 2) $是对角线元素为0或1而其他元素均为正整数的对称矩阵, 则$ \forall P \in \Theta $, $ {P^{\text{T}}}AP $既不是正整数对称矩阵也不是非负整数对称矩阵.
证明. 当$ A $的对角线元素全为1时, 由引理3可知, $ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是正整数对称矩阵. 当$ A $的对角线元素全为0时, 设$ B = A + {I_n} $. 由引理3可知, $ \forall P \in \Theta $, $ {P^{\text{T}}}BP $不是正整数对称矩阵. 因$ {P^{\text{T}}}BP = {P^{\text{T}}}AP + {I_n} $, 故$ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是非负整数对称矩阵. 当$ A $的对角线元素不全为0也不全为1时, 以下用归纳法证明: $ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是非负整数对称矩阵.
当$ n = 2 $时, 设
$$ A = \left[ {\begin{array}{*{20}{c}} {{\delta _1}}&a \\ a&{{\delta _2}} \end{array}} \right] ,\; P = \left[ {\begin{array}{*{20}{c}} {\cos \theta }&{\sin \theta } \\ { - \sin \theta }&{\cos \theta } \end{array}} \right] $$ 其中, $ {\delta _1},\;{\delta _2} \in \{ 0,\;1\} $, $ {\delta _1} + {\delta _2} = 1 $, $ a \ge 1 $为正整数, $ \theta \in {\bf{R}} $. 设$ {\vartheta _1} = \sin 2\theta $, $ {\vartheta _2} = \cos 2\theta $, $ C = {P^{\text{T}}}AP $, 可得
$$ C = \left[ {\begin{array}{*{20}{c}} {{{\sin }^2}\theta + {\delta _1}{\vartheta _2} - a{\vartheta _1}}&{({\delta _1} - 0.5){\vartheta _1} + a{\vartheta _2}} \\ {({\delta _1} - 0.5){\vartheta _1} + a{\vartheta _2}}&{{{\cos }^2}\theta - {\delta _1}{\vartheta _2} + a{\vartheta _1}} \end{array}} \right] $$ 当$ \theta \ne \pm k\pi $$ (k = 0,\;1,\;2,\; \cdots ) $时, $ P \in \Theta $, $ C $不是非负整数对称矩阵($ C $的元素中有负数或小数). 当$ P \in \Theta $时, 由定义9和引理4可知, 对一切2阶正交矩阵$ E \in \Phi $, $ Z \in {\rm T} $且$ Z \ne E{P^{ - 1}} $, 则: 1) $ {J_1} = ZP \in \Theta $, $ {J_2} = PZ \in \Theta $, $ {J_3} = {Z^{\text{T}}}PZ \in \Theta $; 2) $ J_1^{\text{T}}A{J_1} $, $ J_2^{\text{T}}A{J_2} $, $ J_3^{\text{T}}A{J_3} $均不是非负整数对称矩阵. 由此, 对一切2阶正交矩阵$ J \in \Theta $, $ {J^{\text{T}}}AJ $不是非负整数对称矩阵.
当$ n = 3 $时, 设
$$ A = \left[ {\begin{array}{*{20}{c}} {{\delta _1}}&{{a_1}}&{{a_2}} \\ {{a_1}}&{{\delta _2}}&{{a_3}} \\ {{a_2}}&{{a_3}}&{{\delta _3}} \end{array}} \right] ,\; P = \left[ {\begin{array}{*{20}{c}} \delta &0&0 \\ 0&{\cos \theta }&{\sin \theta } \\ 0&{ - \sin \theta }&{\cos \theta } \end{array}} \right] $$ 其中, $ {\delta _1},\;{\delta _2},\;{\delta _3} \in \{ 0,\;1\} $, $ 1 \le {\delta _1} + {\delta _2} + {\delta _3} \le 2 $, $ {a_i} \ge 1 $ $ (1 \le i \le 3) $为正整数, $ \delta = \pm 1 $, $ \theta \in {\bf{R}} $. 设$ {\vartheta _1} = \sin 2\theta $, $ {\vartheta _2} = \cos 2\theta $, $ \alpha (\theta ) = {a_1}\cos \theta - {a_2}\sin \theta $, $ \beta (\theta ) = {a_1}\sin \theta $ $ +{a_2}\cos \theta $, $ \eta = {\delta _2} - {\delta _3} $, $ \mu (\theta ) = \eta {\sin ^2}\theta $, $ C = {P^{\mathrm{T}}}AP $, 可得
$$ C = \left[ {\begin{array}{*{20}{c}} {{\delta _1}}&{\delta \alpha (\theta )}&{\delta \beta (\theta )} \\ {\delta \alpha (\theta )}&{{\delta _2} - \mu (\theta ) - {a_3}{\vartheta _1}}&{0.5\eta {\vartheta _1} + {a_3}{\vartheta _2}} \\ {\delta \beta (\theta )}&{0.5\eta {\vartheta _1} + {a_3}{\vartheta _2}}&{{\delta _3} + \mu (\theta ) + {a_3}{\vartheta _1}} \end{array}} \right] $$ 当$ \delta = 1 $且 $ \theta \ne \pm 2l\pi $$ (l = 0,\;1,\;2,\; \cdots ) $, 或者$ \delta = - 1 $且$ \theta \ne \pm h\pi $ ($ h $为奇数)时, $ P \in \Theta $, $ C $不是非负整数对称矩阵. 类似$ n = 2 $时的分析可得, 对一切3阶正交矩阵$ J \in \Theta $, $ {J^{\text{T}}}AJ $不是非负整数对称矩阵.
当$ n \ge 4 $时, 设
$$ A = \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&{{A_{13}}} \\ {A_{12}^{\text{T}}}&{{A_{22}}}&{{A_{23}}} \\ {A_{13}^{\text{T}}}&{A_{23}^{\text{T}}}&{{A_{33}}} \end{array}} \right] ,\; {P_\theta } = \left[ {\begin{array}{*{20}{c}} {{I_s}}&{}&{} \\ {}&{ - {I_t}}&{} \\ {}&{}&{{H_\theta }} \end{array}} \right] $$ 其中, $ {A_{11}} \in {{\bf{R}}^{s \times s}} $、$ {A_{22}} \in {{\bf{R}}^{t \times t}} $和$ {A_{33}} \in {{\bf{R}}^{2k \times 2k}} $均是对角线元素为0或1而其他元素全是正整数的分块对称矩阵; $ {A_{12}} $, $ {A_{13}} $, $ {A_{23}} $均是分块正整数矩阵; $ A $的对角线元素之和满足$ 1 \le \sum\nolimits_i {{a_{ii}}} \le n - 1 $; $ {H_\theta } $为形如引理4中的矩阵, $ s + t + 2k = n $, $ {\theta _j} \in {\bf{R}} $$ (1 \le j \le k) $为实数. 由此,
$$ P_\theta ^{\text{T}}A{P_\theta } = \left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{ - {A_{12}}}&{{A_{13}}{H_\theta }} \\ { - A_{12}^{\text{T}}}&{{A_{22}}}&{ - {A_{23}}{H_\theta }} \\ {H_\theta ^{\text{T}}A_{13}^{\text{T}}}&{ - H_\theta ^{\text{T}}A_{23}^{\text{T}}}&{H_\theta ^{\text{T}}{A_{33}}{H_\theta }} \end{array}} \right] $$ 1) 当$ s = n $, 或$ 1 \le s < n $, $ t = 0 $且所有的$ {\theta _j} = \pm 2l\pi $$ (l = 0,\;1,\;2,\; \cdots ) $, 或$ s = t = 0 $且所有的$ {\theta _j} = \pm 2l\pi $$ (l = 0,\;1,\;2,\; \cdots ) $时, $ {P_\theta } = {I_n} \in \Omega $.
2) 当$ t = n $, 或$ 1 \le t < n $, $ s = 0 $且所有的$ {\theta _j} = \pm h\pi $($ h $为奇数), 或$ t = s = 0 $且所有的$ {\theta _j} = \pm h\pi $($ h $为奇数)时, $ {P_\theta } = - {I_n} \in \Phi $.
3) 当$ s,\;t,\;k $和$ {\theta _j} $$ (1 \le j \le k) $的取值不是上述两种情况时, $ {P_\theta } \in \Theta $, $ P_\theta ^{\text{T}}A{P_\theta } $不是非负整数对称矩阵.
当$ P \in \Theta $时, 由定义9和引理4可知, 对一切$ n \ge 4 $阶正交矩阵$ E \in \Phi $, $ Z \in {T} $且$ Z \ne E{P^{ - 1}} $, 则: a) $ {J_1} = ZP \in \Theta $, $ {J_2} = PZ \in \Theta $, $ {J_3} = {Z^{\text{T}}}PZ \in \Theta $; b) $ J_1^{\text{T}}A{J_1} $, $ J_2^{\text{T}}A{J_2} $, $ J_3^{\text{T}}A{J_3} $均不是非负整数对称矩阵. 由此, 对一切$ n \ge 4 $阶正交矩阵$ J \in \Theta $, $ {J^{\text{T}}}AJ $不是非负整数对称矩阵.
综上可得, $ \forall n \ge 2 $, $ \forall P \in \Theta $, $ {P^{\text{T}}}AP $不是非负整数对称矩阵.
□ 此外, 不难证明, $ \forall n \ge 2 $, $ \forall Q \in \Phi $, $ {Q^{\text{T}}}AQ $是非负整数对称矩阵.
使用定义8中的符号$ {A_n} $和引理2, 可以得到如下推论.
推论2. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_2} = \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个无向图, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n \ge 2 $, $ A $与$ B $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, 则$ {G_1} \cong {G_2} $的充要条件是存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ A + {A_n} = {Q^{\text{T}}}(B + {A_n})Q $.
证明. 设$ A + {A_n} = {Q^{\text{T}}}(B + {A_n})Q $. 由定义3和引理1可知, 置换矩阵$ Q \in \Omega $$ (Q \ne {I_n}) $可表示为$ m $ ($ m \ge 2 $为正整数)个对换矩阵$ P({i_s},\;{j_s}) = {P_s} $的乘积, 即$ Q = P({i_1},\;{j_1}) \cdots P({i_m},\;{j_m}) = {P_1} \cdots {P_m}$. 此外, 不难验证, 任给对换矩阵$ {P_s} $, $ P_s^{\text{T}}{A_n}{P_s} = {A_n} $. 由此可得: $ {Q^{\text{T}}}{A_n}Q = P_m^{\text{T}} \cdots P_1^{\text{T}}{A_n}{P_1} \cdots {P_m} = {A_n} $; $ A\; + {A_n} = $$ {Q^{\text{T}}}(B + {A_n})Q = {Q^{\text{T}}}BQ + {A_n} $; $ A = {Q^{\text{T}}}BQ $. 再由引理2可得, $ {G_1} \cong {G_2} $.
设$ {G_1} \cong {G_2} $. 由引理2可知, 存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ A = {Q^{\text{T}}}BQ $. 由上述充分性证明可知, $ \forall Q \in \Omega $, $ {A_n} = {Q^{\text{T}}}{A_n}Q $. 由此, $ A + {A_n} = {Q^{\text{T}}}(B + {A_n})Q $.
□ 容易理解, 推论2适合一切无向图.
引理5[14]. 设$ C,\;B \in {{\bf{R}}^{n \times n}} $是对称矩阵, 则$ {f_\lambda }(C) = {f_\lambda }(B) $的充要条件是存在$ n $阶正交矩阵$ P \in {T} $, 使得$ C = {P^{\text{T}}}BP $.
基于前面的分析和准备, 下面给出两个无向图的同构判定条件.
定理2. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_2} = \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个无向图, 每个顶点最多有一个自环, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n \ge 2 $, $ {A_1} $与$ {A_2} $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, 则$ {G_1} \cong {G_2} $的充要条件是$ {f_\lambda }({A_1} + {A_n}) = {f_\lambda }({A_2} + {A_n}) $.
证明. 设$ {f_\lambda }({A_1} + {A_n}) = {f_\lambda }({A_2} + {A_n}) $. 给$ {G_1} $和$ {G_2} $中的每两个顶点之间加一条边, 可以得到两个新的无向图$ {\hat G_1} $和$ {\hat G_2} $, 其邻接矩阵分别是$ {A_1} + {A_n} $和$ {A_2} + {A_n} $. 因$ {G_1} $和$ {G_2} $的顶点最多有一个自环, 由定义2可知, $ {A_1} $和$ {A_2} $的对角线元素为0或1 (可以全为0, 也可全为1); 再由定义8可知, $ {A_1} + {A_n} $和$ {A_2} + {A_n} $均是对角线元素为0或1而其他元素均是正整数的对称矩阵, 即$ {A_1} + {A_n} $和$ {A_2} + {A_n} $均是非负整数对称矩阵. 由引理5可知, 当$ {f_\lambda }({A_1} + {A_n}) = {f_\lambda }({A_2} + {A_n}) $时, 存在正交矩阵$ Q \in { T} $, 使得$ {A_1} \;+ {A_n} = {Q^{\text{T}}}({A_2} + {A_n})Q $. 由定理1可知, $ Q \notin \Theta $; 否则, $ {A_1} + {A_n} $将不是非负整数矩阵. 因$ Q \in { T} = \Phi \cup \Theta $且$ Q \notin \Theta $, 故$ Q \in \Phi $. 由此, 存在$ Q \in \Omega $ (或$ - Q \in \Omega $), 使得$ {A_1} + {A_n} = {Q^{\text{T}}}({A_2} + {A_n})Q $; 再由推论2可知, $ {G_1} \cong {G_2} $.
设$ {G_1} \cong {G_2} $. 因$ {G_1} \cong {G_2} $, 故存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ {A_1} = {Q^{\text{T}}}{A_2}Q $. 由推论2的证明结果可知, $ {A_n} = {Q^{\text{T}}}{A_n}Q $. 由此, $ {A_1} + {A_n} = $$ {Q^{\text{T}}}({A_2} + {A_n})Q $, $ {f_\lambda }({A_1} + {A_n}) = {f_\lambda }({A_2} + {A_n}) $.
□ 需要说明的是: 1) 定理2既适合复杂无向图也适合简单无向图, 既适合连通无向图也适合不连通无向图; 一言以蔽之, 定理2适合一切无向图. 2) 因求解特征多项式$ {f_\lambda }(A) $的算法复杂度是$ {\mathrm{O}}({n^3}) $[16−17], 故使用定理2判定两个无向图是否同构的算法复杂度是$ 2{\mathrm{O}}({n^3}) $.
引理6[10]. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_{\text{2}}} = \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个简单无向连通图, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n \ge {\text{2}} $, $ {D_1} $与$ {D_2} $分别是$ {G_1} $和$ {G_2} $的距离矩阵, 则$ {G_1} \cong {G_2} $的充要条件是$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $.
引理7[18]. 设$ C,\;B \in {{\bf{R}}^{n \times n}} $为对称矩阵, 对一切$ 1 \le i \le n $, $ {\lambda _i}(C) $为$ C $的特征值, $ {\lambda _i}(B) $为$ B $的特征值, 则$ \min {\lambda _i}(B) + {\lambda _i}(C) \le {\lambda _i}(C + B) $$ \le {\lambda _i}(C) \;+ \max {\lambda _i}(B) $.
设$ G = \left\langle {V,\;E} \right\rangle $是复杂无向连通图, $ V = \{ {v_1}, {v_2},\; \cdots ,\;{v_n}\} $, $ n \ge 2 $: 1) 除去$ G $中顶点上的自环和邻接顶点间的重边(邻接顶点间仅保留一条边), 可以得到一个简单无向连通图$ {G_1} $(称$ {G_1} $为$ G $的主图). 2) $ \forall i \ne j $, 若$ {v_i} $和$ {v_j} $邻接, 除去$ {v_i} $和$ {v_j} $之间的一条边, 其他保持不变, 可以得到另一个无向图$ {G_2} $(称$ {G_2} $为$ G $的附图). 3) 设$ A $为$ G $的邻接矩阵, $ {A_1} $和$ {A_2} $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, $ D $为$ G $的距离矩阵. 由上述假设可知, $ A = {A_1} + {A_2} $. 因复杂无向图中的自环和顶点间的重边对距离没有影响, 由定义6和定义7可知, $ D $既是$ G $也是$ {G_1} $的距离矩阵.
基于以上的叙述和讨论, 本文给出两个复杂无向图同构的另一个判定条件.
定理3. 设$ {G_{\text{1}}} = \left\langle {{V_{\text{1}}},\;{E_{\text{1}}}} \right\rangle $和$ {G_{\text{2}}} = $$ \left\langle {{V_{\text{2}}},\;{E_{\text{2}}}} \right\rangle $是两个复杂无向连通图, 每个顶点最多有一个自环, $ \left| {{V_1}} \right| = \left| {{V_2}} \right| = n \ge {\text{2}} $, $ {A_1} $与$ {A_2} $分别是$ {G_1} $和$ {G_2} $的邻接矩阵, $ {D_1} $与$ {D_2} $分别是$ {G_1} $和$ {G_2} $的距离矩阵. 则$ {G_1} \cong {G_2} $的充要条件是$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $且$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $.
证明. 设$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $且$ {f_\lambda }({A_1}) = $$ {f_\lambda }({A_2}) $. 另设$ {G_{11}} $与$ {G_{12}} $分别是$ {G_1} $的主图和附图, $ {A_{11}} $与$ {A_{12}} $$ ({A_{12}} \ne 0) $分别是$ {G_{11}} $和$ {G_{12}} $的邻接矩阵; $ {G_{21}} $与$ {G_{22}} $分别是$ {G_2} $的主图和附图, $ {A_{21}} $与$ {A_{22}} $$ ({A_{22}} \ne 0) $分别是$ {G_{21}} $和$ {G_{22}} $的邻接矩阵. 由此, 可得: $ {A_1} = {A_{11}} + {A_{12}} $, $ {A_2} = {A_{21}} + {A_{22}} $; $ {D_1} $既是$ {G_1} $也是$ {G_{11}} $的距离矩阵, $ {D_2} $既是$ {G_2} $也是$ {G_{21}} $的距离矩阵. 由引理6可知, 当$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $时, $ {G_{11}} \cong {G_{21}} $; 再由引理2可知, 存在$ Q \in \Omega $, 使得$ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $. 因$ {A_1} $和$ {A_2} $均是实对称矩阵, 且$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $, 由引理5可知, 存在$ n $阶正交矩阵$ P \in { T} $, 使得$ {A_1} = {P^{\text{T}}}{A_2}P $, 即$ {A_{11}} + {A_{12}} = {P^{\text{T}}}{A_{21}}P + {P^{\text{T}}}{A_{22}}P $. 综上可知, 当$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $且$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $时
$$ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $$ (1) 且
$$ {A_{11}} + {A_{12}} = {P^{\text{T}}}{A_{21}}P + {P^{\text{T}}}{A_{22}}P$$ (2) 设$ {A_{12}} = {P^{\text{T}}}{A_{22}}P $, 由式(1)和式(2)可得, $ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $, $ {A_{11}} = {P^{\text{T}}}{A_{21}}P $, 由此, $ P = Q $. 另由式(2)可得, $ {A_{11}} = {P^{\text{T}}}{A_{21}}P + {P^{\text{T}}}{A_{22}}P - {A_{12}} $.
1) 设$ {H_1} = {P^{\text{T}}}{A_{21}}P $, $ {H_2} = {P^{\text{T}}}{A_{22}}P - {A_{12}} $, 则
$${A_{11}} = {H_1} + {H_2} $$ (3) 因$ {H_1} $和$ {H_2} $均是实对称矩阵且$ \lambda ({H_1}) = \lambda ({A_{21}}) $. 由式(3)和引理7可得
$$ \begin{split} & \min {\lambda _i}({H_2}) + {\lambda _i}({A_{21}}) \le {\lambda _i}({A_{11}}) \le\\& \qquad{\lambda _i}({A_{21}}) +\max {\lambda _i}({H_2}) \end{split} $$ (4) 2) 设$ {A_{12}} \ne {P^{\text{T}}}{A_{22}}P $, 则$ {H_2} \ne 0 $. 因$ {H_2} $是对称矩阵, 故当$ {H_2} \ne 0 $时, $ \lambda ({H_2}) \ne 0 $. 设$ \min {\lambda _i}({H_2}) = \max {\lambda _i}({H_2}) = h $, 由式(4)可得, $ {\lambda _i}({A_{11}}) = {\lambda _i}({A_{21}}) \;+ h $. 若$ \lambda ({A_{11}}) = \lambda ({A_{21}}) $, 则$ h = 0 $, $ \lambda ({H_2}) = 0 $, $ {A_{12}} = {P^{\text{T}}}{A_{22}}P $, 与假设矛盾; 若$ \lambda ({A_{11}}) \ne \lambda ({A_{21}}) $, 则与式(1)矛盾. 设$ {\lambda _i}({A_{11}}) \le $$ {\lambda _i}({A_{21}}) + \max {\lambda _i}({H_2})\; ({\lambda _i}({A_{11}}) \ge {\lambda _i}({A_{21}}) + \min {\lambda _i}({H_2})) $, 若$ \lambda ({A_{11}}) \ne \lambda ({A_{21}}) $, 则与$ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $矛盾; 若$ \lambda ({A_{11}}) = \lambda ({A_{21}}) $, 则由引理5可得, $ {A_{11}} = {P^{\text{T}}}{A_{21}}P $$ (P \in { T}) $. 由此, ${A_{11}} = {P^{\text{T}}}{A_{21}}P,\; {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $, $ P = Q $. 而当$ P = Q $时, 由式(1)和式(2)可得, $ {A_{12}} = {P^{\text{T}}}{A_{22}}P $, 与$ {A_{12}} \ne {P^{\text{T}}}{A_{22}}P $的假设矛盾. 总之, $ {A_{12}} \ne {P^{\text{T}}}{A_{22}}P $的假设不成立.
综上可知: 当$ {A_{12}} = {P^{\text{T}}}{A_{22}}P $时, $ P = Q $; 由式(2)可得$ {A_1} = {Q^{\text{T}}}{A_2}Q $, 再由引理2可得, $ {G_1} \cong {G_2} $.
设$ {G_1} \cong {G_2} $. 由引理2可知, 存在$ n $阶置换矩阵$ Q \in \Omega $, 使得$ {A_1} = {Q^{\text{T}}}{A_2}Q $. 因$ {G_1} $和$ {G_2} $均是复杂无向连通图, 如充分性证明可设, $ {A_1} = {A_{11}} + {A_{12}} $, $ {A_2} = {A_{21}} + {A_{22}} $, 由此, $ {A_{11}} + {A_{12}} = {Q^{\text{T}}}({A_{21}} + {A_{22}})Q $. 因$ Q $是正交矩阵, 故$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $. 设$ {A_{11}} \ne {Q^{\text{T}}}{A_{21}}Q $, 则简单无向连通图$ {G_{11}} $和$ {G_{21}} $不同构, 进而可得$ {G_1} $和$ {G_2} $不同构, 与假设矛盾. 当$ {A_{11}} = {Q^{\text{T}}}{A_{21}}Q $时, 由引理2可知, $ {G_{11}} \cong {G_{21}} $; 再由引理6可得, $ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $. 综上, 当$ {G_1} \cong {G_2} $时, $ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $且$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $.
□ 比较引理6和定理3可知, 简单无向连通图的同构条件不同于复杂无向连通图的同构条件.
由定理3的证明过程可知, 当定理3中的$ {G_1} $和$ {G_2} $均是简单无向连通图时, $ {G_1} = {G_{11}} $, $ {G_2} = {G_{21}} $, $ {A_{12}} = {A_{22}} = 0 $, $ {A_1} = {A_{11}} $, $ {A_2} = {A_{21}} $. 由引理6可知: 当$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $时, $ {G_1} \cong {G_2} $; 再由引理2可知, 存在$ Q \in \Omega $, 使得$ {A_1} = {Q^{\text{T}}}{A_2}Q $, 进而可得$ {f_\lambda }({A_1}) = {f_\lambda }({A_2}) $. 由此, 当$ {G_1} $和$ {G_2} $均是简单无向连通图时, 定理3中的条件可简化为$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $; 定理3退化为引理6. 这表明定理3也适合简单无向连通图.
因为求解距离矩阵$ D $的算法复杂度是$ {\mathrm{O}}({n^3}) $[12−13], 求解特征多项式的算法复杂度是$ {\mathrm{O}}({n^3}) $[16−17], 故定理3判定条件的算法复杂度是$ 4{\mathrm{O}}({n^3}) $.
设$ {G_1} $和$ {G_2} $是两个复杂无向不连通图且分别由$ m $个连通子图$ {G_{ij}} $$ (i = 1,\;2;{\text{ }}1 \le j \le m) $组成, $ {G_1} $与$ {G_2} $同构是指$ {G_1} $中的连通子图$ {G_{1j}} $与$ {G_2} $中的连通子图$ {G_{2j}} $一一对应同构. 不难理解, 将定理3用于复杂无向不连通图的各个连通子图, 就可解决复杂无向不连通图的同构判定问题.
比较定理2和定理3可知: 1) 定理2适合一切无向图, 而定理3仅适合复杂无向连通图; 2) 若将定理2限定在复杂无向连通图上, 则定理2与定理3等价; 3) 就一般复杂无向图的同构判定问题而言, 定理2比定理3具有更低的算法复杂度, 因此也更便于实际应用.
1) $ {G_1} $和$ {G_2} $均是复杂无向连通图. 设$ {G_1} $和$ {G_2} $的邻接矩阵分别是$ {A_{11}} $和$ {A_{12}} $, 距离矩阵分别是$ {D_1} $和$ {D_2} $. 按图中顶点标号, 经计算可得
$$ {A_{11}} = \left[ {\begin{array}{*{20}{c}} 1&1&1 \\ 1&1&1 \\ 1&1&1 \end{array}} \right] ,\; {A_{12}} = \left[ {\begin{array}{*{20}{c}} 1&1&1 \\ 1&0&2 \\ 1&2&0 \end{array}} \right] $$ $$ {D_1} = {D_2} = \left[ {\begin{array}{*{20}{c}} 0&1&1 \\ 1&0&1 \\ 1&1&0 \end{array}} \right] $$ $$ {f_\lambda }({A_{11}} + {A_3}) = {\lambda ^3} - 3{\lambda ^2} - 9\lambda - 5\qquad\qquad $$ $$ {f_\lambda }({A_{12}} + {A_3}) = {\lambda ^3} - {\lambda ^2} - 17\lambda - 15 \qquad\quad\;\;$$ $$ {f_\lambda }({A_{11}}) = {\lambda ^3} - 3{\lambda ^2}, {f_\lambda }({A_{12}}) = {\lambda ^3} - {\lambda ^2} - 6\lambda$$ 其中, $ {A_3} $是3顶点无向完全图的邻接矩阵.
因$ {f_\lambda }({A_{11}} + {A_3}) \ne {f_\lambda }({A_{12}} + {A_3}) $, 由定理2可以判定$ {G_1} $和$ {G_2} $不同构. 因$ {f_\lambda }({D_1}) = {f_\lambda }({D_2}) $, 但$ {f_\lambda }({A_{11}}) \ne {f_\lambda }({A_{12}}) $, 由推论1和定理3均可判定$ {G_1} $和$ {G_2} $不同构.
2) $ {G_3} $和$ {G_4} $均是复杂无向连通图. 设$ {G_3} $的邻接矩阵和距离矩阵分别是$ {A_{31}} $和$ {D_3} $, $ {G_4} $的邻接矩阵和距离矩阵分别是$ {A_{41}} $和$ {D_4} $. 按图中顶点标号, 经计算可得
$$ {A_{31}} = {A_{41}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0&0&1&1&1 \\ 0&0&0&0&2&0&1&1 \\ 0&0&0&1&0&1&0&1 \\ 0&0&1&0&1&0&1&0 \\ 0&2&0&1&0&1&0&0 \\ 1&0&1&0&1&0&0&0 \\ 1&1&0&1&0&0&0&0 \\ 1&1&1&0&0&0&0&0 \end{array}} \right] $$ $$ {D_3} = {D_4} = \left[ {\begin{array}{*{20}{c}} 0&2&2&2&2&1&1&1 \\ 2&0&2&2&1&2&1&1 \\ 2&2&0&1&2&1&2&1 \\ 2&2&1&0&1&2&1&2 \\ 2&1&2&1&0&1&2&2 \\ 1&2&1&2&1&0&2&2 \\ 1&1&2&1&2&2&0&2 \\ 1&1&1&2&2&2&2&0 \end{array}} \right] $$ 设$ {A_8} $是8顶点无向完全图的邻接矩阵. 因$ {f_\lambda }({A_{31}} + {A_8}) = {f_\lambda }({A_{41}} + {A_8}) $, 由定理2可以判定$ {G_3} \cong {G_4} $. 因$ {f_\lambda }({D_3}) = {f_\lambda }({D_4}) $且$ {f_\lambda }({A_{31}}) = $$ {f_\lambda }({A_{41}}) $, 故由定理3亦可判定$ {G_3} \cong {G_4} $.
3) $ {G_5} $和$ {G_6} $均是复杂无向连通图. 设$ {G_5} $的邻接矩阵和距离矩阵分别是$ {A_{51}} $和$ {D_5} $, $ {G_6} $的邻接矩阵和距离矩阵分别是$ {A_{61}} $和$ {D_6} $. 按图中顶点标号, 经计算可得
$$ {A_{51}} = {A_{61}} = \left[ {\begin{array}{*{20}{c}} 1&0&0&1&1&1 \\ 0&0&0&1&1&1 \\ 0&0&0&1&1&2 \\ 1&1&1&0&0&0 \\ 1&1&1&0&0&0 \\ 1&1&2&0&0&0 \end{array}} \right] $$ $$ {D_5} = {D_6} = \left[ {\begin{array}{*{20}{c}} 0&2&2&1&1&1 \\ 2&0&2&1&1&1 \\ 2&2&0&1&1&1 \\ 1&1&1&0&2&2 \\ 1&1&1&2&0&2 \\ 1&1&1&2&2&0 \end{array}} \right] $$ 设$ {A_6} $是6顶点无向完全图的邻接矩阵. 因$ {f_\lambda }({A_{51}} + {A_6}) = {f_\lambda }({A_{61}} + {A_6}) $, 由定理2可以判定$ {G_5} \cong {G_6} $. 因$ {f_\lambda }({A_{51}}) = {f_\lambda }({A_{61}}) $且$ {f_\lambda }({D_5}) = $$ {f_\lambda }({D_6}) $, 由定理3亦可判定$ {G_5} \cong {G_6} $.
4) $ {G_7} $和$ {G_8} $均是无向树. 设$ {G_7} $和$ {G_8} $的邻接矩阵分别是$ {A_{71}} $和$ {A_{81}} $, 距离矩阵分别是$ {D_7} $和$ {D_8} $. 按图中顶点标号, 经计算可得
$$ {A_{71}} = \left[ {\begin{array}{*{20}{c}} 0&1&1&1&1&0&0&0 \\ 1&0&0&0&0&1&1&1 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 0&1&0&0&0&0&0&0 \\ 0&1&0&0&0&0&0&0 \\ 0&1&0&0&0&0&0&0 \end{array}} \right] \; $$ $$ {A_{81}} = \left[ {\begin{array}{*{20}{c}} 0&1&1&1&1&1&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&0&0 \\ 1&0&0&0&0&0&1&0 \\ 0&0&0&0&0&1&0&1 \\ 0&0&0&0&0&0&1&0 \end{array}} \right] $$ $$ {D_7} = \left[ {\begin{array}{*{20}{c}} 0&1&1&1&1&2&2&2 \\ 1&0&2&2&2&1&1&1 \\ 1&2&0&2&2&3&3&3 \\ 1&2&2&0&2&3&3&3 \\ 1&2&2&2&0&3&3&3 \\ 2&1&3&3&3&0&2&2 \\ 2&1&3&3&3&2&0&2 \\ 2&1&3&3&3&2&2&0 \end{array}} \right] $$ $$ {D_8} = \left[ {\begin{array}{*{20}{c}} 0&1&1&1&1&1&2&3 \\ 1&0&2&2&2&2&3&4 \\ 1&2&0&2&2&2&3&4 \\ 1&2&2&0&2&2&3&4 \\ 1&2&2&2&0&2&3&4 \\ 1&2&2&2&2&0&1&2 \\ 2&3&3&3&3&1&0&1 \\ 3&4&4&4&4&2&1&0 \end{array}} \right] $$ 设$ {A_8} $是8顶点无向完全图的邻接矩阵, 可得$ \det ({A_{71}} + {A_8}) = 17 $, $ \det ({A_{81}} + {A_8}) = 21 $. 由此, $ {f_\lambda }({A_{71}} + {A_8}) \ne {f_\lambda }({A_{81}} + {A_8}) $, 由定理2可以判定$ {G_7} $和$ {G_8} $不同构. 另外, 还可求得: $ {f_\lambda }({A_{71}}) = {f_\lambda }({A_{81}}) = {\lambda ^8} - 7{\lambda ^6} + 9{\lambda ^4} $; $ \det ({D_7}) = $$- 1\,048$, $\det ({D_8}) = 1\,600$. 因$ \det ({D_7}) \ne \det ({D_8}) $, 故$ {f_\lambda }({D_7}) \ne {f_\lambda }({D_8}) $. 由此, $ {f_\lambda }({A_{71}}) = {f_\lambda }({A_{81}}) $, 但$ {f_\lambda }({D_7}) \ne {f_\lambda }({D_8}) $, 由定理3可以判定$ {G_7} $和$ {G_8} $不同构.
3. 结束语
图的同构关系是一种等价关系, 凡与图的结构相关的分类、聚类、识别和学习等问题均与图的同构判定问题有关. 时至今日, 图的同构判定问题仍然具有重要的理论和应用价值.
文献[10]将基于邻接矩阵的同构判定条件(引理2)推广到简单无向图距离矩阵(引理6和引理7), 解决了简单无向图的同构判定问题. 但引理6和引理7不能用于复杂无向图的同构判定, 原因在于复杂无向图的同构关系不能由其距离矩阵唯一确定.
本文的主要思路和贡献可概括为: 1) 证明了对角线元素为0或1而其他元素均为正整数的对称矩阵在非同构正交变换下不再是非负整数对称矩阵(定理1); 利用无向完全图邻接矩阵在矩阵同构变换下保持不变的特性, 给出了引理2的另一种等价表示(推论2); 基于定理1和推论2, 给出了基于邻接矩阵之和的特征多项式判定条件(定理2). 2) 针对复杂无向连通图的同构判定问题, 使用图及邻接矩阵的分解方法, 给出了基于邻接矩阵特征多项式和距离矩阵特征多项式的同构判定条件(定理3). 将该条件用于复杂无向不连通图的各个连通子图, 就可解决复杂无向不连通图的同构判定问题. 定理2和定理3中的判定条件均是充要条件且均具有多项式时间复杂度. 需要再次说明的是: 定理2所给的判定条件具有一般普适性, 即对任意的简单、复杂(每一顶点最多允许有一个自环)、连通和不连通无向图均适用; 定理3既适合复杂无向连通图也适合简单无向连通图.
与文献[10]中的结果相比, 定理2和定理3是无向图同构研究方面的又一重要进展. 定理2和定理3的另一理论价值表明, 无向图的同构判定问题是 P 问题. 需要说明的是, 虽然我们解决了无向图的同构判定问题, 但有向图的同构判定是 P 问题还是 NP 问题仍然没有得到解决.
今后我们将针对有向图的同构判定问题开展研究, 期望得到一些有理论和实用价值的新结果.
-
-
[1] Hirzinger G, Landzettel K. Sensory feedback structures for robots with supervised learning. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation. St. Louis, MO, USA: IEEE, 1985. 627-635 [2] Asada H, Asari Y. The direct teaching of tool manipulation skills via the impedance identification of human motions. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation. Philadelphia, PA, USA: IEEE, 1988. 1269-1274 http://www.panduoduo.net/r/17087799 [3] 曾毅, 刘成林, 谭铁牛.类脑智能研究的回顾与展望.计算机学报, 2016, 39(1): 212-223 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201601015Zeng Yi, Liu Cheng-Lin, Tan Tie-Niu. Retrospect and outlook of brain-inspired intelligence research. Chinese Journal of Computers, 2016, 39(1): 212-223 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201601015 [4] 陶建华, 陈云霁.类脑计算芯片与类脑智能机器人发展现状与思考.中国科学院院刊, 2016, 31(7): 803-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201607009Tao Jian-Hua, Chen Yun-Ji. Current status and consideration on brain-like computing chip and brain-like intelligent robot. Bulletin of Chinese Academy of Sciences, 2016, 31(7): 803-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201607009 [5] Ersen M, Oztop E, Sariel S. Cognition-enabled robot manipulation in human environments: requirements, recent work, and open problems. IEEE Robotics and Automation Magazine, 2017, 24(3): 108-122 doi: 10.1109/MRA.2016.2616538 [6] Argall B D, Chernova S, Veloso M, Browning B. A survey of robot learning from demonstration. Robotics and Autonomous Systems, 2009, 57(5): 469-483 doi: 10.1016/j.robot.2008.10.024 [7] Kober J, Bagnell J A, Peters J. Reinforcement learning in robotics: a survey. The International Journal of Robotics Research, 2013, 32(11): 1238-1274 doi: 10.1177/0278364913495721 [8] Yahya A, Li A, Kalakrishnan M, Chebotar Y, Levine S. Collective robot reinforcement learning with distributed asynchronous guided policy search. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 79-86 https://arxiv.org/pdf/1610.00673.pdf [9] Foukarakis M, Leonidis A, Antona M, Stephanidis C. Combining finite state machine and decision-making tools for adaptable robot behavior. In: Proceedings of the 8th International Conference on Universal Access in Human-Computer Interaction. Heraklion, Crete, Greece: Springer, 2014. 625-635 http://hobbit.acin.tuwien.ac.at/publications/HCII2014.pdf [10] Zhou H T, Min H S, Lin Y H, Zhang S N. A robot architecture of hierarchical finite state machine for autonomous mobile manipulator. In: Proceedings of the 10th International Conference on Intelligent Robotics and Applications. Wuhan, China: Springer, 2017. 425-436 https://www.researchgate.net/publication/318924520_A_Robot_Architecture_of_Hierarchical_Finite_State_Machine_for_Autonomous_Mobile_Manipulator [11] Colledanchise M, Parasuraman R, Ögren P. Learning of behavior trees for autonomous agents. IEEE Transactions on Games, 2019, 11(2): 183-189 doi: 10.1109/TG.2018.2816806 [12] Guerin K R, Lea C, Paxton C, Hager G D. A framework for end-user instruction of a robot assistant for manufacturing. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 6167-6174 https://jhu.pure.elsevier.com/en/publications/a-framework-for-end-user-instruction-of-a-robot-assistant-for-man-4 [13] Paxton C, Hundt A, Jonathan F, Guerin K, Hager G D. CoSTAR: instructing collaborative robots with behavior trees and vision. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 564-571 https://arxiv.org/pdf/1611.06145.pdf [14] Paxton C, Jonathan F, Hundt A, Mutlu B, Hager G D. Evaluating methods for end-user creation of robot task plans. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018. 6086-6092 https://cpaxton.github.io/public/paxton2018evaluating.pdf [15] Bagnell J A, Cavalcanti F, Cui L, Galluzzo T, Hebert M, Kazemi M, et al. An integrated system for autonomous robotics manipulation. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012. 2955-2962 https://ieeexplore.ieee.org/abstract/document/6385888 [16] Colledanchise M, Marzinotto A, Ögren P. Performance analysis of stochastic behavior trees. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 3265-3272 http://www.csc.kth.se/~miccol/Michele_Colledanchise/Publications_files/ICRA14_cmo_final.pdf [17] Akgun B, Thomaz A. Simultaneously learning actions and goals from demonstration. Autonomous Robots, 2016, 40(2): 211-227 doi: 10.1007/s10514-015-9448-x [18] Akgun B, Thomaz A L. Self-improvement of learned action models with learned goal models. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 5259-5264 https://ieeexplore.ieee.org/abstract/document/7354119 [19] Kroemer O, Daniel C, Neumann G, van Hoof H, Peters J. Towards learning hierarchical skills for multi-phase manipulation tasks. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1503-1510 https://ieeexplore.ieee.org/document/7139389 [20] Medina J R, Billard A. Learning stable task sequences from demonstration with linear parameter varying systems and hidden Markov models. In: Proceedings of the 2017 Conference on Robot Learning. Mountain View, California, USA, 2017: 175-184 http://proceedings.mlr.press/v78/medina17a/medina17a.pdf [21] Pardowitz M, Knoop S, Dillmann R, Zollner R D. Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(2): 322-332 doi: 10.1109/TSMCB.2006.886951 [22] Nicolescu M N, Mataric M J. Natural methods for robot task learning: instructive demonstrations, generalization and practice. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems. Melbourne, Australia: ACM, 2003. 241-248 https://www.cse.unr.edu/~monica/Research/Publications/agents03.pdf [23] Hayes B, Scassellati B. Autonomously constructing hierarchical task networks for planning and human-robot collaboration. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016. 5469-5476 https://scazlab.yale.edu/sites/default/files/files/hayes_icra16.pdf [24] Ahmadzadeh S R, Kormushev P, Caldwell D G. Interactive robot learning of visuospatial skills. In: Proceedings of the 2013 International Conference on Advanced Robotics. Montevideo, Uruguay: IEEE, 2013: 1-8 https://www.researchgate.net/publication/258832541_Interactive_Robot_Learning_of_Visuospatial_Skills [25] Ahmadzadeh S R, Paikan A, Mastrogiovanni F, Natale L, Kormushev P, Caldwell D G, et al. Learning symbolic representations of actions from human demonstrations. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 3801-3808 https://www.researchgate.net/publication/273755287_Learning_Symbolic_Representations_of_Actions_from_Human_Demonstrations [26] Dornhege C, Hertle A. Integrated symbolic planning in the tidyup-robot project. In: Proceedings of the 2013 Designing Intelligent Robots: Reintegrating AI: Papers Form the AAAI Spring Symposium. Palo Alto, California, USA: AAAI, 2013. https://www.researchgate.net/publication/289304978_Integrated_symbolic_planning_in_the_tidyup-robot_project [27] Beetz M, Mösenlechner L, Tenorth M. CRAM — a cognitive robot abstract machine for everyday manipulation in human environments. In: Proceedings of the 2010 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 1012-1017 [28] Tenorth M, Beetz M. KnowRob: a knowledge processing infrastructure for cognition-enabled robots. The International Journal of Robotics Research, 2013, 32(5): 566- 590 doi: 10.1177/0278364913481635 [29] Bozcuoǧlu A K, Kazhoyan G, Furuta Y, Stelter S, Michael B, Kei O, et al. The exchange of knowledge using cloud robotics. IEEE Robotics and Automation Letters, 2018, 3(2): 1072-1079 doi: 10.1109/LRA.2018.2794626 [30] Calinon S, Guenter F, Billard A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(2): 286-298 doi: 10.1109/TSMCB.2006.886952 [31] Maeda G J, Neumann G, Ewerton M, Lioutikov R, Kroemer O, Peters J. Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks. Autonomous Robots, 2017, 41(3): 593-612 doi: 10.1007/s10514-016-9556-2 [32] Calinon S, Li Z B, Alizadeh T, Tsagarakis N G, Caldwell D G. Statistical dynamical systems for skills acquisition in humanoids. In: Proceedings of the 12th IEEE-RAS International Conference on Humanoid Robots. Osaka, Japan: IEEE, 2012. 323-329 https://www.researchgate.net/publication/234154957_Statistical_dynamical_systems_for_skills_acquisition_in_humanoids [33] Huang Y L, Silvério J, Rozo L, Caldwell D G. Generalized task-parameterized skill learning. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia: IEEE, 2018. 5667- 5674 https://www.researchgate.net/publication/318255627_Generalized_Task-Parameterized_Skill_Learning [34] Tanwani A K, Calinon S. Learning robot manipulation tasks with task-parameterized semitied hidden semi-Markov model. IEEE Robotics and Automation Letters, 2016, 1(1): 235-242 doi: 10.1109/LRA.2016.2517825 [35] Silvério J, Rozo L, Calinon S, Caldwell D G. Learning bimanual end-effector poses from demonstrations using task-parameterized dynamical systems. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 464-470 https://ieeexplore.ieee.org/document/7353413 [36] Calinon S, Bruno D, Caldwell D G. A task-parameterized probabilistic model with minimal intervention control. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 3339-3344 https://www.researchgate.net/publication/261722329_A_task-parameterized_probabilistic_model_with_minimal_intervention_control [37] Rozo L, Bruno D, Calinon S, Caldwell D G. Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 1024-1030 http://publications.idiap.ch/downloads/papers/2015/Rozo_IROS_2015.pdf [38] Paraschos A, Daniel C, Peters J, Neumann G. Probabilistic movement primitives. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2013. 2616-2624 https://www.researchgate.net/publication/258620153_Probabilistic_Movement_Primitives [39] Paraschos A, Daniel C, Peters J, Neumann G. Using probabilistic movement primitives in robotics. Autonomous Robots, 2018, 42(3): 529-551 doi: 10.1007/s10514-017-9648-7 [40] Paraschos A, Rueckert E, Peters J, Neumann G. Probabilistic movement primitives under unknown system dynamics. Advanced Robotics, 2018, 32(6): 297-310 doi: 10.1080/01691864.2018.1437674 [41] Colomé A, Neumann G, Peters J, Torras C. Dimensionality reduction for probabilistic movement primitives. In: Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots. Madrid, Spain: IEEE, 2014. 794-800 https://ieeexplore.ieee.org/document/7041454 [42] Lioutikov R, Neumann G, Maeda G, Peters J. Learning movement primitive libraries through probabilistic segmentation. The International Journal of Robotics Research, 2017, 36(8): 879-894 doi: 10.1177/0278364917713116 [43] Schneider M, Ertel W. Robot learning by demonstration with local Gaussian process regression. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010: 255 -260 https://ieeexplore.ieee.org/document/5650949 [44] Garrido J, Yu W, Soria A. Human behavior learning for robot in joint space. Neurocomputing, 2015, 155: 22-31 doi: 10.1016/j.neucom.2014.12.068 [45] Schulman J, Ho J, Lee C, Abbeel P. Learning from demonstrations through the use of non-rigid registration. Robotics Research. Cham: Springer International Publishing, 2016. 339-354 https://people.eecs.berkeley.edu/~pabbeel/papers/SchulmanHoLeeAbbeel_ISRR2013.pdf [46] Lee A X, Lu H, Gupta A, Levine S, Abbeel P. Learning force-based manipulation of deformable objects from multiple demonstrations. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 177-184 https://people.eecs.berkeley.edu/~pabbeel/papers/2015-ICRA-TPS-LfD-forces.pdf [47] Ijspeert A J, Nakanishi J, Schaal S. Learning attractor landscapes for learning motor primitives. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2002. 1547-1554 https://www.researchgate.net/publication/221617765_Learning_Attractor_Landscapes_for_Learning_Motor_Primitives [48] Ijspeert A J, Nakanishi J, Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA: IEEE, 2002. 1398-1403 http://www4.cs.umanitoba.ca/~jacky/Robotics/Papers/movement-imitation-with-nonlinear.pdf [49] Ijspeert A J, Nakanishi J, Hoffmann H, Pastor P, Schaal S. Dynamical movement primitives: learning attractor models for motor behaviors. Neural Computation, 2013, 25(2): 328-373 doi: 10.1162/NECO_a_00393 [50] Kober J, Peters J. Policy search for motor primitives in robotics. Machine Learning, 2011, 84(1-2): 171-203 doi: 10.1007/s10994-010-5223-6 [51] Kober J, Peters J. Learning motor primitives for robotics. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 2112-2118 https://ieeexplore.ieee.org/document/5152577 [52] Yang C G, Chen C Z, He W, Cui R X, Li Z J. Robot learning system based on adaptive neural control and dynamic movement primitives. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 777-787 doi: 10.1109/TNNLS.2018.2852711 [53] Kormushev P, Calinon S, Caldwell D G. Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Advanced Robotics, 2011, 25(5): 581-603 doi: 10.1163/016918611X558261 [54] Kupcsik A, Deisenroth M P, Peters J, Loh A P, Vadakkepat P. Model-based contextual policy search for data-efficient generalization of robot skills. Artificial Intelligence, 2017, 247: 415-439 doi: 10.1016/j.artint.2014.11.005 [55] Pastor P, Kalakrishnan M, Chitta S, Theodorou E, Schaal S. Skill learning and task outcome prediction for manipulation. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 3828-3834 http://www.cs.cmu.edu/~cga/print.2/Pastor_ICRA_2011.pdf [56] Stulp F, Theodorou E A, Schaal S. Reinforcement learning with sequences of motion primitives for robust manipulation. IEEE Transactions on Robotics, 2012, 28(6): 1360- 1370 doi: 10.1109/TRO.2012.2210294 [57] Mülling K, Kober J, Kroemer O, Peters J. Learning to select and generalize striking movements in robot table tennis. The International Journal of Robotics Research, 2013, 32(3): 263-279 doi: 10.1177/0278364912472380 [58] Colomé A, Torras C. Dimensionality reduction for dynamic movement primitives and application to bimanual manipulation of clothes. IEEE Transactions on Robotics, 2018, 34(3): 602-615 doi: 10.1109/TRO.2018.2808924 [59] Deniša M, Gams A, Ude A, Petrič T. Learning compliant movement primitives through demonstration and statistical generalization. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2581-2594 doi: 10.1109/TMECH.2015.2510165 [60] Gribovskaya E, Khansari-Zadeh S M, Billard A. Learning non-linear multivariate dynamics of motion in robotic manipulators. The International Journal of Robotics Research, 2011, 30(1): 80-117 doi: 10.1177/0278364910376251 [61] Khansari-Zadeh S M, Billard A. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Transactions on Robotics, 2011, 27(5): 943-957 doi: 10.1109/TRO.2011.2159412 [62] Shukla A, Billard A. Augmented-SVM for gradient observations with application to learning multiple-attractor dynamics. Support Vector Machines Applications. Cham: Springer International Publishing, 2014. 1-21 https://www.researchgate.net/publication/287723495_Augmented-SVM_for_Gradient_Observations_with_Application_to_Learning_Multiple-Attractor_Dynamics [63] Neumann K, Steil J J. Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robotics and Autonomous Systems, 2015, 70: 1-15 doi: 10.1016/j.robot.2015.04.006 [64] Duan J H, Ou Y S, Hu J B, Wang Z Y, Jin S K, Xu C. Fast and stable learning of dynamical systems based on extreme learning machine. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(6): 1175-1185 doi: 10.1109/TSMC.2017.2705279 [65] Shukla A, Billard A. Coupled dynamical system based arm-hand grasping model for learning fast adaptation strategies. Robotics and Autonomous Systems, 2012, 60(3): 424-440 doi: 10.1016/j.robot.2011.07.023 [66] Ureche A L P, Umezawa K, Nakamura Y, Billard A. Task parameterization using continuous constraints extracted from human demonstrations. IEEE Transactions on Robotics, 2015, 31(6): 1458-1471 doi: 10.1109/TRO.2015.2495003 [67] Gams A, Nemec B, Ijspeert A J, Ude A. Coupling movement primitives: interaction with the environment and bimanual tasks. IEEE Transactions on Robotics, 2014, 30(4): 816-830 doi: 10.1109/TRO.2014.2304775 [68] Bruno D, Calinon S, Caldwell D G. Learning autonomous behaviours for the body of a flexible surgical robot. Autonomous Robots, 2017, 41(2): 333-347 doi: 10.1007/s10514-016-9544-6 [69] Sung J, Selman B, Saxena A. Learning sequences of controllers for complex manipulation tasks. In: Proceedings of the 30th International Conference on Machine Learning. Atlanta, Georgia, USA: JMLR, 2013. https://www.researchgate.net/publication/241279096_Learning_Sequences_of_Controllers_for_Complex_Manipulation_Tasks [70] Chernova S, Veloso M. Confidence-based policy learning from demonstration using Gaussian mixture models. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. Honolulu, Hawaii: ACM, 2007. Article No. 233 https://wenku.baidu.com/view/818f5d134431b90d6c85c79d.html [71] Edmonds M, Gao F, Xie X, Liu H X, Qi S Y, Zhu Y X, et al. Feeling the force: integrating force and pose for fluent discovery through imitation learning to open medicine bottles. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 3530-3537 [72] Inoue T, De Magistris G, Munawar A, Yokoya T, Tachibana R. Deep reinforcement learning for high precision assembly tasks. In: Proceedings of the 2017 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 819-825 https://arxiv.org/pdf/1708.04033.pdf [73] Deisenroth M P, Rasmussen C E, Fox D. Learning to control a low-cost manipulator using data-efficient reinforcement learning. In: Proceedings of the 2011 Robotics: Science and Systems Ⅶ. Los Angeles, CA, USA: University of Southern California, 2011. 57-64 https://rse-lab.cs.washington.edu/postscripts/robot-rl-rss-11.pdf [74] Deisenroth M P, Fox D, Rasmussen C E. Gaussian processes for data-efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(2): 408-423 doi: 10.1109/TPAMI.2013.218 [75] Levine S, Wagener N, Abbeel P. Learning contact-rich manipulation skills with guided policy search. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 156-163 https://ieeexplore.ieee.org/document/7138994 [76] Han W Q, Levine S, Abbeel P. Learning compound multi-step controllers under unknown dynamics. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 6435-6442 http://rll.berkeley.edu/reset_controller/reset_controller.pdf [77] Finn C, Tan X Y, Duan Y, Darrell T, Levine S, Abbeel P. Learning visual feature spaces for robotic manipulation with deep spatial autoencoders. arXiv: 1509.06113v1, 2015. https://arxiv.org/abs/1509.06113v1 [78] Lee J, Ryoo M S. Learning robot activities from first-person human videos using convolutional future regression. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA: IEEE, 2017. 472-473 https://arxiv.org/pdf/1703.01040.pdf [79] Gu S X, Holly E, Lillicrap T, Levine S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 3389-3396 https://arxiv.org/pdf/1610.00633.pdf [80] Levine S, Finn C, Darrell T, Abbeel P. End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 2016, 17(1): 1334-1373 https://arxiv.org/pdf/1504.00702v1.pdf [81] Sasaki K, Ogata T. End-to-end visuomotor learning of drawing sequences using recurrent neural networks. In: Proceedings of the 2018 International Joint Conference on Neural Networks. Rio de Janeiro, Brazil: IEEE, 2018. 1-2 https://waseda.pure.elsevier.com/en/publications/end-to-end-visuomotor-learning-of-drawing-sequences-using-recurre [82] Kase K, Suzuki K, Yang P C, Mori H, Ogata T. Put-in-box task generated from multiple discrete tasks by a humanoid robot using deep learning. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia: IEEE, 2018. 6447-6452 https://www.researchgate.net/publication/321283962_Put-In-Box_task_generated_from_multiple_discrete_tasks_by_humanoid_robot_using_deep_learning [83] Wolpert D M, Diedrichsen J, Flanagan J R. Principles of sensorimotor learning. Nature Reviews Neuroscience, 2011, 12(12): 739-751 doi: 10.1038/nrn3112 [84] Ghadirzadeh A, Maki A, Kragic D, Björkman M. Deep predictive policy training using reinforcement learning. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 2351-2358 https://arxiv.org/pdf/1703.00727.pdf [85] Schou C, Andersen R S, Chrysostomou D, Bogh S, Madsen O. Skill-based instruction of collaborative robots in industrial settings. Robotics and Computer-Integrated Manufacturing, 2018, 53: 72-80 doi: 10.1016/j.rcim.2018.03.008 [86] Bekiroglu Y, Laaksonen J, Jorgensen J A, Kyrki V. Assessing grasp stability based on learning and haptic data. IEEE Transactions on Robotics, 2011, 27(3): 616-629 doi: 10.1109/TRO.2011.2132870 [87] Dang H, Allen P K. Learning grasp stability. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012. 2392-2397 https://www.researchgate.net/publication/260289014_Learning_grasp_stability [88] Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research, 2018, 37(4-5): 421- 436 doi: 10.1177/0278364917710318 [89] Finn C, Goodfellow I, Levine S. Unsupervised learning for physical interaction through video prediction. In: Proceedings of the 30th Neural Information Processing Systems. Barcelona, Spain: MIT Press, 2016: 64-72 https://arxiv.org/pdf/1605.07157.pdf [90] Finn C, Levine S. Deep visual foresight for planning robot motion. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 2786-2793 https://arxiv.org/abs/1610.00696 [91] Petrič T, Gams A, Colasanto L, Ijspeert A J, Ude A. Accelerated sensorimotor learning of compliant movement primitives. IEEE Transactions on Robotics, 2018, 34(6): 1636- 1642 doi: 10.1109/TRO.2018.2861921 [92] Huang P C, Hsieh Y H, Mok A K. A skill-based programming system for robotic furniture assembly. In: Proceedings of the 16th IEEE International Conference on Industrial Informatics. Porto, Portugal: IEEE, 2018. 355-361 [93] Qin F, Xu D, Zhang D, Li Y. Robotic skill learning for precision assembly with microscopic vision and force feedback. IEEE/ASME Transactions on Mechatronics, 24(3): 1117-1128 https://ieeexplore.ieee.org/document/8681089 [94] 倪自强, 王田苗, 刘达.基于视觉引导的工业机器人示教编程系统.北京航空航天大学学报, 2016, 42(3): 562-568 http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201603018Ni Zi-Qiang, Wang Tian-Miao, Liu Da. Vision guide based teaching programming for industrial robot. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 562-568 http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201603018 [95] Hu D Y, Gong Y Z, Hannaford B, Seibel E J. Semi-autonomous simulated brain tumor ablation with RavenⅡ surgical robot using behavior tree. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 3868-3875 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578323/ [96] Ewerton M, Neumann G, Lioutikov R, Amor H B, Peters J, Maeda G, et al. Learning multiple collaborative tasks with a mixture of interaction primitives. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1535-1542 Learning multiple collaborative tasks with a mixture of interaction primitives [97] Silvério J, Calinon S, Rozo L, Caldwell D G. Bimanual skill learning with pose and joint space constraints. In: Proceedings of the 2018 IEEE/RAS International Conference on Humanoid Robots. Beijing, China: IEEE, 2018. 153-159 http://publications.idiap.ch/downloads/papers/2018/Silverio_HUMANOIDS_2018.pdf [98] Figueroa N, Ureche A L P, Billard A. Learning complex sequential tasks from demonstration: a pizza dough rolling case study. In: Proceedings of the 11th ACM/IEEE International Conference on Human-Robot Interaction. Christchurch, New Zealand: IEEE, 2016. 611-612 http://lasa.epfl.ch/publications/uploadedFiles/p611-figueroa.pdf [99] Calinon S, Sardellitti I, Caldwell D G. Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 249-254 http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_IROS_2010/data/papers/1177.pdf [100] Ureche A L P, Billard A. Analyzing human behavior and bootstrapping task constraints from kinesthetic demonstrations. In: Proceedings of the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts. Portland, Oregon, USA: ACM, 2015: 199-200 http://lasa.epfl.ch/publications/uploadedFiles/p199-ureche.pdf [101] Muhlig M, Gienger M, Hellbach S, Steil J J, Goerick C. Task-level imitation learning using variance-based movement optimization. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 1177-1184 https://www.researchgate.net/publication/224557223_Task-level_imitation_learning_using_variance-based_movement_optimization [102] Gupta A, Eppner C, Levine S, Abbeel P. Learning dexterous manipulation for a soft robotic hand from human demonstrations. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea: IEEE, 2016. 3786-3793 https://arxiv.org/pdf/1603.06348.pdf [103] Peters J, Schaal S. Reinforcement learning of motor skills with policy gradients. Neural Networks, 2008, 21(4): 682- 697 doi: 10.1016/j.neunet.2008.02.003 [104] Xu W J, Chen J, Lau H Y K, Ren H L. Automate surgical tasks for a flexible serpentine manipulator via learning actuation space trajectory from demonstration. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016. 4406-4413 https://ieeexplore.ieee.org/document/7487640 [105] Murali A, Sen S, Kehoe B, Garg A, McFarland S, Patil S, et al. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1202-1209 https://people.eecs.berkeley.edu/~pabbeel/papers/2015-ICRA-LBO-DVRK.pdf [106] Ureche L P, Billard A. Constraints extraction from asymmetrical bimanual tasks and their use in coordinated behavior. Robotics and Autonomous Systems, 2018, 103: 222-235 doi: 10.1016/j.robot.2017.12.011 [107] Salehian S S M, Khoramshahi M, Billard A. A dynamical system approach for softly catching a flying object: theory and experiment. IEEE Transactions on Robotics, 2016, 32(2): 462-471 doi: 10.1109/TRO.2016.2536749 [108] Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In: Proceedings of the 2nd Conference on Robot Learning. Zurich, Switzerland: PMLR, 2018. 651-673 [109] Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Imagenet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 248-255 http://image-net.org/papers/imagenet_cvpr09.pdf [110] Du Z H, He L, Chen Y N, Xiao Y, Gao P, Wang T Z. Robot cloud: bridging the power of robotics and cloud computing. Future Generation Computer Systems, 2015, 21(4): 301-312 https://www.sciencedirect.com/science/article/pii/S0167739X16000042 [111] Kehoe B, Patil S, Abbeel P, Goldberg K. A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 398-409 doi: 10.1109/TASE.2014.2376492 [112] Hu G Q, Tay W P, Wen Y G. Cloud robotics: architecture, challenges and applications. IEEE Network, 2012, 26(3): 21-28 doi: 10.1109/MNET.2012.6201212 [113] Hunziker D, Gajamohan M, Waibel M, D$'$Andrea R. Rapyuta: the RoboEarth cloud engine. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013. 438-444 [114] Saxena A, Jain A, Sener O, Jami A, Misra D K, Koppula H S. Robobrain: large-scale knowledge engine for robots. arXiv: 1412.0691, 2014. https://arxiv.org/pdf/1412.0691.pdf [115] 王飞跃.知识机器人与工业5.0. 2015年国家机器人发展论坛.北京: 中国自动化学会, 2015.Wang Fei-Yue. Knowledge Robot and Industry 5.0. In: Proceedings of the 2015 China National Robotics Development Forum. Beijing, China: Chinese Association of Automation, 2015. [116] 白天翔, 王帅, 沈震, 曹东璞, 郑南宁, 王飞跃.平行机器人与平行无人系统:框架、结构、过程、平台及其应用.自动化学报, 2017, 43(2): 161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtmlBai Tian-Xiang, Wang Shuai, Shen Zhen, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel robotics and parallel unmanned systems: framework, structure, process, platform and applications. Acta Automatica Sinica, 2017, 43(2): 161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml [117] 王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1): 1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001Wang Fei-Yue. Software-defined systems and knowledge automation: a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1): 1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001 -