2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合MRF能量和模糊速度的乳腺癌图像分割方法

冯宝 陈业航 刘壮盛 李智 宋嵘 龙晚生

冯宝, 陈业航, 刘壮盛, 李智, 宋嵘, 龙晚生. 结合MRF能量和模糊速度的乳腺癌图像分割方法. 自动化学报, 2020, 46(6): 1188−1199 doi: 10.16383/j.aas.c180759
引用本文: 冯宝, 陈业航, 刘壮盛, 李智, 宋嵘, 龙晚生. 结合MRF能量和模糊速度的乳腺癌图像分割方法. 自动化学报, 2020, 46(6): 1188−1199 doi: 10.16383/j.aas.c180759
Feng Bao, Chen Ye-Hang, Liu Zhuang-Sheng, Li Zhi, Song Rong, Long Wan-Sheng. Segmentation of breast cancer on DCE-MRI images with MRF energy and fuzzy speed function. Acta Automatica Sinica, 2020, 46(6): 1188−1199 doi: 10.16383/j.aas.c180759
Citation: Feng Bao, Chen Ye-Hang, Liu Zhuang-Sheng, Li Zhi, Song Rong, Long Wan-Sheng. Segmentation of breast cancer on DCE-MRI images with MRF energy and fuzzy speed function. Acta Automatica Sinica, 2020, 46(6): 1188−1199 doi: 10.16383/j.aas.c180759

结合MRF能量和模糊速度的乳腺癌图像分割方法

doi: 10.16383/j.aas.c180759
基金项目: 广西高等学校千名中青年骨干教师培育计划项目基金(2018GXQGFB160)资助
详细信息
    作者简介:

    冯宝:2014年获华南理工大学博士学位. 现为中山大学博士后. 主要研究方向为机器学习, 模式识别及其在生物医学信号处理中的应用. E-mail: fengbao1986.love@163.com

    陈业航:桂林电子科技大学硕士研究生. 主要研究方向为生物医学信号处理与模式识别. E-mail: cyh93yl@163.com

    刘壮盛:广东省江门市中心医院副主任医师. 2010年获中山大学影像医学与核医学硕士学位. 主要研究方向为乳腺及骨骼肌肉系统影像诊断. E-mail: zhuangshengliu@126.com

    李智:2003年获电子科技大学博士学位. 桂林航天工业学院教授. 主要研究方向为智能仪器系统, 现代测试理论与技术. E-mail: cclizhi@guet.edu.cn

    宋嵘:2006年获中国香港理工大学生物医学工程博士学位. 现为中山大学生物医学工程学院教授. 主要研究方向为肌肉骨骼建模, 生物医学信号处理, 人体运动分析和机器人辅助中风康复. E-mail: songrong@mail.sysu.edu.cn

    龙晚生:广东省江门市中心医院主任医师. 1990年获四川大学放射诊断硕士学位. 主要研究方向为腹部影像鉴别诊断. 本文通信作者.E-mail: jmlws2@163.com

Segmentation of Breast Cancer on DCE-MRI Images With MRF Energy and Fuzzy Speed Function

Funds: Supported by Natural Science Foundation of Guangxi Zhuang Autonomous Region (2016GXNSFBA380160)
  • 摘要: 乳腺癌灶的精确分割是乳腺癌计算机辅助诊断的重要前提. 在动态对比增强核磁共振成像(Dynamic contrast-enhanced magnetic resonance imaging, DCE-MRI)的图像中, 乳腺癌灶具有对比度低、边界模糊及亮度不均匀等特点, 传统的活动轮廓模型方法很难取得准确的分割结果. 本文提出一种结合马尔科夫随机场(Markov random field, MRF)能量和模糊速度函数的活动轮廓模型的半自动分割方法来完成乳腺癌灶的分割, 相对于专业医生的手动分割, 本文方法具有速度快、可重复性高和分割结果相对客观等优点. 首先, 计算乳腺DCE-MRI图像的MRF能量, 以增强目标区域与周围背景的差异. 其次, 在能量图中计算每个像素点的后验概率, 建立基于后验概率驱动的活动轮廓模型区域项. 最后, 结合Gabor纹理特征、DCE-MRI时域特征和灰度特征构建模糊速度函数, 将其引入到活动轮廓模型中作为边缘检测项. 在乳腺癌灶边界处, 该速度函数趋向于零, 活动轮廓曲线停止演变, 完成对乳腺癌灶的分割. 实验结果表明, 所提出的方法有助于乳腺癌灶在DCE-MRI图像中的准确分割.
  • 图  1  本文分割算法流程图

    Fig.  1  The flowchart of segmentation algorithm in this paper

    图  2  乳腺DCE-MRI图像的MRF能量和后验概率

    Fig.  2  MRF energy and posterior probability of breast DCE-MRI image

    图  3  一个乳腺图像的纹理分析

    Fig.  3  Texture analysis of a breast image

    图  4  DCE-MRI时域特征分析

    Fig.  4  Time domain characteristic analysis of DCE-MRI

    图  5  模糊速度函数

    Fig.  5  Fuzzy speed function

    图  6  肿块形乳腺癌灶分割结果((a)医生手动分割; (b)结合二值水平集和形态学的分割方法; (c)基于边界的ACM; (d)基于局部高斯能量的ACM; (e)基于区域的ACM; (f)基于MRF的区域ACM; (g) U-net; (h) V-net; (i)本文方法)

    Fig.  6  Tumor-shaped breast lesion segmentation results ((a) Expert manual segmentation; (b) Segmentation method based on binary level set and morphological operation; (c) Edge-based ACM; (d) ACM based on local Gaussian energy; (e) Region-based ACM; (f) Regional ACM based on MRF; (g) U-net; (h) V-net; (i) The method in this paper)

    图  7  非肿块形乳腺癌灶分割结果((a)医生手动分割; (b)结合二值水平集和形态学的分割方法; (c)基于边界的ACM; (d)基于局部高斯能量的ACM; (e)基于区域的ACM; (f)基于MRF的区域ACM; (g) U-net; (h) V-net; (i)本文方法)

    Fig.  7  Non tumor-shaped breast lesion segmentation results ((a) Expert manual segmentation; (b) Segmentation method based on binary level set and morphological operation; (c) Edge-based ACM; (d) ACM based on local gaussian energy; (e) Region-based ACM; (f) Regional ACM based on MRF; (g) U-net; (h) V-net; (i) The method in this paper)

    表  1  V-net和U-net训练集结果

    Table  1  Results of V-net and U-net in training sets

    分割
    算法
    $R_{\rm{TP}}$
    (均值±标准差)
    $R_{\rm{FP}}$
    (均值±标准差)
    $D_{\rm{S}}$
    (均值±标准差)
    U-net0.9706±0.11890.6673±0.66620.6252±0.1456
    V-net0.9408±0.06370.0732±0.12870.8836±0.0917
    下载: 导出CSV

    表  2  50个临床样本分割结果

    Table  2  Segmentation results of 50 clinical samples

    分割算法$R_{\rm{TP}}$(均值±标准差)$R_{\rm{FP}}$(均值±标准差)$D_{\rm{S}}$(均值±标准差)
    结合二值水平集和形态学的分割方法0.9759±0.02760.9100±1.61390.6910±0.2537
    基于边界的ACM0.9676±0.05510.6270±0.42380.5146±0.2272
    基于局部高斯能量的ACM0.9548±0.08180.8368±1.02170.6147±0.2040
    基于区域的ACM0.9892±0.01351.0604±1.01930.5857±0.2357
    基于MRF的区域ACM0.8709±0.11780.2018±0.32710.7524±0.1438
    U-net0.9389±0.11560.5988±0.37720.6143±0.1456
    V-net0.8762±0.14080.1131±0.09610.7920±0.1402
    本文方法0.9297±0.04130.0337±0.02220.8996±0.0410
    下载: 导出CSV

    表  3  算法的时间复杂度

    Table  3  Time complexity of the algorithm

    分割算法时间复杂度平均执行时间 (s)
    结合二值水平集和形态学的分割方法${\rm O}(n)$3.3500
    基于边界的ACM${\rm O}(n)$3.2550
    基于局部高斯能量的ACM${\rm O}(n)$3.6790
    基于区域的ACM${\rm O}(n)$1.1188
    基于MRF的区域ACM${\rm O}(n^2)$2.7925
    U-net${\rm O}(n)$1.6102
    V-net${\rm O}(n)$3.3669
    本文方法${\rm O}(n^2)$4.6575
    下载: 导出CSV
  • [1] Fitzmaurice C, Akinyemiju T F, Al Lami F H, Alam T, Alizadeh-Navaei R, Allen C, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncology, 2018, 4(11): 1553−1568 doi: 10.1001/jamaoncol.2018.2706
    [2] Uematsu T, Kasami M, Watanabe J. Is evaluation of the presence of prepectoral edema on T2-weighted with fat-suppression 3 T breast MRI a simple and readily available noninvasive technique for estimation of prognosis in patients with breast cancer? Breast Cancer, 2014, 21(6): 684−692
    [3] Cheon H, Kim H J, Lee S M, Cho S H, Shin K M, Kim G C, et al. Preoperative MRI features associated with lymphovascular invasion in node-negative invasive breast cancer: A propensity-matched analysis. Journal of Magnetic Resonance Imaging, 2017, 46(4): 1037−1044 doi: 10.1002/jmri.25710
    [4] Fasihi M S, Mikhael W B. Overview of current biomedical image segmentation methods. In: Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence. Las Vegas, USA: IEEE, 2016. 803−808
    [5] van Dijk N P, Maute K, Langelaar M, van Keulen F. Level-set methods for structural topology optimization: A review. Structural and Multidisciplinary Optimization, 2013, 48(3): 437−472 doi: 10.1007/s00158-013-0912-y
    [6] 马超, 刘亚淑, 骆功宁, 王宽全. 基于级联随机森林与活动轮廓的3D MR图像分割. 自动化学报, 2019, 45(5): 1004−1014

    Ma Chao, Liu Ya-Shu, Luo Gong-Ning, Wang Kuan-Quan. Combining concatenated random forests and active contour for the 3D MR images segmentation. Acta Automatica Sinica, 2019, 45(5): 1004−1014
    [7] 孙文燕, 董恩清, 曹祝楼, 郑强. 一种基于模糊主动轮廓的鲁棒局部分割方法. 自动化学报, 2017, 43(4): 611−621

    Sun Wen-Yan, Dong En-Qing, Cao Zhu-Lou, Zheng Qiang. A robust local segmentation method based on fuzzy-energy based active contour. Acta Automatica Sinica, 2017, 43(4): 611−621
    [8] Zhang K H, Zhang L, Lam K M, Zhang D. A level set approach to image segmentation with intensity inhomogeneity. IEEE Transactions on Cybernetics, 2016, 46(2): 546−557 doi: 10.1109/TCYB.2015.2409119
    [9] Rouhi R, Jafari M. Classification of benign and malignant breast tumors based on hybrid level set segmentation. Expert Systems with Applications, 2016, 46: 45−59 doi: 10.1016/j.eswa.2015.10.011
    [10] 张旭梅, 范虹, 乔柱. 融合全局和局部信息的水平集乳腺MR图像分割. 计算机应用研究, 2015, 32(1): 307−311 doi: 10.3969/j.issn.1001-3695.2015.01.072

    Zhang Xu-Mei, Fan Hong, Qiao Zhu. Level set method combined global and local information and its application to breast MRI. Application Research of Computers, 2015, 32(1): 307−311 doi: 10.3969/j.issn.1001-3695.2015.01.072
    [11] 虞红伟, 厉力华, 徐伟栋, 刘伟, 张娟, 邵国良. 一种基于水平集的多尺度乳腺肿块分割方法. 仪器仪表学报, 2010, 31(6): 1418−1423

    Yu Hong-Wei, Li Li-Hua, Xu Wei-Dong, Liu Wei, Zhang Juan, Shao Guo-Liang. Multi-scale approach for breast mass segmentation using level set method. Chinese Journal of Scientific Instrument, 2010, 31(6): 1418−1423
    [12] 范虹, 朱艳春, 王芳梅, 张旭梅. 多分辨率水平集算法的乳腺MR图像分割. 物理学报, 2014, 63(11): Article No.118701

    Fan Hong, Zhu Yan-Chun, Wang Fang-Mei, Zhang Xu-Mei. Segmentation of breast MR images based on multiresolution level set algorithm. Acta Physica Sinica, 2014, 63(11): Article No.118701
    [13] Kuo H C, Giger M L, Reiser I, Boone J M, Lindfors K K, Yang K, et al. Level set segmentation of breast masses in contrast-enhanced dedicated breast CT and evaluation of stopping criteria. Journal of Digital Imaging, 2014, 27(2): 237−247 doi: 10.1007/s10278-013-9652-1
    [14] Rodtook A, Makhanov S S. Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. Journal of Visual Communication and Image Representation, 2013, 24(8): 1414−1430 doi: 10.1016/j.jvcir.2013.09.009
    [15] Xie Q Y, Pan X, Zhu H Q. A multiphase level set clustering approach using MRF-based Student's-t mixture model. In: Proceedings of the 8th International Conference on Wireless Communications and Signal Processing. Yangzhou, China: IEEE, 2016. 1−5
    [16] Yang X, Gao X B, Tao D C, Li X L, Li J. An efficient MRF embedded level set method for image segmentation. IEEE Transactions on Image Processing, 2015, 24(1): 9−21 doi: 10.1109/TIP.2014.2372615
    [17] Kallenberg M, Petersen K, Nielsen M, Ng A Y, Diao P F, Igel C, et al. Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Transactions on Medical Imaging, 2016, 35(5): 1322−1331 doi: 10.1109/TMI.2016.2532122
    [18] Rouhi R, Jafari M, Kasaei S, Keshavarzian P. Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Systems with Applications, 2015, 42(3): 990−1002 doi: 10.1016/j.eswa.2014.09.020
    [19] Ashraf A B, Gavenonis S, Daye D, Mies C, Feldman M, Rosen M, et al. A multichannel Markov random field approach for automated segmentation of breast cancer tumor in DCE-MRI data using kinetic observation model. In: Proceedings of the 14th International Conference on Medical Image Computing and Computer-Assisted Intervention. Toronto, Canada: Springer, 2011. 546−553
    [20] Achuthan A, Rajeswari M, Ramachandram D, Aziz M E, Shuaib I L. Wavelet energy-guided level set-based active contour: A segmentation method to segment highly similar regions. Computers in Biology and Medicine, 2010, 40(7): 608−620 doi: 10.1016/j.compbiomed.2010.04.005
    [21] Shahvaran Z, Kazemi K, Helfroush M S, Jafarian N, Noorizadeh N. Variational level set combined with Markov random field modeling for simultaneous intensity non-uniformity correction and segmentation of MR images. Journal of Neuroscience Methods, 2012, 209(2): 280−289 doi: 10.1016/j.jneumeth.2012.06.012
    [22] 宋艳涛, 纪则轩, 孙权森. 基于图像片马尔科夫随机场的脑MR图像分割算法. 自动化学报, 2014, 40(8): 1754−1763

    Song Yan-Tao, Ji Ze-Xuan, Sun Quan-Sen. Brain MR image segmentation algorithm based on Markov random field with image patch. Acta Automatica Sinica, 2014, 40(8): 1754−1763
    [23] Li B, Chen K, Peng G M, Guo Y X, Tian L F, Ou S X, et al. Segmentation of ground glass opacity pulmonary nodules using an integrated active contour model with wavelet energy-based adaptive local energy and posterior probability-based speed function. Materials Express, 2016, 6(4): 317−327 doi: 10.1166/mex.2016.1311
    [24] 张喆, 韩德强, 杨艺. 基于证据马尔可夫随机场模型的图像分割. 控制与决策, 2017, 32(9): 1607−1613

    Zhang Zhe, Han De-Qiang, Yang Yi. Image segmentation based on evidential Markov random field model. Control and Decision, 2017, 32(9): 1607−1613
    [25] Li C M, Kao C Y, Gore J C, Ding Z H. Minimization of region-scalable fitting energy for image segmentation. IEEE Transactions on Image Processing, 2008, 17(10): 1940−1949 doi: 10.1109/TIP.2008.2002304
    [26] Khan S, Hussain M, Aboalsamh H, Mathkour H, Bebis G, Zakariah M. Optimized Gabor features for mass classification in mammography. Applied Soft Computing, 2016, 44: 267−280 doi: 10.1016/j.asoc.2016.04.012
    [27] Kwedlo W. A new random approach for initialization of the multiple restart EM algorithm for Gaussian model-based clustering. Pattern Analysis and Applications, 2015, 18(4): 757−770 doi: 10.1007/s10044-014-0441-3
    [28] 郑强, 董恩清. 一种新的基于二值水平集和形态学的局部分割方法. 电子与信息学报, 2012, 34(2): 375−381

    Zheng Qiang, Dong En-Qing. A new local segmentation method based on binary level set and morphological operation. Journal of Electronics and Information Technology, 2012, 34(2): 375−381
    [29] Xu J, Monaco J P, Madabhushi A. Markov random field driven region-based active contour model (MaRACel): Application to medical image segmentation. In: Proceedings of the 13th International Conference on Medical Image Computing and Computer-Assisted Intervention. Beijing, China: Springer, 2010. 197−204
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  1494
  • HTML全文浏览量:  280
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-14
  • 录用日期:  2019-06-21
  • 网络出版日期:  2020-07-10
  • 刊出日期:  2020-07-10

目录

    /

    返回文章
    返回