2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间充气展开绳网系统捕获目标自抗扰控制研究

刘昊 魏承 谭春林 刘永健 赵阳

刘昊, 魏承, 谭春林, 刘永健, 赵阳. 空间充气展开绳网系统捕获目标自抗扰控制研究. 自动化学报, 2019, 45(9): 1691-1700. doi: 10.16383/j.aas.c180835
引用本文: 刘昊, 魏承, 谭春林, 刘永健, 赵阳. 空间充气展开绳网系统捕获目标自抗扰控制研究. 自动化学报, 2019, 45(9): 1691-1700. doi: 10.16383/j.aas.c180835
LIU Hao, WEI Cheng, TAN Chun-Lin, LIU Yong-Jian, ZHAO Yang. Research on Capturing Target of Space Inflatable Net Capture System Based on Active Disturbance Rejection Control. ACTA AUTOMATICA SINICA, 2019, 45(9): 1691-1700. doi: 10.16383/j.aas.c180835
Citation: LIU Hao, WEI Cheng, TAN Chun-Lin, LIU Yong-Jian, ZHAO Yang. Research on Capturing Target of Space Inflatable Net Capture System Based on Active Disturbance Rejection Control. ACTA AUTOMATICA SINICA, 2019, 45(9): 1691-1700. doi: 10.16383/j.aas.c180835

空间充气展开绳网系统捕获目标自抗扰控制研究

doi: 10.16383/j.aas.c180835
基金项目: 

微小型航天器技术国防重点学科实验室开放基金 HIT.KLOF.MST.201703

空间智能控制技术重点实验室开放基金 ZDSYS-2017-07

详细信息
    作者简介:

    刘昊  哈尔滨工业大学航天学院博士研究生.主要研究方向为航天机构动力学控制与仿真.E-mail:liuhaoyt@stu.hit.edu.cn

    谭春林  北京空间飞行器总体设计部研究员.主要研究方向为航天器总体设计.E-mail:tanchunlin1967@sina.com

    刘永健  博士.北京空间飞行器总体设计部研究员.主要研究方向为航天器系统研发.E-mail:liuyj03@126.com

    赵阳  博士.哈尔滨工业大学航天学院教授.主要研究方向为航天器多体动力学与控制, 航天器系统仿真技术.E-mail:yangzhao@hit.edu.cn

    通讯作者:

    魏承  博士.哈尔滨工业大学航天学院副教授.主要研究方向为空间柔性多体系统动力学, 控制与系统仿真技术.本文通信作者. E-mail:weicheng@hit.edu.cn

Research on Capturing Target of Space Inflatable Net Capture System Based on Active Disturbance Rejection Control

Funds: 

Open Fund of National Defense Key Discipline Laboratory of Micro-Spacecraft Technology HIT.KLOF.MST.201703

Open Fund of Science and Technology on Space Intelligent Control Laboratory ZDSYS-2017-07

More Information
    Author Bio:

     Ph. D. candidate at the School of Astronautics, Harbin Institute of Technology. His research interest covers dynamics control and simulation of space mechanism

     Professor at Beijing Institute of Spacecraft System Engineering. His main research interest is spacecraft overall design

     Ph. D., professor at Beijing Institute of Spacecraft System Engineering. His main research interest is spacecraft system development

     Ph. D., professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers spacecraft multi-body dynamics and control, spacecraft system simulation technology

    Corresponding author: WEI Cheng  Ph. D., associate professor at the School of Astronautics, Harbin Institute of Technology. His research interest covers dynamics, control and system simulation technology of space flexible multibody system. Corresponding author of this paper
  • 摘要: 空间充气展开绳网系统是依靠充气梁展开绳网进行目标捕获的航天器系统,具有更好的稳定性和可操控性.然而由于充气梁和绳网的大柔性变形以及捕获失稳自旋目标后的未知碰撞,使得捕获后的航天器姿态稳定控制困难.本文主要基于自抗扰控制解决了空间充气展开绳网系统捕获目标后的姿态稳定和消旋难题.首先,基于理想薄膜充压失效理论和绝对节点坐标方法建立充气展开绳网系统动力学模型,而后设计了航天器姿态稳定自抗扰控制器,用于实时估计并补偿系统捕获过程中未知惯量目标与捕获机构的碰撞干扰.仿真结果表明,动力学模型能够模拟捕获过程中充气梁的屈曲失效及碰撞特性,自抗扰控制器能够有效抑制碰撞带来的干扰,实现空间充气展开绳网系统捕获后的高精度姿态稳定控制,同时能够在有限时间内对自旋目标实现消旋.
    1)  本文责任编委 许斌
  • 图  1  空间充气展开绳网系统任务流程

    Fig.  1  The workflow of SINCS

    图  2  参考坐标系

    Fig.  2  Reference frames

    图  3  简化充气梁

    Fig.  3  Equivalent inflatable boom

    图  4  等效刚度-弯矩

    Fig.  4  Equivalent stiffness-moment

    图  5  尺寸与包络

    Fig.  5  Size and envelope

    图  6  捕获过程

    Fig.  6  Capture process

    图  7  等效刚度变化

    Fig.  7  Change of equivalent stiffness

    图  8  目标碰撞力

    Fig.  8  Collision of target

    图  9  服务航天器位移

    Fig.  9  Displacement of spacecraft

    图  10  控制器框图

    Fig.  10  Controller structure

    图  11  姿态稳定和消旋过程

    Fig.  11  Attitude stabilization and despinning

    图  12  服务航天器姿态对比曲线

    Fig.  12  Attitude curve of spacecraft

    图  13  干扰估计

    Fig.  13  Estimation of disturbance

    图  14  控制力矩

    Fig.  14  Torque of controller

    图  15  目标碰撞力

    Fig.  15  Collision of target

    图  16  目标角速度

    Fig.  16  Angular velocity of target

    表  1  服务航天器和捕获目标参数

    Table  1  Parameters of spacecraft and target

    Name Value
    Rotational inertia of spacecraft
    (kg·m2)
    diag{900, 800, 1 000}
    Size of spacecraft (m) 2.5×2.5×4
    Size of capture mechanism (m) ${l_d} = 0.4, {l_u} = 4, h = 4$
    Rotational inertia of target ($\rm {kg\cdot{m^2}}$) diag{500, 500, 700}
    Size of target (m) 1.3×1.3×1.0
    下载: 导出CSV

    表  2  绳网和充气梁参数

    Table  2  Parameters of net and inflatable boom

    Name Nets Inflatable booms
    Diameter (m) 0.006 0.1
    Density ($\rm {kg/{m^2}}$) 1 430 64
    Poisson ratio 0.3 0.3
    Modulus of elasticity (GPa) 12 ${E_1}=0.15, {E_2}=0.075$
    Bending moment ($\rm {N\cdot{m}}$) - ${M_1}=5, {M_2}=10$
    下载: 导出CSV
  • [1] Shan M H, Guo J, Gill E. Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 2016, 80:18-32 doi: 10.1016/j.paerosci.2015.11.001
    [2] Botta E M, Sharf I, Misra A K. Contact dynamics modeling and simulation of tether nets for space-debris capture. Journal of Guidance, Control, and Dynamics, 2017, 40(1):110-123 doi: 10.2514/1.G000677
    [3] Zhao Y K, Huang P F, Zhang F, Meng Z J. Contact dynamics and control for tethered space net robot. IEEE Transactions on Aerospace and Electronic Systems, 2018:1-1
    [4] Shan M H, Guo J, Gill E. Deployment dynamics of tethered-net for space debris removal. Acta Astronautica, 2017, 132:293-302 doi: 10.1016/j.actaastro.2017.01.001
    [5] Medina A, Cercos L, Stefanescu R M, Benvenuto R, Pesce V, Marcon M. Validation results of satellite mock-up capturing experiment using nets. Acta Astronautica, 2017, 134:314-332 doi: 10.1016/j.actaastro.2017.02.019
    [6] Zhang F, Huang P F, Meng Z J. Dynamics analysis and controller design for maneuverable tethered space net robot. Journal of Guidance, Control, and Dynamics, 2017, 40(11):2828-2843 doi: 10.2514/1.G002656
    [7] Forshaw J L, Aglietti G S, Salmon T, Retat I, Roe M, Roe M. Final payload test results for the RemoveDebris active debris removal mission. Acta Astronautica, 2017, 138:326-342 doi: 10.1016/j.actaastro.2017.06.003
    [8] Schenk M, Viquerat A D, Seffen K A, Guest S D, Roe M, Burges C. Review of inflatable booms for deployable space structures:packing and rigidization. Journal of Spacecraft and Rockets, 2014, 51(3):762-778 doi: 10.2514/1.A32598
    [9] 陈帅, 李斌, 杨智春.薄膜充气结构承弯性能的理论分析方法.机械强度, 2011, 33(3):403-410 http://d.old.wanfangdata.com.cn/Periodical/jxqd201103017

    Chen Shuai, Li Bin, Yang Zhi-Chun. Theoretical methods of bending characteristics analysis of membarne inflatable structures. Journal of Mechanical Strength, 2011, 33(3):403-410 http://d.old.wanfangdata.com.cn/Periodical/jxqd201103017
    [10] Ceruti A, Pettenuzzo S, Tuveri M. Conceptual design and preliminarily structural analysis of inflatable basket for an asteroid capturing satellite. Strojniki Vestnik——Journal of Mechanical Engineering, 2015, 61(5):341-351 doi: 10.5545/sv-jme
    [11] Roychoudhury R, Bandyopadhyay S, Paul K. Junk hunter: autonomous rendezvous, capture, and de-orbit of orbital debris. In: Proceedings of the AIAA SPACE 2011 Conference and Exposition. Long Beach, USA: 2011. 7292
    [12] 金辉宇, 刘丽丽, 兰维瑶.二阶系统线性自抗扰控制的稳定性条件.自动化学报, 2018, 44(9):1725-1728 http://www.aas.net.cn/CN/abstract/abstract19354.shtml

    Jin Hui-Yu, Liu Li-Li, Lan Wei-Yao. On stability condition of linear active disturbance rejection control for second-order systems. Acta Automatica Sinica, 2018, 44(9):1725-1728 http://www.aas.net.cn/CN/abstract/abstract19354.shtml
    [13] Gao C, Yuan Jian P, Zhao Y K. ADRC for spacecraft attitude and position synchronization in libration point orbits. Acta Astronautica, 2018, 145:238-249 doi: 10.1016/j.actaastro.2018.01.039
    [14] 田嘉懿, 张士峰, 刘龙斌.多星发射上面级主动抗扰姿态控制技术研究.自动化学报, 2018, 44(2):228-239 http://www.aas.net.cn/CN/abstract/abstract19218.shtml

    Tian Jia-Yi, Zhang Shi-Feng, Liu Long-Bin. Study on active disturbance reject attitude control technology of multi-satellite upper stage. Acta Automatica Sinica, 2018, 44(2):228-239 http://www.aas.net.cn/CN/abstract/abstract19218.shtml
    [15] Zhang D Y, Wu Q H, Yao X L, Jiao L L. Active disturb-ance rejection control for looper tension of stain-less steel strip processing line. Control Engi-neering and Applied Informatics, 2018, 20(4):60-68
    [16] 程赟, 陈增强, 孙明玮, 孙青林.多变量逆解耦自抗扰控制及其在精馏塔过程中的应用.自动化学报, 2017, 43(6):1080-1088 http://www.aas.net.cn/CN/abstract/abstract19083.shtml

    Cheng Yun, Chen Zeng-Qiang, Chen Ming-Wei, Sun Qing-Lin. Multivariable inverted decoupling active disturbance rejection control and its application to a distillation column process. Acta Automatica Sinica, 2017, 43(6):1080-1088 http://www.aas.net.cn/CN/abstract/abstract19083.shtml
    [17] Gerstmayr J, A. Shabana A. Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dynamics, 2006, 45:109-130 doi: 10.1007/s11071-006-1856-1
    [18] Comer R L, Levy S. Deflections of an inflated circular-cylindrical cantilever beam. AIAA journal, 1963, 1(7):1652-1655 doi: 10.2514/3.1873
    [19] 王长国, 杜星文, 赫晓东.充气薄膜管的弯皱行为分析.工程力学, 2009, 26(2):210-215 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200902034

    Wang Chang-Guo, Du Xing-Wen, He Xiao-Dong. Bending-wrinkling benavior analysis. Engineering Mechanics, 2009, 26(2):210-215 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200902034
    [20] Mbdyn Software and Documentation[Online], available: http://www.rapidyn.cn, December 30, 2018
    [21] Gao Z Q. Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the 2003 American Control Conference. Denver, USA: IEEE, 2003. 4989-4996
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1701
  • HTML全文浏览量:  283
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 录用日期:  2019-04-23
  • 刊出日期:  2019-09-20

目录

    /

    返回文章
    返回