2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩动量项的增量型ELM虚拟机能耗预测

邹伟东 夏元清

邹伟东, 夏元清. 基于压缩动量项的增量型ELM虚拟机能耗预测. 自动化学报, 2019, 45(7): 1290-1297. doi: 10.16383/j.aas.c180703
引用本文: 邹伟东, 夏元清. 基于压缩动量项的增量型ELM虚拟机能耗预测. 自动化学报, 2019, 45(7): 1290-1297. doi: 10.16383/j.aas.c180703
ZOU Wei-Dong, XIA Yuan-Qing. Virtual Machine Power Prediction Using Incremental Extreme Learning Machine Based on Compression Driving Amount. ACTA AUTOMATICA SINICA, 2019, 45(7): 1290-1297. doi: 10.16383/j.aas.c180703
Citation: ZOU Wei-Dong, XIA Yuan-Qing. Virtual Machine Power Prediction Using Incremental Extreme Learning Machine Based on Compression Driving Amount. ACTA AUTOMATICA SINICA, 2019, 45(7): 1290-1297. doi: 10.16383/j.aas.c180703

基于压缩动量项的增量型ELM虚拟机能耗预测

doi: 10.16383/j.aas.c180703
基金项目: 

中国博士后科学基金 2018M641217

国家重点研发计划 2018YFB1003700

国家自然科学基金 61836001

详细信息
    作者简介:

    邹伟东  北京理工大学自动化学院博士后.主要研究方向为极限学习机, 云数据中心优化调度管理.E-mail:zouweidong1985@163.com

    通讯作者:

    夏元清  北京理工大学自动化学院教授.主要研究方向为云控制, 云数据中心优化调度管理, 智能交通, 模型预测控制, 自抗扰控制, 飞行器控制和空天地一体化网络协同控制.本文通信作者. E-mail:xia_yuanqing@bit.edu.cn

Virtual Machine Power Prediction Using Incremental Extreme Learning Machine Based on Compression Driving Amount

Funds: 

China Postdoctoral Science Foundation 2018M641217

National Key Research and Development Program of China 2018YFB1003700

National Natural Science Foundation of China 61836001

More Information
    Author Bio:

     Postdoctor at the School of Automation, Beijing Institute of Technology. His research interest covers extreme learning machine, cloud data center optimization scheduling and management

    Corresponding author: XIA Yuan-Qing  Professor at the School of Automation, Beijing Institute of Technology. His research interest covers cloud control, cloud data center optimization scheduling and management, intelligent transportation, model predictive control, active disturbance rejection control, flight control and networked cooperative control for integration of space, air and earth. Corresponding author of this paper
  • 摘要: 在基于基础设施即服务(Infrastructure as a service,IaaS)的云服务模式下,精准的虚拟机能耗预测,对于在众多物理服务器之间进行虚拟机调度策略的制定具有十分重要的意义.针对基于传统的增量型极限学习机(Incremental extreme learning machine,I-ELM)的预测模型存在许多降低虚拟机能耗预测准确性和效率的冗余节点,在现有I-ELM模型中加入压缩动量项将网络训练误差反馈到隐含层的输出中使预测结果更逼近输出样本,能够减少I-ELM的冗余隐含层节点,从而加快I-ELM的网络收敛速度,提高I-ELM的泛化性能.
    1)  本文责任编委 程龙
  • 图  1  基于压缩动量项的增量型极限学习机拓扑结构图

    Fig.  1  Topological structure of CDAI-ELM

    图  2  基于压缩动量项的增量型极限学习机算法流程图

    Fig.  2  Flow diagrams of algorithm for CDAI-ELM

    图  3  基于SVM、KELM、BLS和CDAI-ELM的虚拟机能耗预测曲线

    Fig.  3  Predicted curve for power of virtual machine based on SVM、KELM、BLS和CDAI-ELM

    图  4  4种模型预测结果

    Fig.  4  Predicted results of four models

    表  1  回归数据集

    Table  1  Datasets of regression

    回归数据集 属性 训练数据 测试数据
    Auto MPG 4 853 850
    Automobile 16 8 795 8 774
    BlogFeedback 281 530 500
    Housing 77 153 150
    NoisyOffice 128 468 300
    Facebook metrics 19 300 200
    SML2010 68 336 200
    wiki4HE 26 2 898 2 000
    UJIIndoorLoc 529 2 100 2 077
    YearPredictionMSD 90 2 800 3 075
    下载: 导出CSV

    表  2  相同期望误差下4种算法隐含层节点数方差的比较

    Table  2  Variance of number of hidden layer node for four algorithms under same expected error

    回归数据集 期望误差 I-ELM CI-ELM EM-ELM CDAI-ELM
    Auto MPG 0.11 49.46 5.21 2.76 1.82
    Automobile 0.15 8.82 33.08 3.55 1.95
    BlogFeedback 0.2 28.56 24.87 2.50 1.58
    Housing 0.12 35.95 9.98 2.51 2.26
    NoisyOffice 0.08 46.81 6.28 2.18 1.72
    Facebook metrics 0.06 28.87 10.02 2.28 1.46
    SML2010 0.21 36.89 17.79 2.82 2.31
    wiki4HE 0.13 32.81 8.19 2.88 2.14
    UJIIndoorLoc 0.09 50.71 9.67 3.07 2.51
    YearPredictionMSD 0.08 51.21 12.13 3.51 2.87
    下载: 导出CSV

    表  3  4种算法的测试误差和方差比较

    Table  3  Comparison result of testing error and variance for four algorithms

    回归数据集 I-ELM CI-ELM EM-ELM CDAI-ELM
    误差 方差 误差 方差 误差 方差 误差 方差
    Auto MPG 0.1021 0.0051 0.0952 0.0041 0.0953 0.0052 0.0811 0.0040
    Automobile 0.1323 0.0149 0.1302 0.0129 0.1301 0.0118 0.1257 0.0107
    BlogFeedback 0.1896 0.0121 0.1882 0.0123 0.1712 0.0108 0.1822 0.0109
    Housing 0.1017 0.0064 0.1008 0.0061 0.0985 0.0051 0.0973 0.0061
    NoisyOffice 0.0511 0.0039 0.0481 0.0034 0.0401 0.0029 0.0392 0.0023
    Facebook metrics 0.0642 0.0058 0.0581 0.0041 0.0581 0.0018 0.0585 0.0023
    SML2010 0.1555 0.0158 0.1502 0.0129 0.1461 0.0078 0.1452 0.0074
    wiki4HE 0.1592 0.0311 0.1522 0.0302 0.1468 0.0031 0.1511 0.0051
    UJIIndoorLoc 0.1315 0.0102 0.1291 0.0091 0.1278 0.0072 0.1116 0.0059
    YearPredictionMSD 0.0912 0.0041 0.0902 0.0039 0.0903 0.0040 0.0868 0.0031
    下载: 导出CSV

    表  4  4种算法训练时间的比较(s)

    Table  4  Comparison result of training time for four algorithms (s)

    回归数据集 I-ELM CI-ELM EM-ELM CDAI-ELM
    Auto MPG 0.0124 0.0073 0.0061 0.0052
    Automobile 0.0272 0.0171 0.0182 0.0088
    BlogFeedback 0.0469 0.0391 0.0236 0.0151
    Housing 0.0391 0.0119 0.0182 0.0120
    NoisyOffice 0.0411 0.0051 0.0083 0.0071
    Facebook metrics 0.481 0.0179 0.0171 0.0159
    SML2010 0.0218 0.0107 0.0081 0.0059
    wiki4HE 0.0089 0.0081 0.0298 0.0297
    UJIIndoorLoc 0.0471 0.0091 0.0288 0.0272
    YearPredictionMSD 0.0301 0.0297 0.0271 0.0197
    下载: 导出CSV

    表  5  4种模型训练时间(s)

    Table  5  Training time of four models (s)

    预测模型 训练时间(s)
    SVM 3.4788
    BLS 0.9828
    KELM 1.06
    CDAI-ELM 0.5772
    下载: 导出CSV
  • [1] 武志学.云计算虚拟化技术的发展与趋势.计算机应用, 2017, 37(4):915-923 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201704001

    Wu Zhi-Xue. Advances on virtualization technology of cloud computing. Journal of Computer Applications, 2017, 37(4):915-923 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201704001
    [2] 崔勇, 宋健, 缪葱葱, 唐俊.移动云计算研究进展与趋势.计算机学报, 2017, 37(4):915-923 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201702001

    Cui Yong, Song Jian, Miao Cong-Cong, Tang Jun. Mobile cloud computing research progress and trends. Chinese Journal of Computers, 2017, 40(2):273-295 http://d.old.wanfangdata.com.cn/Periodical/jsjxb201702001
    [3] 夏元清, 闫策, 王笑京, 宋向辉.智能交通信息物理融合云控制系统.自动化学报, 2019, 45(1):132-142 doi: 10.3969/j.issn.1003-8930.2019.01.021

    Xia Yuan-Qing, Yan Ce, Wang Xiao-Jing, Song Xiang-Hui. Intelligent transportation cyber-physical cloud control systems. Acta Automatica Sinica, 2019, 45(1):132-142 doi: 10.3969/j.issn.1003-8930.2019.01.021
    [4] 金顺福, 郝闪闪, 王宝帅.融合双速率和工作休眠的虚拟机调度策略及参数优化.通信学报, 2017, 38(12):10-20 doi: 10.11959/j.issn.1000-436x.2017298

    Jin Shun-Fu, Hao Shan-Shan, Wang Bao-Shuai. Virtual machine scheduling strategy based on dual-speed and work vacation mode and its parameter optimization. Journal on Communications, 2017, 38(12):10-20 doi: 10.11959/j.issn.1000-436x.2017298
    [5] 赵春, 闫连山, 崔允贺, 邢焕来, 冯斌.基于动态调整阈值的虚拟机迁移算法.计算机应用, 2017, 37(9):2547-2550 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201709022

    Zhao Chun, Yan Lian-Shan, Cui Yun-He, Xing Huan-Lai, Feng Bin. Dynamic adjusting threshold algorithm for virtual machine migration. Journal of Computer Applications, 2017, 37(9):2547-2550 http://d.old.wanfangdata.com.cn/Periodical/jsjyy201709022
    [6] 周平, 张丽, 李温鹏, 戴鹏, 柴天佑.集成自编码与PCA的高炉多元铁水质量随机权神经网络建模.自动化学报, 2018, 44(10):1799-1811 http://www.aas.net.cn/CN/abstract/abstract19362.shtml

    Zhou Ping, Zhang Li, Li Wen-Peng, Dai Peng, Chai Tian-You. Autoencoder and PCA based RVFLNs modeling for multivariate molten iron quality in blast furnace ironmaking. Acta Automatica Sinica, 2018, 44(10):1799-1811 http://www.aas.net.cn/CN/abstract/abstract19362.shtml
    [7] 唐轶轩, 薛晓茹, 姚振, 徐敏, 张永梅, 张禾良, 徐道磊.电力信息系统资源池的能耗感知虚拟机部署策略.电力信息与通信技术, 2017, 15(6):95-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxxh201706017

    Tang Yi-Xuan, Xue Xiao-Ru, Yao Zhen, Xu Min, Zhang Yong-Mei, Zhang He-Liang, Xu Dao-Lei. An energy-aware VM deployment strategy for the resource pool of power information system. Electric Power Information and Communication Technology, 2017, 15(6):95-100 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlxxh201706017
    [8] Xu H. Research on neural network based on virtual machine power prediction model[Master thesis], Beijing University of Posts and Telecommunications, 2015.
    [9] 赵雅倩.一种基于模糊神经网络的虚拟机能耗预测方法及系统, 中国专利CN105975385A, 2016.09.28.
    [10] 贾炅昊, 陈宁江, 李湘, 黄汝维.基于可用能力建模的云虚拟机动态调整策略.广西大学学报(自然科学版), 41(3):796-803 http://d.old.wanfangdata.com.cn/Periodical/gxdxxb201603023

    Jia Jiong-Hao, Chen Ning-Jiang, Li Xiang, Huang Ru-Wei. A dynamic adjustment strategy for virtual machines in cloud based on availability capability. Journal of Guangxi University (Nat Sci Ed), 2016, 41(3):796-803 http://d.old.wanfangdata.com.cn/Periodical/gxdxxb201603023
    [11] Huang G B, Chen L, Siew C K. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 2006, 17(4):879-892 doi: 10.1109/TNN.2006.875977
    [12] Tian Z D, Li S J, Wang Y H, Sha Y. Short-term wind power prediction based on empirical mode decomposition and improved extreme learning machine. Journal of Electrical Engineering and Technology, 2018, 13(5):1841-1851 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdjgcxb201325006
    [13] Tian Z D, Li S J, Wang Y H, Sha Y. An adaptive online sequential extreme learning machine for short-term wind speed prediction based on improved artificial bee colony algorithm. Neural Network World, 2018, 28(3):191-212 doi: 10.14311/NNW.2018.28.012
    [14] Tian Z D, Li S J, Wang Y H, Sha Y. Network traffic prediction method based on improved ABC algorithm optimized EM-ELM. Journal of China Universities of Posts and Telecommunications, 2018, 25(3):33-44 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgydgxxb-e201803005
    [15] Tang X L, Han M. Partial Lanczos extreme learning machine for single output regression problems. Neurocomputing, 2009, 13(72):3066-3076 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cedd039eebe8b7c3695d63c452506b22
    [16] 韩敏, 李德才.基于替代函数及贝叶斯框架的1范数ELM算法.自动化学报, 2011, 37(11):1344-1350 http://www.aas.net.cn/CN/abstract/abstract17624.shtml

    Han Min, Li De-Cai. An norm 1 regularization term ELM algorithm based on surrogate function and Bayesian framework. Acta Automatica Sinica, 2011, 37(11):1344-1350 http://www.aas.net.cn/CN/abstract/abstract17624.shtml
    [17] Huang G B, Zhou H, Ding X, Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 2012, 2(42):513-529
    [18] Chen C L P, Liu Z L. Broad learning system:An effective and efficient incremental learning system without the need for deep architecture. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(1):10-24 doi: 10.1109/TNNLS.2017.2716952
    [19] Sara S, Nicholas F, Geoffrey E H. Dynamic routing between capsules. In: Proceedings of the 31st Conference on Neural Information Processing Systems. California, USA, 2017. arXiv: 1710.09829
    [20] Wang B. The approximation order of convex incremental extreme learning machine[Master thesis], Northwest University, 2015
    [21] Knowledge discovery in databases, http://www.kdd.org.htm
    [22] 田中大, 李树江, 王艳红, 王向东.高斯过程回归补偿ARIMA的网络流量预测.北京邮电大学学报, 2017, 40(6):65-73 http://d.old.wanfangdata.com.cn/Periodical/bjyddx201706010

    Tian Zhong-Da, Li Shu-Jiang, Wang Yan-Hong, Wang Xiang-Dong. Network traffic prediction based on ARIMA with Gaussian process regression compensation. Journal of Beijing University of Posts and Telecommunications, 2017, 40(6):65-73 http://d.old.wanfangdata.com.cn/Periodical/bjyddx201706010
    [23] Tian Z D, Li S J, Wang Y H, Sha Y. A prediction method based on wavelet transform and multiple models fusion for chaotic time series. Chaos, Solitons and Fractals, 2017, 98:158-172 doi: 10.1016/j.chaos.2017.03.018
    [24] Tian Z D, Li S J, Wang Y H, Sha Y. Short-term wind speed prediction based on improved PSO algorithm optimized EM-ELM. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2019, 41(1):26-46 doi: 10.1080/15567036.2018.1495782
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  2300
  • HTML全文浏览量:  311
  • PDF下载量:  448
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 录用日期:  2019-03-08
  • 刊出日期:  2019-07-20

目录

    /

    返回文章
    返回