-
摘要:
针对一类带有多源异质干扰和输入饱和的随机系统, 研究了其精细抗干扰控制问题. 系统中的多源异质干扰同时包含白噪声,
\begin{document}$H_{2}$\end{document} 范数有界干扰以及外源系统生成的带有状态与干扰耦合的部分信息已知干扰. 针对部分信息已知的干扰, 构建随机干扰观测器对其进行估计. 基于干扰估计, 结合
$H_{\infty}$ 控制方法, 提出基于干扰观测器的精细抗干扰控制策略, 从而实现高精度抗干扰控制. 最后, 仿真结果验证了所提策略的正确性与有效性.
Abstract:The problem of elegant anti-disturbance control are discussed for a class of stochastic systems with multiple heterogeneous disturbances and input saturation. The multiple heterogeneous disturbances simultaneously include white noise,
\begin{document}$H_{2}$\end{document} -norm bounded disturbance and the disturbance with partially-known information which with the coupling of the disturbance and state. To estimate the disturbance with partially-known information, a stochastic disturbance observer (SDO) is constructed. Based on the SDO, a disturbance observer-based elegant anti-disturbance control scheme is proposed by combining disturbance observer based control (DOBC) with
$H_{\infty}$ control, such that higher control accuracy can be achieved. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.
-
[1] Wei X J, Wu Z J, Hamid R K. Disturbance observerbased disturbance attenuation control for a class of stochastic systems. Automatica, 2016, 63: 21−25 doi: 10.1016/j.automatica.2015.10.019 [2] 魏新江, 孙式香, 张慧凤. 随机多源干扰系统的复合DOBC和容错 控制. 控制与决策, 2019, 34(3): 668−672Wei Xin-Jiang, Sun Shi-Xiang, Zhang Hui-Feng. Faulttolerant control based on disturbance observer for stochastic systems with multiple disturbances. Control and Decision, 2019, 34(3): 668−672 [3] Li Y K, Chen M, Cai L, Wu Q X. Resilient control based on disturbance observer for nonlinear singular stochastic hybrid system with partly unknown Markovian jump parameters. Journal of the Franklin Institute, 2018, 355(5): 2243−2265 doi: 10.1016/j.jfranklin.2017.12.038 [4] Wei X J, Sun S X. Elegant anti-disturbance control for discrete-time stochastic systems with nonlinearity and multiple disturbances. International Journal of Control, 2017, 91(3): 706−714 [5] Wei X J, Zhang H F, Sun S X, Hamid R K. Composite hierarchical anti-disturbance control for a class of discretetime stochastic systems. International Journal of Robust and Nonlinear Control, 2018, 28(9): 3292−3302 doi: 10.1002/rnc.4080 [6] Zong G D, Li Y, Sun H B. Composite anti-disturbance resilient control for Markovian jump nonlinear systems with general uncertain transition rate. Science China Information Sciences, 2019, 62(2): 101−118 [7] 司文杰, 董训德, 王聪. 输入饱和的一类切换系统神经网络跟踪控 制. 自动化学报, 2017, 43(8): 1383−1392Si Wen-Jie, Dong Xun-De, Wang Cong. Adaptive neural tracking control design for a class of uncertain switched nonlinear systems with input saturation. Acta Automatica Sinica, 2017, 43(8): 1383−1392 [8] 林安辉, 蒋德松, 曾建平. 具有输入饱和的欠驱动船舶编队控制. 自 动化学报, 2018, 44(8): 1496−1504Lin An-Hui, Jiang De-Song, Zeng Jian-Ping. Underactuated ship formation control with input saturation. Acta Automatica Sinica, 2018, 44(8): 1496−1504 [9] 王萌, 孙雷, 尹伟, 等. 面向交互应用的串联弹性驱动器力矩控制方 法. 自动化学报, 2017, 43(8): 1319−1328Wang Meng, Sun Lei, Yin Wei, et al. Series elastic actuator torque control approach for interaction application. Acta Automatica Sinica, 2017, 43(8): 1319−1328 [10] Sui S, Tong S, Li Y. Observer-based fuzzy adaptive prescribed performance tracking control for nonlinear stochastic systems with input saturation. Neurocomputing, 2015, 158: 100−108 doi: 10.1016/j.neucom.2015.01.063 [11] Si W, Dong X, Si W, et al. Adaptive neural control for MIMO stochastic nonlinear purefeedback systems with input saturation and full-state constraints. Neurocomputing, 2018, 275(31):298−307 [12] Dong L W, Wei X J, Zhang H F. Anti-disturbance control based on nonlinear disturbance observer for a class of stochastic systems. Transactions of the Institute of Measurement and Control, 2019, 41(6): 1665−1675 doi: 10.1177/0142331218787608 [13] Bernt K O. Stochastic Differential Equations: An Introduction with Applications, Berlin: Springer-Verlag, 2002. [14] Kozin F. A survey of stability of stochastic systems. Automatica, 1969, 5(1): 95−112 doi: 10.1016/0005-1098(69)90060-0 [15] Mao X R, Yuan C G. Stochastic Differential Equations with Markovian Switching. London: Imperial College Press, 2006, 157−158