2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于扰动观测器的AUVs固定时间编队控制

高振宇 郭戈

高振宇, 郭戈. 基于扰动观测器的AUVs固定时间编队控制. 自动化学报, 2019, 45(6): 1094-1102. doi: 10.16383/j.aas.c180809
引用本文: 高振宇, 郭戈. 基于扰动观测器的AUVs固定时间编队控制. 自动化学报, 2019, 45(6): 1094-1102. doi: 10.16383/j.aas.c180809
GAO Zhen-Yu, GUO Ge. Fixed-time Formation Control of AUVs Based on a Disturbance Observer. ACTA AUTOMATICA SINICA, 2019, 45(6): 1094-1102. doi: 10.16383/j.aas.c180809
Citation: GAO Zhen-Yu, GUO Ge. Fixed-time Formation Control of AUVs Based on a Disturbance Observer. ACTA AUTOMATICA SINICA, 2019, 45(6): 1094-1102. doi: 10.16383/j.aas.c180809

基于扰动观测器的AUVs固定时间编队控制

doi: 10.16383/j.aas.c180809
基金项目: 

国家自然科学基金 61573077

国家自然科学基金 U1808205

详细信息
    作者简介:

    高振宇  大连海事大学博士研究生.2013年获得山东理工大学电气与电子工程学院自动化专业学士学位.主要研究方向为水面及水下航行器编队控制.E-mail:18840839109@163.com

    通讯作者:

    郭戈  东北大学特聘教授, 大连海事大学博导.1998年获得东北大学控制理论与控制工程专业博士学位.主要研究方向为智能交通系统, 共享出行系统, 信息物理融合系统.本文通信作者.E-mail:geguo@yeah.net

Fixed-time Formation Control of AUVs Based on a Disturbance Observer

Funds: 

National Natural Science Foundation of China 61573077

National Natural Science Foundation of China U1808205

More Information
    Author Bio:

    Ph. D. candidate in the Department of Automation, Dalian Maritime University. He received his bachelor degree in automation from School of Electrical and Electronic Engineering, Shandong University of Technology in 2013. His research interest covers formation control of surface and underwater vehicles

    Corresponding author: GUO Ge Professor at Northeastern University and doctoral supervisor of Dalian Maritime University. He received his Ph. D. degree in control theory and control engineering from Northeastern University in 1998. His research interest covers intelligent transportation systems, mobility on-demand systems, cyber-physical systems. Corresponding author of this paper
  • 摘要: 考虑含有模型参数不确定及未知海洋扰动的多AUVs协同编队问题,本文提出一种新的控制方法,该方法可保证编队在固定时间内实现.首先,将模型参数不确定及海洋扰动看作复合扰动,设计扰动观测器,实现固定时间内对扰动的精确估计.基于扰动观测器,指令滤波技术、固定时间理论及虚拟轨迹概念,设计编队控制律,实现编队目标,并保证闭环系统中的所有信号是全局固定时间稳定的.最后通过两艘AUV的编队仿真验证了所提算法的有效性.
    1)  本文责任编委 刘艳军
  • 图  1  AUV坐标系示意图

    Fig.  1  The diagram of earth-fixed frame and bady-fixed frame

    图  2  领航–跟随多AUVs编队示意图

    Fig.  2  The diagram of leader-follower formation of AUVs

    图  3  编队跟踪控制示意图

    Fig.  3  The diagram of formation control

    图  4  领航AUV轨迹、虚拟轨迹及跟随AUV轨迹

    Fig.  4  Trajectory of leader, virtual trajectory and trajectory of follower

    图  5  跟随AUV轨迹与虚拟轨迹跟踪误差$z_1$

    Fig.  5  Tracking error $z_1$ between follower trajectory and virtual trajectory

    图  6  跟随AUV运动学控制器

    Fig.  6  Kinematic controller $\alpha_{\upsilon_f}$ of follower

    图  7  跟随AUV动力学控制器$\tau_f$

    Fig.  7  Dynamic controller $\tau_f$ of follower

    图  8  跟随AUV速度跟踪误差$z_2$

    Fig.  8  Velocity tracking error$z_2$ of follower

    图  9  复合干扰$\varDelta$及其观测值$\hat{\varDelta}$

    Fig.  9  Compound disturbance $\varDelta$ and its estimate $\hat{\varDelta}$

    图  10  复合扰动$\varDelta$及其观测值$\hat{\varDelta}$

    Fig.  10  Compound disturbance $\varDelta$ and its estimate $\hat{\varDelta}$

    图  11  领航AUV轨迹、虚拟轨迹及不同初始状态下跟随AUV轨迹

    Fig.  11  Trajectory of leader, virtual trajectory and trajectory of follower under different initial states

    图  12  不同初始状态下跟随AUV轨迹与虚拟轨迹位置及航向跟踪误差$z_1$

    Fig.  12  Tracking error $z_1$ between follower trajectory and virtual trajectory with different initial states

    表  1  AUV模型参数

    Table  1  Parameters of AUV

    SymbolValueUnit
    $m$185kg
    $X_u$$-$70kg/s
    $Y_v$$-$100kg/s
    $N_r$$-$50$\text{kgm}^2$
    $X_{\dot{u}}$$-$30kg
    $Y_{\dot{v}}$$-$80kg
    $N_{\dot{r}}$$-$30$\text{kgm}^2$
    $X_{u|u|}$$-$100kg/m
    $Y_{|v|v}$$-$200kg/m
    $N_{|r|r}$$-$100$\text{kgm}^2$
    $I_z$50$\text{kgm}^2$
    下载: 导出CSV
  • [1] 王宏健, 陈子印, 贾鹤鸣, 李娟, 陈兴华.基于滤波反步法的欠驱动AUV三维路径跟踪控制.自动化学报, 2015, 41(3): 631-645 http://www.aas.net.cn/CN/abstract/abstract18640.shtml

    Wang Hong-Jian, Chen Zi-Yin, Jia He-Ming, Li Juan, Chen Xing-Hua. Three-dimensional path-following control of underactuated autonomous underwater vehicle with command filtered backstepping. Acta Automatica Sinica, 2015, 41(3): 631-645 http://www.aas.net.cn/CN/abstract/abstract18640.shtml
    [2] Peng Z, Wang D, Wang H, Wang W. Distributed coordinated tracking of multiple autonomous underwater vehicles. Nonlinear Dynamics, 2014, 78(2): 1261-1276 doi: 10.1007/s11071-014-1513-z
    [3] Ali F, Kim E K, Kim Y G. Type-2 fuzzy ontology-based semantic knowledge for collision avoidance of autonomous underwater vehicles. Information Sciences, 2015, 295: 441-464 doi: 10.1016/j.ins.2014.10.013
    [4] Rizzini D L, Kallasi F, Aleotti J, Oleari F, Caselli S. Integration of a stereo vision system into an autonomous underwater vehicle for pipe manipulation tasks. Computers & Electrical Engineering, 2017, 58: 560-571 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c20d9bd1b72535e40b984ab3ac93b6e1
    [5] Elhaki O, Shojaei K. Neural network-based target tracking control of underactuated autonomous underwater vehicles with a prescribed performance. Ocean Engineering, 2018, 167: 239-256 doi: 10.1016/j.oceaneng.2018.08.007
    [6] Sun P, Boukerche A. Modelling and analysis of coverage degree and target detection for autonomous underwater vehicle-based system. IEEE Transactions on Vehicular Technology, 2018, 67(10): 9959-9971 doi: 10.1109/TVT.2018.2864141
    [7] Hu Z, Ma C, Zhang L. Formation control of impulsive networked autonomous underwater vehicles under fixed and switching topologies. Neurocomputing, 2015, 147: 291-298 doi: 10.1016/j.neucom.2014.06.060
    [8] Gao Z, Guo G. Adaptive formation control of autonomous underwater vehicles with model uncertainties. International Journal of Adaptive Control and Signal Processing, 2018, 32(7): 1067-1080 doi: 10.1002/acs.v32.7
    [9] Gao Z, Guo G. Fixed-time leader-follower formation control of autonomous underwater vehicles with event-triggered intermittent communications. IEEE Access, 2018, 6: 27902-27911 doi: 10.1109/ACCESS.2018.2838121
    [10] Park B S. Adaptive formation control of underactuated autonomous underwater vehicles. Ocean Engineering, 2015, 96: 1-7 doi: 10.1016/j.oceaneng.2014.12.016
    [11] Shojaei, K. Neural network formation control of underactuated autonomous underwater vehicles with saturating actuators. Neurocomputing, 2016, 194: 372-384 doi: 10.1016/j.neucom.2016.02.041
    [12] 李乐强, 王银涛.模型参数不确定条件下的自主水下航行器(AUV)自适应编队控制研究.舰船电子工程, 2015, 1: 154-157 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jcdzgc201501040

    Li Le-Qiang, Wang Yin-Tao. Adaptive formation control of AUVs in the presence of parametric model uncertainty. Ship Electronic Engineering, 2015, 1: 154-157 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jcdzgc201501040
    [13] Yang Y, Du J, Liu H, Guo C, Abraham A. A trajectory tracking robust controller of surface vessels with disturbance uncertainties. IEEE Transactions on Control Systems Technology, 2014, 22(4): 1511-1518 doi: 10.1109/TCST.2013.2281936
    [14] Wang N, Qian C, Sun J C, Liu Y C. Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1454-1462 doi: 10.1109/TCST.2015.2496585
    [15] 张国庆, 黄晨峰, 吴晓雪, 张显库.考虑伺服系统增益不确定的船舶动力定位自适应有限时间控制.自动化学报, 2018, 44(10): 1907-1912 http://www.aas.net.cn/CN/abstract/abstract19372.shtml

    Zhang Guo-Qing, Huang Chen-Feng, Wu Xiao-Xue, Zhang Xian-Ku. Adaptive finite time dynamic positioning control of fully-actuated ship with servo system uncertainties. Acta Automatica Sinica, 2018, 44(10): 1907-1912 http://www.aas.net.cn/CN/abstract/abstract19372.shtml
    [16] Ye H, Li M, Yang C, Gui W. Finite-time stabilization of the double integrator subject to input saturation and input delay. IEEE/CAA Journal of Automatica Sinica, 2018, 5(5): 1017-1024 doi: 10.1109/JAS.2018.7511177
    [17] Tian B, Zuo Z, Yan X, Wang H. A fixed-time output feedback control scheme for double integrator systems. Automatica, 2017, 80: 17-24 doi: 10.1016/j.automatica.2017.01.007
    [18] Polyakov A. Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Transactions on Automatic Control, 2012, 57(8): 2106-2110 doi: 10.1109/TAC.2011.2179869
    [19] Farrell J A, Polycarpou M, Sharma M. Command filtered backstepping. IEEE Transactions on Automatic Control, 2009, 54(6): 1391-1395 doi: 10.1109/TAC.2009.2015562
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  2661
  • HTML全文浏览量:  397
  • PDF下载量:  665
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-05
  • 录用日期:  2019-02-15
  • 刊出日期:  2019-06-20

目录

    /

    返回文章
    返回