[1]
|
Hirzinger G, Landzettel K. Sensory feedback structures for robots with supervised learning. In: Proceedings of the 1985 IEEE International Conference on Robotics and Automation. St. Louis, MO, USA: IEEE, 1985. 627-635
|
[2]
|
Asada H, Asari Y. The direct teaching of tool manipulation skills via the impedance identification of human motions. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation. Philadelphia, PA, USA: IEEE, 1988. 1269-1274 http://www.panduoduo.net/r/17087799
|
[3]
|
曾毅, 刘成林, 谭铁牛.类脑智能研究的回顾与展望.计算机学报, 2016, 39(1): 212-223 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201601015Zeng Yi, Liu Cheng-Lin, Tan Tie-Niu. Retrospect and outlook of brain-inspired intelligence research. Chinese Journal of Computers, 2016, 39(1): 212-223 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201601015
|
[4]
|
陶建华, 陈云霁.类脑计算芯片与类脑智能机器人发展现状与思考.中国科学院院刊, 2016, 31(7): 803-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201607009Tao Jian-Hua, Chen Yun-Ji. Current status and consideration on brain-like computing chip and brain-like intelligent robot. Bulletin of Chinese Academy of Sciences, 2016, 31(7): 803-811 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkxyyk201607009
|
[5]
|
Ersen M, Oztop E, Sariel S. Cognition-enabled robot manipulation in human environments: requirements, recent work, and open problems. IEEE Robotics and Automation Magazine, 2017, 24(3): 108-122 doi: 10.1109/MRA.2016.2616538
|
[6]
|
Argall B D, Chernova S, Veloso M, Browning B. A survey of robot learning from demonstration. Robotics and Autonomous Systems, 2009, 57(5): 469-483 doi: 10.1016/j.robot.2008.10.024
|
[7]
|
Kober J, Bagnell J A, Peters J. Reinforcement learning in robotics: a survey. The International Journal of Robotics Research, 2013, 32(11): 1238-1274 doi: 10.1177/0278364913495721
|
[8]
|
Yahya A, Li A, Kalakrishnan M, Chebotar Y, Levine S. Collective robot reinforcement learning with distributed asynchronous guided policy search. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 79-86 https://arxiv.org/pdf/1610.00673.pdf
|
[9]
|
Foukarakis M, Leonidis A, Antona M, Stephanidis C. Combining finite state machine and decision-making tools for adaptable robot behavior. In: Proceedings of the 8th International Conference on Universal Access in Human-Computer Interaction. Heraklion, Crete, Greece: Springer, 2014. 625-635 http://hobbit.acin.tuwien.ac.at/publications/HCII2014.pdf
|
[10]
|
Zhou H T, Min H S, Lin Y H, Zhang S N. A robot architecture of hierarchical finite state machine for autonomous mobile manipulator. In: Proceedings of the 10th International Conference on Intelligent Robotics and Applications. Wuhan, China: Springer, 2017. 425-436 https://www.researchgate.net/publication/318924520_A_Robot_Architecture_of_Hierarchical_Finite_State_Machine_for_Autonomous_Mobile_Manipulator
|
[11]
|
Colledanchise M, Parasuraman R, Ögren P. Learning of behavior trees for autonomous agents. IEEE Transactions on Games, 2019, 11(2): 183-189 doi: 10.1109/TG.2018.2816806
|
[12]
|
Guerin K R, Lea C, Paxton C, Hager G D. A framework for end-user instruction of a robot assistant for manufacturing. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 6167-6174 https://jhu.pure.elsevier.com/en/publications/a-framework-for-end-user-instruction-of-a-robot-assistant-for-man-4
|
[13]
|
Paxton C, Hundt A, Jonathan F, Guerin K, Hager G D. CoSTAR: instructing collaborative robots with behavior trees and vision. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 564-571 https://arxiv.org/pdf/1611.06145.pdf
|
[14]
|
Paxton C, Jonathan F, Hundt A, Mutlu B, Hager G D. Evaluating methods for end-user creation of robot task plans. In: Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, Spain: IEEE, 2018. 6086-6092 https://cpaxton.github.io/public/paxton2018evaluating.pdf
|
[15]
|
Bagnell J A, Cavalcanti F, Cui L, Galluzzo T, Hebert M, Kazemi M, et al. An integrated system for autonomous robotics manipulation. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012. 2955-2962 https://ieeexplore.ieee.org/abstract/document/6385888
|
[16]
|
Colledanchise M, Marzinotto A, Ögren P. Performance analysis of stochastic behavior trees. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014: 3265-3272 http://www.csc.kth.se/~miccol/Michele_Colledanchise/Publications_files/ICRA14_cmo_final.pdf
|
[17]
|
Akgun B, Thomaz A. Simultaneously learning actions and goals from demonstration. Autonomous Robots, 2016, 40(2): 211-227 doi: 10.1007/s10514-015-9448-x
|
[18]
|
Akgun B, Thomaz A L. Self-improvement of learned action models with learned goal models. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 5259-5264 https://ieeexplore.ieee.org/abstract/document/7354119
|
[19]
|
Kroemer O, Daniel C, Neumann G, van Hoof H, Peters J. Towards learning hierarchical skills for multi-phase manipulation tasks. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1503-1510 https://ieeexplore.ieee.org/document/7139389
|
[20]
|
Medina J R, Billard A. Learning stable task sequences from demonstration with linear parameter varying systems and hidden Markov models. In: Proceedings of the 2017 Conference on Robot Learning. Mountain View, California, USA, 2017: 175-184 http://proceedings.mlr.press/v78/medina17a/medina17a.pdf
|
[21]
|
Pardowitz M, Knoop S, Dillmann R, Zollner R D. Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(2): 322-332 doi: 10.1109/TSMCB.2006.886951
|
[22]
|
Nicolescu M N, Mataric M J. Natural methods for robot task learning: instructive demonstrations, generalization and practice. In: Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems. Melbourne, Australia: ACM, 2003. 241-248 https://www.cse.unr.edu/~monica/Research/Publications/agents03.pdf
|
[23]
|
Hayes B, Scassellati B. Autonomously constructing hierarchical task networks for planning and human-robot collaboration. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016. 5469-5476 https://scazlab.yale.edu/sites/default/files/files/hayes_icra16.pdf
|
[24]
|
Ahmadzadeh S R, Kormushev P, Caldwell D G. Interactive robot learning of visuospatial skills. In: Proceedings of the 2013 International Conference on Advanced Robotics. Montevideo, Uruguay: IEEE, 2013: 1-8 https://www.researchgate.net/publication/258832541_Interactive_Robot_Learning_of_Visuospatial_Skills
|
[25]
|
Ahmadzadeh S R, Paikan A, Mastrogiovanni F, Natale L, Kormushev P, Caldwell D G, et al. Learning symbolic representations of actions from human demonstrations. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 3801-3808 https://www.researchgate.net/publication/273755287_Learning_Symbolic_Representations_of_Actions_from_Human_Demonstrations
|
[26]
|
Dornhege C, Hertle A. Integrated symbolic planning in the tidyup-robot project. In: Proceedings of the 2013 Designing Intelligent Robots: Reintegrating AI: Papers Form the AAAI Spring Symposium. Palo Alto, California, USA: AAAI, 2013. https://www.researchgate.net/publication/289304978_Integrated_symbolic_planning_in_the_tidyup-robot_project
|
[27]
|
Beetz M, Mösenlechner L, Tenorth M. CRAM — a cognitive robot abstract machine for everyday manipulation in human environments. In: Proceedings of the 2010 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 1012-1017
|
[28]
|
Tenorth M, Beetz M. KnowRob: a knowledge processing infrastructure for cognition-enabled robots. The International Journal of Robotics Research, 2013, 32(5): 566- 590 doi: 10.1177/0278364913481635
|
[29]
|
Bozcuoǧlu A K, Kazhoyan G, Furuta Y, Stelter S, Michael B, Kei O, et al. The exchange of knowledge using cloud robotics. IEEE Robotics and Automation Letters, 2018, 3(2): 1072-1079 doi: 10.1109/LRA.2018.2794626
|
[30]
|
Calinon S, Guenter F, Billard A. On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2007, 37(2): 286-298 doi: 10.1109/TSMCB.2006.886952
|
[31]
|
Maeda G J, Neumann G, Ewerton M, Lioutikov R, Kroemer O, Peters J. Probabilistic movement primitives for coordination of multiple human-robot collaborative tasks. Autonomous Robots, 2017, 41(3): 593-612 doi: 10.1007/s10514-016-9556-2
|
[32]
|
Calinon S, Li Z B, Alizadeh T, Tsagarakis N G, Caldwell D G. Statistical dynamical systems for skills acquisition in humanoids. In: Proceedings of the 12th IEEE-RAS International Conference on Humanoid Robots. Osaka, Japan: IEEE, 2012. 323-329 https://www.researchgate.net/publication/234154957_Statistical_dynamical_systems_for_skills_acquisition_in_humanoids
|
[33]
|
Huang Y L, Silvério J, Rozo L, Caldwell D G. Generalized task-parameterized skill learning. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia: IEEE, 2018. 5667- 5674 https://www.researchgate.net/publication/318255627_Generalized_Task-Parameterized_Skill_Learning
|
[34]
|
Tanwani A K, Calinon S. Learning robot manipulation tasks with task-parameterized semitied hidden semi-Markov model. IEEE Robotics and Automation Letters, 2016, 1(1): 235-242 doi: 10.1109/LRA.2016.2517825
|
[35]
|
Silvério J, Rozo L, Calinon S, Caldwell D G. Learning bimanual end-effector poses from demonstrations using task-parameterized dynamical systems. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 464-470 https://ieeexplore.ieee.org/document/7353413
|
[36]
|
Calinon S, Bruno D, Caldwell D G. A task-parameterized probabilistic model with minimal intervention control. In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation. Hong Kong, China: IEEE, 2014. 3339-3344 https://www.researchgate.net/publication/261722329_A_task-parameterized_probabilistic_model_with_minimal_intervention_control
|
[37]
|
Rozo L, Bruno D, Calinon S, Caldwell D G. Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 1024-1030 http://publications.idiap.ch/downloads/papers/2015/Rozo_IROS_2015.pdf
|
[38]
|
Paraschos A, Daniel C, Peters J, Neumann G. Probabilistic movement primitives. In: Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2013. 2616-2624 https://www.researchgate.net/publication/258620153_Probabilistic_Movement_Primitives
|
[39]
|
Paraschos A, Daniel C, Peters J, Neumann G. Using probabilistic movement primitives in robotics. Autonomous Robots, 2018, 42(3): 529-551 doi: 10.1007/s10514-017-9648-7
|
[40]
|
Paraschos A, Rueckert E, Peters J, Neumann G. Probabilistic movement primitives under unknown system dynamics. Advanced Robotics, 2018, 32(6): 297-310 doi: 10.1080/01691864.2018.1437674
|
[41]
|
Colomé A, Neumann G, Peters J, Torras C. Dimensionality reduction for probabilistic movement primitives. In: Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots. Madrid, Spain: IEEE, 2014. 794-800 https://ieeexplore.ieee.org/document/7041454
|
[42]
|
Lioutikov R, Neumann G, Maeda G, Peters J. Learning movement primitive libraries through probabilistic segmentation. The International Journal of Robotics Research, 2017, 36(8): 879-894 doi: 10.1177/0278364917713116
|
[43]
|
Schneider M, Ertel W. Robot learning by demonstration with local Gaussian process regression. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010: 255 -260 https://ieeexplore.ieee.org/document/5650949
|
[44]
|
Garrido J, Yu W, Soria A. Human behavior learning for robot in joint space. Neurocomputing, 2015, 155: 22-31 doi: 10.1016/j.neucom.2014.12.068
|
[45]
|
Schulman J, Ho J, Lee C, Abbeel P. Learning from demonstrations through the use of non-rigid registration. Robotics Research. Cham: Springer International Publishing, 2016. 339-354 https://people.eecs.berkeley.edu/~pabbeel/papers/SchulmanHoLeeAbbeel_ISRR2013.pdf
|
[46]
|
Lee A X, Lu H, Gupta A, Levine S, Abbeel P. Learning force-based manipulation of deformable objects from multiple demonstrations. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 177-184 https://people.eecs.berkeley.edu/~pabbeel/papers/2015-ICRA-TPS-LfD-forces.pdf
|
[47]
|
Ijspeert A J, Nakanishi J, Schaal S. Learning attractor landscapes for learning motor primitives. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2002. 1547-1554 https://www.researchgate.net/publication/221617765_Learning_Attractor_Landscapes_for_Learning_Motor_Primitives
|
[48]
|
Ijspeert A J, Nakanishi J, Schaal S. Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, DC, USA: IEEE, 2002. 1398-1403 http://www4.cs.umanitoba.ca/~jacky/Robotics/Papers/movement-imitation-with-nonlinear.pdf
|
[49]
|
Ijspeert A J, Nakanishi J, Hoffmann H, Pastor P, Schaal S. Dynamical movement primitives: learning attractor models for motor behaviors. Neural Computation, 2013, 25(2): 328-373 doi: 10.1162/NECO_a_00393
|
[50]
|
Kober J, Peters J. Policy search for motor primitives in robotics. Machine Learning, 2011, 84(1-2): 171-203 doi: 10.1007/s10994-010-5223-6
|
[51]
|
Kober J, Peters J. Learning motor primitives for robotics. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 2112-2118 https://ieeexplore.ieee.org/document/5152577
|
[52]
|
Yang C G, Chen C Z, He W, Cui R X, Li Z J. Robot learning system based on adaptive neural control and dynamic movement primitives. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 777-787 doi: 10.1109/TNNLS.2018.2852711
|
[53]
|
Kormushev P, Calinon S, Caldwell D G. Imitation learning of positional and force skills demonstrated via kinesthetic teaching and haptic input. Advanced Robotics, 2011, 25(5): 581-603 doi: 10.1163/016918611X558261
|
[54]
|
Kupcsik A, Deisenroth M P, Peters J, Loh A P, Vadakkepat P. Model-based contextual policy search for data-efficient generalization of robot skills. Artificial Intelligence, 2017, 247: 415-439 doi: 10.1016/j.artint.2014.11.005
|
[55]
|
Pastor P, Kalakrishnan M, Chitta S, Theodorou E, Schaal S. Skill learning and task outcome prediction for manipulation. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 3828-3834 http://www.cs.cmu.edu/~cga/print.2/Pastor_ICRA_2011.pdf
|
[56]
|
Stulp F, Theodorou E A, Schaal S. Reinforcement learning with sequences of motion primitives for robust manipulation. IEEE Transactions on Robotics, 2012, 28(6): 1360- 1370 doi: 10.1109/TRO.2012.2210294
|
[57]
|
Mülling K, Kober J, Kroemer O, Peters J. Learning to select and generalize striking movements in robot table tennis. The International Journal of Robotics Research, 2013, 32(3): 263-279 doi: 10.1177/0278364912472380
|
[58]
|
Colomé A, Torras C. Dimensionality reduction for dynamic movement primitives and application to bimanual manipulation of clothes. IEEE Transactions on Robotics, 2018, 34(3): 602-615 doi: 10.1109/TRO.2018.2808924
|
[59]
|
Deniša M, Gams A, Ude A, Petrič T. Learning compliant movement primitives through demonstration and statistical generalization. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2581-2594 doi: 10.1109/TMECH.2015.2510165
|
[60]
|
Gribovskaya E, Khansari-Zadeh S M, Billard A. Learning non-linear multivariate dynamics of motion in robotic manipulators. The International Journal of Robotics Research, 2011, 30(1): 80-117 doi: 10.1177/0278364910376251
|
[61]
|
Khansari-Zadeh S M, Billard A. Learning stable nonlinear dynamical systems with Gaussian mixture models. IEEE Transactions on Robotics, 2011, 27(5): 943-957 doi: 10.1109/TRO.2011.2159412
|
[62]
|
Shukla A, Billard A. Augmented-SVM for gradient observations with application to learning multiple-attractor dynamics. Support Vector Machines Applications. Cham: Springer International Publishing, 2014. 1-21 https://www.researchgate.net/publication/287723495_Augmented-SVM_for_Gradient_Observations_with_Application_to_Learning_Multiple-Attractor_Dynamics
|
[63]
|
Neumann K, Steil J J. Learning robot motions with stable dynamical systems under diffeomorphic transformations. Robotics and Autonomous Systems, 2015, 70: 1-15 doi: 10.1016/j.robot.2015.04.006
|
[64]
|
Duan J H, Ou Y S, Hu J B, Wang Z Y, Jin S K, Xu C. Fast and stable learning of dynamical systems based on extreme learning machine. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(6): 1175-1185 doi: 10.1109/TSMC.2017.2705279
|
[65]
|
Shukla A, Billard A. Coupled dynamical system based arm-hand grasping model for learning fast adaptation strategies. Robotics and Autonomous Systems, 2012, 60(3): 424-440 doi: 10.1016/j.robot.2011.07.023
|
[66]
|
Ureche A L P, Umezawa K, Nakamura Y, Billard A. Task parameterization using continuous constraints extracted from human demonstrations. IEEE Transactions on Robotics, 2015, 31(6): 1458-1471 doi: 10.1109/TRO.2015.2495003
|
[67]
|
Gams A, Nemec B, Ijspeert A J, Ude A. Coupling movement primitives: interaction with the environment and bimanual tasks. IEEE Transactions on Robotics, 2014, 30(4): 816-830 doi: 10.1109/TRO.2014.2304775
|
[68]
|
Bruno D, Calinon S, Caldwell D G. Learning autonomous behaviours for the body of a flexible surgical robot. Autonomous Robots, 2017, 41(2): 333-347 doi: 10.1007/s10514-016-9544-6
|
[69]
|
Sung J, Selman B, Saxena A. Learning sequences of controllers for complex manipulation tasks. In: Proceedings of the 30th International Conference on Machine Learning. Atlanta, Georgia, USA: JMLR, 2013. https://www.researchgate.net/publication/241279096_Learning_Sequences_of_Controllers_for_Complex_Manipulation_Tasks
|
[70]
|
Chernova S, Veloso M. Confidence-based policy learning from demonstration using Gaussian mixture models. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems. Honolulu, Hawaii: ACM, 2007. Article No. 233 https://wenku.baidu.com/view/818f5d134431b90d6c85c79d.html
|
[71]
|
Edmonds M, Gao F, Xie X, Liu H X, Qi S Y, Zhu Y X, et al. Feeling the force: integrating force and pose for fluent discovery through imitation learning to open medicine bottles. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 3530-3537
|
[72]
|
Inoue T, De Magistris G, Munawar A, Yokoya T, Tachibana R. Deep reinforcement learning for high precision assembly tasks. In: Proceedings of the 2017 IEEE/ RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 819-825 https://arxiv.org/pdf/1708.04033.pdf
|
[73]
|
Deisenroth M P, Rasmussen C E, Fox D. Learning to control a low-cost manipulator using data-efficient reinforcement learning. In: Proceedings of the 2011 Robotics: Science and Systems Ⅶ. Los Angeles, CA, USA: University of Southern California, 2011. 57-64 https://rse-lab.cs.washington.edu/postscripts/robot-rl-rss-11.pdf
|
[74]
|
Deisenroth M P, Fox D, Rasmussen C E. Gaussian processes for data-efficient learning in robotics and control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(2): 408-423 doi: 10.1109/TPAMI.2013.218
|
[75]
|
Levine S, Wagener N, Abbeel P. Learning contact-rich manipulation skills with guided policy search. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 156-163 https://ieeexplore.ieee.org/document/7138994
|
[76]
|
Han W Q, Levine S, Abbeel P. Learning compound multi-step controllers under unknown dynamics. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany: IEEE, 2015. 6435-6442 http://rll.berkeley.edu/reset_controller/reset_controller.pdf
|
[77]
|
Finn C, Tan X Y, Duan Y, Darrell T, Levine S, Abbeel P. Learning visual feature spaces for robotic manipulation with deep spatial autoencoders. arXiv: 1509.06113v1, 2015. https://arxiv.org/abs/1509.06113v1
|
[78]
|
Lee J, Ryoo M S. Learning robot activities from first-person human videos using convolutional future regression. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu, HI, USA: IEEE, 2017. 472-473 https://arxiv.org/pdf/1703.01040.pdf
|
[79]
|
Gu S X, Holly E, Lillicrap T, Levine S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 3389-3396 https://arxiv.org/pdf/1610.00633.pdf
|
[80]
|
Levine S, Finn C, Darrell T, Abbeel P. End-to-end training of deep visuomotor policies. The Journal of Machine Learning Research, 2016, 17(1): 1334-1373 https://arxiv.org/pdf/1504.00702v1.pdf
|
[81]
|
Sasaki K, Ogata T. End-to-end visuomotor learning of drawing sequences using recurrent neural networks. In: Proceedings of the 2018 International Joint Conference on Neural Networks. Rio de Janeiro, Brazil: IEEE, 2018. 1-2 https://waseda.pure.elsevier.com/en/publications/end-to-end-visuomotor-learning-of-drawing-sequences-using-recurre
|
[82]
|
Kase K, Suzuki K, Yang P C, Mori H, Ogata T. Put-in-box task generated from multiple discrete tasks by a humanoid robot using deep learning. In: Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Brisbane, QLD, Australia: IEEE, 2018. 6447-6452 https://www.researchgate.net/publication/321283962_Put-In-Box_task_generated_from_multiple_discrete_tasks_by_humanoid_robot_using_deep_learning
|
[83]
|
Wolpert D M, Diedrichsen J, Flanagan J R. Principles of sensorimotor learning. Nature Reviews Neuroscience, 2011, 12(12): 739-751 doi: 10.1038/nrn3112
|
[84]
|
Ghadirzadeh A, Maki A, Kragic D, Björkman M. Deep predictive policy training using reinforcement learning. In: Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, BC, Canada: IEEE, 2017. 2351-2358 https://arxiv.org/pdf/1703.00727.pdf
|
[85]
|
Schou C, Andersen R S, Chrysostomou D, Bogh S, Madsen O. Skill-based instruction of collaborative robots in industrial settings. Robotics and Computer-Integrated Manufacturing, 2018, 53: 72-80 doi: 10.1016/j.rcim.2018.03.008
|
[86]
|
Bekiroglu Y, Laaksonen J, Jorgensen J A, Kyrki V. Assessing grasp stability based on learning and haptic data. IEEE Transactions on Robotics, 2011, 27(3): 616-629 doi: 10.1109/TRO.2011.2132870
|
[87]
|
Dang H, Allen P K. Learning grasp stability. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA: IEEE, 2012. 2392-2397 https://www.researchgate.net/publication/260289014_Learning_grasp_stability
|
[88]
|
Levine S, Pastor P, Krizhevsky A, Ibarz J, Quillen D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. The International Journal of Robotics Research, 2018, 37(4-5): 421- 436 doi: 10.1177/0278364917710318
|
[89]
|
Finn C, Goodfellow I, Levine S. Unsupervised learning for physical interaction through video prediction. In: Proceedings of the 30th Neural Information Processing Systems. Barcelona, Spain: MIT Press, 2016: 64-72 https://arxiv.org/pdf/1605.07157.pdf
|
[90]
|
Finn C, Levine S. Deep visual foresight for planning robot motion. In: Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore: IEEE, 2017. 2786-2793 https://arxiv.org/abs/1610.00696
|
[91]
|
Petrič T, Gams A, Colasanto L, Ijspeert A J, Ude A. Accelerated sensorimotor learning of compliant movement primitives. IEEE Transactions on Robotics, 2018, 34(6): 1636- 1642 doi: 10.1109/TRO.2018.2861921
|
[92]
|
Huang P C, Hsieh Y H, Mok A K. A skill-based programming system for robotic furniture assembly. In: Proceedings of the 16th IEEE International Conference on Industrial Informatics. Porto, Portugal: IEEE, 2018. 355-361
|
[93]
|
Qin F, Xu D, Zhang D, Li Y. Robotic skill learning for precision assembly with microscopic vision and force feedback. IEEE/ASME Transactions on Mechatronics, 24(3): 1117-1128 https://ieeexplore.ieee.org/document/8681089
|
[94]
|
倪自强, 王田苗, 刘达.基于视觉引导的工业机器人示教编程系统.北京航空航天大学学报, 2016, 42(3): 562-568 http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201603018Ni Zi-Qiang, Wang Tian-Miao, Liu Da. Vision guide based teaching programming for industrial robot. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3): 562-568 http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb201603018
|
[95]
|
Hu D Y, Gong Y Z, Hannaford B, Seibel E J. Semi-autonomous simulated brain tumor ablation with RavenⅡ surgical robot using behavior tree. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 3868-3875 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4578323/
|
[96]
|
Ewerton M, Neumann G, Lioutikov R, Amor H B, Peters J, Maeda G, et al. Learning multiple collaborative tasks with a mixture of interaction primitives. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1535-1542 Learning multiple collaborative tasks with a mixture of interaction primitives
|
[97]
|
Silvério J, Calinon S, Rozo L, Caldwell D G. Bimanual skill learning with pose and joint space constraints. In: Proceedings of the 2018 IEEE/RAS International Conference on Humanoid Robots. Beijing, China: IEEE, 2018. 153-159 http://publications.idiap.ch/downloads/papers/2018/Silverio_HUMANOIDS_2018.pdf
|
[98]
|
Figueroa N, Ureche A L P, Billard A. Learning complex sequential tasks from demonstration: a pizza dough rolling case study. In: Proceedings of the 11th ACM/IEEE International Conference on Human-Robot Interaction. Christchurch, New Zealand: IEEE, 2016. 611-612 http://lasa.epfl.ch/publications/uploadedFiles/p611-figueroa.pdf
|
[99]
|
Calinon S, Sardellitti I, Caldwell D G. Learning-based control strategy for safe human-robot interaction exploiting task and robot redundancies. In: Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei, China: IEEE, 2010. 249-254 http://vigir.missouri.edu/~gdesouza/Research/Conference_CDs/IEEE_IROS_2010/data/papers/1177.pdf
|
[100]
|
Ureche A L P, Billard A. Analyzing human behavior and bootstrapping task constraints from kinesthetic demonstrations. In: Proceedings of the 10th Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts. Portland, Oregon, USA: ACM, 2015: 199-200 http://lasa.epfl.ch/publications/uploadedFiles/p199-ureche.pdf
|
[101]
|
Muhlig M, Gienger M, Hellbach S, Steil J J, Goerick C. Task-level imitation learning using variance-based movement optimization. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan: IEEE, 2009. 1177-1184 https://www.researchgate.net/publication/224557223_Task-level_imitation_learning_using_variance-based_movement_optimization
|
[102]
|
Gupta A, Eppner C, Levine S, Abbeel P. Learning dexterous manipulation for a soft robotic hand from human demonstrations. In: Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems. Daejeon, South Korea: IEEE, 2016. 3786-3793 https://arxiv.org/pdf/1603.06348.pdf
|
[103]
|
Peters J, Schaal S. Reinforcement learning of motor skills with policy gradients. Neural Networks, 2008, 21(4): 682- 697 doi: 10.1016/j.neunet.2008.02.003
|
[104]
|
Xu W J, Chen J, Lau H Y K, Ren H L. Automate surgical tasks for a flexible serpentine manipulator via learning actuation space trajectory from demonstration. In: Proceedings of the 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016. 4406-4413 https://ieeexplore.ieee.org/document/7487640
|
[105]
|
Murali A, Sen S, Kehoe B, Garg A, McFarland S, Patil S, et al. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. In: Proceedings of the 2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015. 1202-1209 https://people.eecs.berkeley.edu/~pabbeel/papers/2015-ICRA-LBO-DVRK.pdf
|
[106]
|
Ureche L P, Billard A. Constraints extraction from asymmetrical bimanual tasks and their use in coordinated behavior. Robotics and Autonomous Systems, 2018, 103: 222-235 doi: 10.1016/j.robot.2017.12.011
|
[107]
|
Salehian S S M, Khoramshahi M, Billard A. A dynamical system approach for softly catching a flying object: theory and experiment. IEEE Transactions on Robotics, 2016, 32(2): 462-471 doi: 10.1109/TRO.2016.2536749
|
[108]
|
Kalashnikov D, Irpan A, Pastor P, Ibarz J, Herzog A, Jang E, et al. Scalable deep reinforcement learning for vision-based robotic manipulation. In: Proceedings of the 2nd Conference on Robot Learning. Zurich, Switzerland: PMLR, 2018. 651-673
|
[109]
|
Deng J, Dong W, Socher R, Li L J, Li K, Li F F. Imagenet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009. 248-255 http://image-net.org/papers/imagenet_cvpr09.pdf
|
[110]
|
Du Z H, He L, Chen Y N, Xiao Y, Gao P, Wang T Z. Robot cloud: bridging the power of robotics and cloud computing. Future Generation Computer Systems, 2015, 21(4): 301-312 https://www.sciencedirect.com/science/article/pii/S0167739X16000042
|
[111]
|
Kehoe B, Patil S, Abbeel P, Goldberg K. A survey of research on cloud robotics and automation. IEEE Transactions on Automation Science and Engineering, 2015, 12(2): 398-409 doi: 10.1109/TASE.2014.2376492
|
[112]
|
Hu G Q, Tay W P, Wen Y G. Cloud robotics: architecture, challenges and applications. IEEE Network, 2012, 26(3): 21-28 doi: 10.1109/MNET.2012.6201212
|
[113]
|
Hunziker D, Gajamohan M, Waibel M, D$'$Andrea R. Rapyuta: the RoboEarth cloud engine. In: Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013. 438-444
|
[114]
|
Saxena A, Jain A, Sener O, Jami A, Misra D K, Koppula H S. Robobrain: large-scale knowledge engine for robots. arXiv: 1412.0691, 2014. https://arxiv.org/pdf/1412.0691.pdf
|
[115]
|
王飞跃.知识机器人与工业5.0. 2015年国家机器人发展论坛.北京: 中国自动化学会, 2015.Wang Fei-Yue. Knowledge Robot and Industry 5.0. In: Proceedings of the 2015 China National Robotics Development Forum. Beijing, China: Chinese Association of Automation, 2015.
|
[116]
|
白天翔, 王帅, 沈震, 曹东璞, 郑南宁, 王飞跃.平行机器人与平行无人系统:框架、结构、过程、平台及其应用.自动化学报, 2017, 43(2): 161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtmlBai Tian-Xiang, Wang Shuai, Shen Zhen, Cao Dong-Pu, Zheng Nan-Ning, Wang Fei-Yue. Parallel robotics and parallel unmanned systems: framework, structure, process, platform and applications. Acta Automatica Sinica, 2017, 43(2): 161-175 http://www.aas.net.cn/CN/abstract/abstract18998.shtml
|
[117]
|
王飞跃.软件定义的系统与知识自动化:从牛顿到默顿的平行升华.自动化学报, 2015, 41(1): 1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001Wang Fei-Yue. Software-defined systems and knowledge automation: a parallel paradigm shift from Newton to Merton. Acta Automatica Sinica, 2015, 41(1): 1-8 doi: 10.3969/j.issn.1003-8930.2015.01.001
|