2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于部分三阶邻居信息的一致性算法

严志强 葛磊 张跃跃 窦磊

严志强, 葛磊, 张跃跃, 窦磊. 基于部分三阶邻居信息的一致性算法. 自动化学报, 2021, 47(9): 2285−2291 doi: 10.16383/j.aas.c180826
引用本文: 严志强, 葛磊, 张跃跃, 窦磊. 基于部分三阶邻居信息的一致性算法. 自动化学报, 2021, 47(9): 2285−2291 doi: 10.16383/j.aas.c180826
Yan Zhi-Qiang, Ge Lei, Zhang Yue-Yue, Dou Lei. A consensus algorithm based on partial third-order neighbors' information. Acta Automatica Sinica, 2021, 47(9): 2285−2291 doi: 10.16383/j.aas.c180826
Citation: Yan Zhi-Qiang, Ge Lei, Zhang Yue-Yue, Dou Lei. A consensus algorithm based on partial third-order neighbors' information. Acta Automatica Sinica, 2021, 47(9): 2285−2291 doi: 10.16383/j.aas.c180826

基于部分三阶邻居信息的一致性算法

doi: 10.16383/j.aas.c180826
详细信息
    作者简介:

    严志强 南京理工大学硕士研究生.主要研究方向为图像处理, 人工智能. E-mail: yanzq@njust.edu.cn

    葛磊  南京理工大学硕士研究生.主要研究方向为嵌入式开发, 人工智能. E-mail: gl_njust@njust.edu.cn

    张跃跃  南京理工大学硕士研究生.主要研究方向为嵌远程网络控制, 人工智能. E-mail: zyy13142021@163.com

    通讯作者:

    窦磊  南京理工大学研究员.主要研究方向为导航, 制导与控制, 人工智能. 本文通信作者. E-mail: douleijs@163.com

A Consensus Algorithm Based on Partial Third-order Neighbors' Information

More Information
    Author Bio:

    YAN Zhi-Qiang  Master student at Nanjing University of Science and Technology. His research interest covers image processing and artificial intelligence

    GE Lei  Master student at Nanjing University of Science and Technology. His research interest covers embedded development and artificial intelligence

    ZHANG Yue-Yue  Master student at Nanjing University of Science and Technology. His research interest covers control of remote network and artificial intelligence

    Corresponding author: DOU Lei  Professor at Nanjing University of Science and Technology. His research interest covers guidance, navigation and control, and artificial intelligence. Corresponding author of this paper
  • 摘要: 针对多智能体一致性算法中的通信问题, 提出了一种近邻原则, 即利用部分二阶和部分三阶邻居信息, 在固定无向连通拓扑图的基础上, 应用于三阶多智能体系统.通过MATLAB仿真, 将所提出的算法与经典的三阶一致性算法进行比较, 仿真结果表明该算法能够使系统达到一致, 并且提高了系统的收敛速度, 减少了系统通讯量.
    Recommended by Associate Editor ZHU Bing
    1)  本文责任编委 诸兵
  • 图  1  TNI一阶与二阶通信拓扑

    Fig.  1  TNI first-order and second-order communication topology

    图  2  TNI三阶通信拓扑

    Fig.  2  TNI third-order communication topology

    图  3  PTNI部分三阶通信拓扑

    Fig.  3  PTNI part of third-order communication topology

    图  4  PTNI部分二阶通信拓扑

    Fig.  4  PTNI part of second-order communication topology

    图  5  TNI仿真图

    Fig.  5  Simulated diagrams of TNI

    图  6  PTNI仿真图

    Fig.  6  Simulated diagrams of PTNI

    图  7  PPTNI仿真图

    Fig.  7  Simulated diagrams of PPTNI

    表  1  收敛速度达到一致的时间(取值误差为1%)

    Table  1  Times that the convergence speed achieves consensus

    算法 通信线路数量 最小时间(s) 最大时间(s) 平均时间(s)
    TNI 35 8.504 10.222 9.381
    PTNI 29 8.260 10.015 9.1375
    PPTNI 24 8.152 9.959 9.0555
    下载: 导出CSV
  • [1] Kim T H, Sugie T. Cooperative control for targetcapturing task based on a cyclic pursuit strategy. Automatica, 2007, 43(8): 1426-1431 doi: 10.1016/j.automatica.2007.01.018
    [2] Yang F, Liu S R, Liu F. Cooperative transport strategy for formation control of multiple mo-bile robots. Journal of Zhejiang University——Science C (Computers and Electronics), 2010, 11(12): 931-938 doi: 10.1631/jzus.C1000136
    [3] Fiedler M. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 1973, 23(98): 298-305
    [4] 佘守宪, 赵雁. 加加速度(加速度的时间变化率)——冲击、乘座舒适性、缓和曲线. 物理与工程, 2001, 11(3): 7-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GKWL200103001.htm

    She Shou-Xian, Zhao Yan. Jerk (the time rate of change of acceleration)——impact, passenger's comfortability, transition curve. 2001, Physics and Engineering 11(3): 7-12 https://www.cnki.com.cn/Article/CJFDTOTAL-GKWL200103001.htm
    [5] Olfati-Saber R, Murry R M. Consensus problems in networks of agents with switching topology and timedelays. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533 doi: 10.1109/TAC.2004.834113
    [6] Sun Y G, Wang L, Xie G M. Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays. Systems and Control Letters, 2007, 57(2): 175-183
    [7] Lin P, Jia Y M. Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies. Automatica, 2009, 45(9): 2154-2158 doi: 10.1016/j.automatica.2009.05.002
    [8] Yu W W, Chen G R, Cao M. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems. Automatica, 2010, 46(6): 1089-1095 doi: 10.1016/j.automatica.2010.03.006
    [9] 许格升, 黄迟, 翟贵生. 三阶多智能体系统设计编队的充要条件. 济南大学学报(自然科学版), 2019, 33(1): 81-87 https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201901014.htm

    Xu Ge-Sheng, Huang Chi, Zhai Gui-Sheng. Necessary and sufficient condition for designing formation in third-order multi-agent systems. Journal of University of Jinan (Science and Technology), 2019, 33(1): 81-87 https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201901014.htm
    [10] 董滔, 李小丽, 赵大端. 基于事件触发的三阶离散多智能体系统一致性分析. 自动化学报, 2019, 45(7): 1366-1372 doi: 10.16383/j.aas.2017.c170406

    Dong Tao, Li Xiao-Li, Zhao Da-Duan. Event-triggered consensus of third-order discrete-time multi-agent systems. Acta Automatica Sinica, 2019, 45(7): 1366-1372 doi: 10.16383/j.aas.2017.c170406
    [11] Huang C, Zhai G S, Xu G S. Necessary and sufficient conditions for consensus in third order multi-agent systems. IEEE/CAA Journal of Automatica Sinica, 2018, 5(6): 1044-1053 doi: 10.1109/JAS.2018.7511222
    [12] Liu J, An B R, Wu H. Consensus of third-order multi-agent systems with communication delay. In: Proceedings of the 30th China Conference on Control and Decision. Shenyang, China: IEEE, 2018. 1428-1432
    [13] Wu H, An B R, Song Y H. Consensus of third-order multi-agent systems with fixed topology and input delay. In: Proceedings of the 30th China Conference on Control and Decision. Shenyang, China: IEEE, 2018. 3879-3883
    [14] Ren W, Moore K L. High-order and model reference consensus algorithms in cooperative control of multivehicle systems. Journal of Dynamic Systems Measurement and Control, 2007, 129(5): 678-688 doi: 10.1115/1.2764508
    [15] Zhu J D, Yuan L J. Consensus of high-order multi-agents systems with switching topologies. Linear Algebra and Its Appications, 2014, 443(15): 105-119
    [16] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Transactions on Automatic Control, 2005, 50(5): 655-661 doi: 10.1109/TAC.2005.846556
    [17] 范弘毅. 复常系数线性系统稳定性的新判据. 沈阳建筑工程学院学报, 1997, 13(1): 96-100 https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ701.021.htm

    Fan Hong-Yi. New stability criterion for linear systems with constant complex coefficients. Journal of Shenyang Architecture and Civil Engineering Institute, 1997, 13(1): 96-100 https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ701.021.htm
    [18] Horn R A, Johnson C R. Topics in Matrix Analysis, Cambridge University Press, UK, 1991.
    [19] Wei R, Beard R W, Mclain T W. Coordination Variables and Consensus Building in Multiple Vehicle Systems, Berlin, Heidelberg, Springer, 2005.
    [20] 曹燕粉. 三阶多智能体系统一致性研究[硕士学位论文]. 济南大学, 中国, 2016.

    Cao Yan-Fen. Research on Consistency of Third-order Multi-agent System. [Master thesis], University of Jinan, China, 2016.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  683
  • HTML全文浏览量:  120
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-11
  • 录用日期:  2019-02-27
  • 刊出日期:  2021-10-13

目录

    /

    返回文章
    返回