2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高斯平滑与模糊函数等高线的雷达辐射源信号分选

侯文太 普运伟 郭媛蒲 马蓝宇

侯文太, 普运伟, 郭媛蒲, 马蓝宇. 基于高斯平滑与模糊函数等高线的雷达辐射源信号分选. 自动化学报, 2021, 47(10): 2484-2493 doi: 10.16383/j.aas.c180739
引用本文: 侯文太, 普运伟, 郭媛蒲, 马蓝宇. 基于高斯平滑与模糊函数等高线的雷达辐射源信号分选. 自动化学报, 2021, 47(10): 2484-2493 doi: 10.16383/j.aas.c180739
Hou Wen-Tai, Pu Yun-Wei, Guo Yuan-Pu, Ma Lan-Yu. A sorting method for radar emitter signals based on the Gaussian smoothing and contour lines of ambiguity function. Acta Automatica Sinica, 2021, 47(10): 2484-2493 doi: 10.16383/j.aas.c180739
Citation: Hou Wen-Tai, Pu Yun-Wei, Guo Yuan-Pu, Ma Lan-Yu. A sorting method for radar emitter signals based on the Gaussian smoothing and contour lines of ambiguity function. Acta Automatica Sinica, 2021, 47(10): 2484-2493 doi: 10.16383/j.aas.c180739

基于高斯平滑与模糊函数等高线的雷达辐射源信号分选

doi: 10.16383/j.aas.c180739
基金项目: 

国家自然科学基金 61561028

详细信息
    作者简介:

    侯文太  昆明理工大学硕士研究生.2016年获得南京航空航天大学学士学位.主要研究方向为智能信号处理, 模式识别. E-mail: vintage_hou@foxmail.com

    普运伟  昆明理工大学教授.2007年获得西南交通大学博士学位.主要研究方向为智能信号处理, 模式识别. 本文通信作者. E-mail: puyunwei@126.com

    郭媛蒲  昆明理工大学硕士研究生.2016年获得南京工程学院学士学位.主要研究方向为智能信号处理, 模式识别. E-mail: guoyuanpu@foxmail.com

    马蓝宇  昆明理工大学硕士研究生. 2016年获得湖北工程学院学士学位.主要研究方向为智能信号处理与模式识别. E-mail: Raveler@foxmail.com

A Sorting Method for Radar Emitter Signals Based on the Gaussian Smoothing and Contour Lines of Ambiguity Function

Funds: 

National Science Foundation of China 61561028

More Information
    Author Bio:

    HOU Wen-Tai  Master student at Kunming University of Science and Technology. He received his bachelor from Nanjing University of Aeronautics and Astronautics in 2016. His research interest covers intelligent signal processing and pattern recognition

    PU Yun-Wei  Professor at Kunming University of Science and Technology. He received his Ph.D. degree from Southwestern Jiaotong University in 2007. His research interest covers intelligent signal processing and pattern recognition

    GUO Yuan-Pu  Master student at Kunming University of Science and Technology. She received her bachelor degree from Nanjing institute of Technology University in 2016. Her research interest covers intelligent signal processing and pattern recognition

    MA Lan-Yu  Master student at Kunming University of Science and Technology. He received his bachelor degree from Hubei Engineering University in 2012. His research interest covers intelligent signal processing and pattern recognition

  • 摘要: 雷达辐射源信号分选是电子侦察系统、威胁告警系统的关键步骤.针对现有基于模糊函数的复杂体制雷达辐射源信号分选方法信息利用率低、易受噪声影响等问题, 提出一种基于模糊函数等高线的分选新方法; 首先, 对信号的模糊函数进行高斯平滑处理并绘制其等高线作为进一步的特征提取对象; 其次, 从图像处理的角度提取正外接矩和方向角作为雷达信号分选的特征向量; 最后, 用核模糊C均值聚类算法对特征向量进行分选.仿真实验表明, 所提方法在8 dB以上的固定信噪比环境下分选6类典型信号的成功率均为100 %, 即使在0 dB环境下, 分选成功率也保持在89.04 %以上; 在0 ~ 20 dB动态信噪比环境下分选成功率达到96.36 %.实测数据验证, 所提特征提高了5种外场辐射源信号的分选效果, 可作为经典5参数的有效补充. 此外, 所提特征还具备较低的计算量, 提取单个信号特征的耗时仅为0.24 s, 具有一定的工程价值.
    Recommended by Associate Editor PAN Quan
    1)  本文责任编委 潘泉
  • 图  1  CON信号的AF在0 dB和20 dB下的平滑效果(σ = 1;M = 5)

    Fig.  1  Smoothing efiect of AF of CON in 20 dB and 0 dB (σ = 1; M = 5)

    图  2  6类典型信号的AF等高线

    Fig.  2  AF contour lines of six typical signals

    图  3  LFM信号的正外接矩

    Fig.  3  Positive bounding rectangle of LFM

    图  4  LFM信号的方向角

    Fig.  4  Direction angle of LFM

    图  5  分选成功率对比

    Fig.  5  Comparison of successful rate

    图  6  信号集2的分选效果图

    Fig.  6  Sorting efiect diagram of signal set2

    表  1  信号集1的平均分选成功率(%)

    Table  1  Average correct rate of signal set1 (%)

    信号类型 不同SNR下分选成功率(dB)
    0 2 4 6 8~20
    CON 100 100 100 100 100
    LFM 100 100 100 100 100
    BPSK 82.54 96.69 98.03 99.1 100
    QPSK 83.32 97.06 98.22 98.86 100
    MSEQ 87.77 97.42 99.01 99.54 100
    BFSK 80.58 100 100 100 100
    平均 89.04 98.53 99.21 99.58 100
    下载: 导出CSV

    表  2  信号集2的分选结果

    Table  2  Sorting results of signal set2

    信号类型 分类结果
    CON LFM BPSK QPSK MSEQ BFSK
    hline CON 110 0 0 0 0 0
    LFM 0 110 0 0 0 0
    BPSK 0 0 108 3 4 2
    QPSK 0 0 2 107 0 13
    MSEQ 0 0 0 0 106 0
    BFSK 0 0 0 0 0 95
    成功率% 100 % 100 % 98.18 % 97.27 % 96.36 % 86.36 %
    下载: 导出CSV

    表  3  实测雷达数据参数分布

    Table  3  Distribution of measured radar parameters

    辐射源 辐射源参数
    调制类型 RF(MHz) PW(μs)
    1 线性调频 9 810、9 682、9 645、9 750、9 662五个频点波位组变, 频率分集 20
    2 非线性调制 9 850固定 16
    3 非线性调制 9 807、9 833、9 792、9 822、9 762、9 773六个频点波位组变 3 ~ 5个脉冲一组, 每组PW在7、13任意
    4 常规脉冲 9 500 ~ 9 700单脉冲捷变 3 ~ 5个脉冲一组, 每组PW在0.9、1.0、1.1、1.2任意
    5 线性调频 9 513、9 518、9 523、9 548、9 553、9 563六个频点波位组变 3 ~ 5个脉冲一组, 每组PW在6、12、18任意
    下载: 导出CSV

    表  4  实测雷达数据分选结果(%)

    Table  4  Sorting results of measured radar data (%)

    特征 不同辐射源的分选成功率
    1 2 3 4 5
    RFPW 100 100 0 57 40
    S, AR, α, RF, PW 100 100 56 63 92
    下载: 导出CSV

    表  5  特征提取耗时对比(s)

    Table  5  Timing comparison of the feature extration (s)

    分选特征 不同信号特征的提取耗时 平均
    CON LFM BPSK QPSK MSEQ BFSK
    文献[6] 0.15 0.12 0.18 0.18 0.15 0.15 0.16
    文献[7] 3.69 3.58 3.78 3.52 3.94 3.50 3.67
    文献[9] 9.58 9.59 9.59 9.55 9.55 9.53 9.56
    文献[12] 0.18 0.19 0.20 0.20 0.19 0.21 0.19
    本文特征 0.23 0.23 0.23 0.28 0.23 0.25 0.24
    下载: 导出CSV
  • [1] Iglesias V, Grajal J, Royer P, et al. Real-time low-complexity automatic modulation classifier for pulsed radar signals. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(01): 108-126 doi: 10.1109/TAES.2014.130183
    [2] Lu W L, Xie J W, Wang H M, et al. Separation of intercepted multi-radar signals based on parameterized time-frequency analysis. Frequenz, 2016, 70(9-10): 403-415 http://www.degruyter.com/dg/journalprintahead.articlelist.resultlinks.fullcontentlink:pdfeventlink/$002fj$002ffreq.ahead-of-print$002ffreq-2015-0253$002ffreq-2015-0253.pdf/freq-2015-0253.pdf?t:ac=j$002ffreq
    [3] 沈家煌, 黄建冲, 朱永成. 雷达辐射源信号快速识别综述. 电子信息对抗技术, 2017, 32(05): 5-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DZDK201705002.htm

    Shen Jia-Huang, Huang Jian-Chong, Zhu Yong-Cheng. Overview of radar signal fast recognition. Electronic Information Warfare Technology, 2017, 32(05): 5-10 https://www.cnki.com.cn/Article/CJFDTOTAL-DZDK201705002.htm
    [4] 路征, 龚燕. 雷达辐射源识别技术面临的主要挑战及对策. 国防科技, 2017, 38(02): 24-27 https://www.cnki.com.cn/Article/CJFDTOTAL-GFCK201702006.htm

    Lu Zheng, Gong Yan. Thoughts on the major challenge of radar emitter recognition technology and countermeasures. National Defense Science & Technology, 2017, 38(02): 24-27 https://www.cnki.com.cn/Article/CJFDTOTAL-GFCK201702006.htm
    [5] Zhang W X, Wang B, Sun F L. Recognition method based on wigner-hough transform for poly-phase code radar signal. International Journal of Communications, Network and System Sciences, 2017, 10(08): 128-137 doi: 10.4236/ijcns.2017.108B014
    [6] Chen Chang-Xiao, He Ming-Hao, Xu Jing, et al. A new method for sorting unknown radar emitter signal. Chinese Journal of Electronics, 2014, 23(03): 499-502
    [7] 曲志昱, 毛校洁, 侯长波. 基于奇异值熵和分形维数的雷达信号识别. 系统工程与电子技术, 2018, 40(02): 303-307 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201802010.htm

    Qu Zhi-Yu, Mao Xiao-Jie, Hou Chang-Bo. Radar signal recognition based on singular value entropy and fractal dimension. Systems Engineering and Electronics, 2018, 40(02): 303-307 https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201802010.htm
    [8] 刘永军, 廖桂生, 杨志伟. 基OFDM的雷达通信一体化波形模糊函数分析. 系统工程与电子技术, 2016, 38(09): 2008-2018

    Liu Yong-Jun, Liao Gui-Sheng, Yang Zhi-Wei. Ambiguity function analysis of intergrated radar andcommunication waveform based on OFDM. Systems Engineering and Electronics, 2016, 38(09): 2008-2018
    [9] 普运伟, 金炜东, 朱明, 等. 雷达辐射源信号模糊函数主脊切面特征提取方法. 红外与毫米波学报, 2008, 27(02): 133-137 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200802011.htm

    Pu Yun-Wei, Jin Wei-Dong, Zhu Ming, et al. Extracting the main ridge slice characteristics of ambiguity function for radar emitter signals. Journal of Infrared Millimeter Waves, 2008, 27(02): 133-137 https://www.cnki.com.cn/Article/CJFDTOTAL-HWYH200802011.htm
    [10] Guo Q, Nan P, Zhang X, et al. Recognition of radar emitter signals based on SVD and AF main ridge slice. Journal of Communications & Networks, 2015, 17(05): 491-498 http://or.nsfc.gov.cn/bitstream/00001903-5/571474/1/1000014101826.pdf
    [11] 许程成, 周青松, 张剑云, 谌诗娃. 导数约束平滑条件下基于模糊函数特征的雷达辐射源信号识别方法. 电子学报, 2018, 46(07): 1663-1668 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201807018.htm

    Xu Cheng-Cheng, Zhou Qing-Song, Zhang Jian-Yun, et al. Radar emitter recognition based on ambiguity function features with derivative constraint on smoothing. Acta Electronica Sinca, 2018, 46(07): 1663-1668 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201807018.htm
    [12] Guo H, Zhang X, Yang L, Zhang S. Improved Fisher linear discriminant analysis for feature extraction of unintentional modulation on pulse by combining ambiguity function with wavelet transform. In: Proceedings of the International Radar Conference, Hangzhou, China: IET, 2015. 1-4
    [13] Ding Y, Fu X. Kernel-based fuzzy c-means clustering algorithm based on genetic algorithm. Neurocomputing, 2016, 188: 233-238
    [14] Zhuo Zhi-Hai and Shan Tao. Research on fast computation of ambiguity function. In: Proceedings of the International Congress on Image and Signal Processing, Hainan, China: IEEE, 2008. 188-192
    [15] Wei X, Yang Q, Gong Y. Joint contour flltering. International Journal of Computer Vision, 2018, 126(2): 1-21
    [16] 普运伟, 郭媛蒲, 侯文太, 等. 模糊函数主脊切面极坐标域形态特征提取方法. 仪器仪表学报, 2018, 39(10): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201810001.htm

    Pu Yun-Wei, Guo Yuan-Pu, Hou Wen-Tai, et al. Extracting method for morphological feature based on the polar transformation of the slice of ambiguity function main ridge. Chinese Journal of Scientific Instrument, 2018, 39(10): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201810001.htm
    [17] 普运伟, 侯文太, 郭媛蒲, 等. 基于模糊函数三维特征的雷达辐射源信号分选方法. 控制与决策, 2018, DOI: 10.13195/j.kzyjc.2018.0144

    Pu Yun-Wei, Hou Wen-Tai, Guo Yuan-Pu, et al. A sorting method of radar emitter signal based on three dimensional feature of ambiguity function. Control and Decision, DOI: 10.13195/j.kzyjc.2018.0144
    [18] Eynard J D, Jenny B. Illuminated and shadowed contour lines: improving algorithms and evaluating effectiveness. International Journal of Geographical Information Science, 2016, 30(10): 1923-1943 http://www.cartography.oregonstate.edu/pdf/2016_Eynard_Jenny_Illuminated_and_shadowed_contour_lines.pdf
    [19] 余昌龙, 王运锋, 张林嘉. 一种基于网格数据的等高线生成算法. 科学技术与工程, 2014, 14(07): 191-194, 199 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201407043.htm

    Yu Chang-Long, Wang Yun-Feng, Zhang Lin-Jia. An Algorithm of contour lines based on grid data. Science Technology and Engineering, 2014, 14(07): 191-194, 199 https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201407043.htm
    [20] Sven Loncaric. A survey of shape analysis techniques. Pattern Recognition, 1998, 31(08): 983-1001 http://bib.irb.hr/datoteka/51864.pr98.pdf
    [21] 刘丽, 赵凌君, 郭承玉, 王亮, 汤俊. 图像纹理分类方法研究进展和展望. 自动化学报, 2018, 44(04): 584-607 doi: 10.16383/j.aas.2018.c160452

    Liu Li, Zhao Ling-Jun, Guo Cheng-Yu, Wang Liang, Tang Jun. Texture classification: state-of-the-art methods and prospects. Acta Automatica Sinica, 2018, 44(04): 584-607 doi: 10.16383/j.aas.2018.c160452
    [22] 张号逵, 李映, 姜晔楠. 深度学习在高光谱图像分类领域的研究现状与展望. 自动化学报, 2018, 44(06): 961-977 doi: 10.16383/j.aas.2018.c170190

    Zhang Hao-Kui, Li Ying, Jiang Ye-Nan. Deep learning for hyperspectral imagery classification: the state of the art and prospects. Acta Automatica Sinica, 2018, 44(06): 961-977 doi: 10.16383/j.aas.2018.c170190
    [23] 吴志勇, 丁香乾, 许晓伟, 鞠传香. 基于深度学习和模糊C均值的心电信号分类方法. 自动化学报, 2018, 44(10): 1913-1920 doi: 10.16383/j.aas.2018.c170417

    Wu Zhi-Yong, Ding Xiang-Qian, Xu Xiao-Wei, Ju Chuan-Xiang. A method for ECG classification using deep learning and fuzzy C-means. Acta Automatica Sinica, 2018, 44(10): 1913-1920 doi: 10.16383/j.aas.2018.c170417
    [24] 赵兴浩, 陶然, 邓兵, 等. 分数阶傅里叶变换的快速计算新方法. 电子学报, 2007, 35(06): 1089-1093 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200706016.htm

    Zhao Xing-Hao, Tao Ran, Deng Bing, et al. New methods for fast computation of fractional Fourier transform. Acta Electronica Sinca, 2007, 35(06): 1089-1093 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU200706016.htm
    [25] 张德干, 郝先臣, 高光来, 等. 一种基于快速傅里叶变换的小波变换方法. 东北大学学报(自然科学版), 2000, 21(06): 598-601 https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS201907019.htm

    Zhang De-Gan, Hao Xian-Cheng, Gao Guang-Rongm, et al. A method of FFT-based wavelet transform. Journal of Northeastern University (Nature Science), 2000, 21(06): 598-601 https://www.cnki.com.cn/Article/CJFDTOTAL-DLZS201907019.htm
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  708
  • HTML全文浏览量:  158
  • PDF下载量:  145
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-06
  • 录用日期:  2019-01-18
  • 刊出日期:  2021-10-26

目录

    /

    返回文章
    返回