[1]
|
Stutz D, Hermans A, Leibe B. Superpixels:an evaluation of the state-of-the-art. Computer Vision amd Image Understanding, 2018, 166(1):1-27 http://d.old.wanfangdata.com.cn/Periodical/gxdxxb201302020
|
[2]
|
产思贤, 周小龙, 张卓, 陈胜勇.一种基于超像素的肿瘤自动攻击交互式分割算法.自动化学报, 2017, 43(10):1829-1840 http://www.aas.net.cn/CN/abstract/abstract19158.shtmlChan Si-Xian, Zhou Xiao-Long, Zhang Zhuo, Chen Sheng-Yong. Interactive multi-label image segmentation with multi-layer tumors automat. Acta Automatica Sinica, 2017, 43(10):1829-1840 http://www.aas.net.cn/CN/abstract/abstract19158.shtml
|
[3]
|
汪云飞, 冯国强, 刘华伟, 赵搏欣.基于超像素的均值——均方差暗通道单幅图像去雾方法.自动化学报, 2018, 44(3):481-489 http://www.aas.net.cn/CN/abstract/abstract19241.shtmlWang Yun-Fei, Feng Guo-Qiang, Liu Hua-Wei, Zhao Bo-Xin. Superpixel-based mean and mean square deviation dark channel for single image fog removal. Acta Automatica Sinica, 2018, 44(3):481-489 http://www.aas.net.cn/CN/abstract/abstract19241.shtml
|
[4]
|
林华锋, 李静, 刘国栋, 梁大川, 李东民.基于自适应背景模板与空间先验的显著性物体检测方法.自动化学报, 2017, 43(10):1736-1748 http://www.aas.net.cn/CN/abstract/abstract19151.shtmlLin Hua-Feng, Li Jing, Liu Guo-Dong, Liang Da-Chuan, Li Dong-Min. Saliency detection method using adaptive background template and spatial prior. Acta Automatica Sinica, 2017, 43(10):1736-1748 http://www.aas.net.cn/CN/abstract/abstract19151.shtml
|
[5]
|
Yang F, Lu H, Yang M H. Robust superpixel tracking. IEEE Transactions on Image Processing, 2014, 23(4):1639-1651 doi: 10.1109/TIP.2014.2300823
|
[6]
|
刘大千, 刘万军, 费博雯, 曲海成.前景约束下的抗干扰匹配目标跟踪方法.自动化学报, 2018, 44(6):1138-1152 http://www.aas.net.cn/CN/abstract/abstract19303.shtmlLiu Da-Qian, Liu Wan-Jun, Fei Bo-Wen, Qu Hai-Cheng. A new method of anti-interference matching under foreground constraint for target tracking. Acta Automatica Sinica, 2018, 44(6):1138-1152 http://www.aas.net.cn/CN/abstract/abstract19303.shtml
|
[7]
|
Wang Z L, Feng J S, Yan S C, Xi H S. Image classification via object-aware holistic superpixel selection. IEEE Transactions on Image Processing, 2013, 22(11):4341-4352. doi: 10.1109/TIP.2013.2272514
|
[8]
|
Bodis-Szomoru A, Riemenschneider H, Gool L V. Superpixel meshes for fast edge-preserving surface reconstruction. In: Proceedings of the 2015 Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015. 2011-2020 https://ieeexplore.ieee.org/document/7298812/?reload=true&arnumber=7298812
|
[9]
|
Geiger A, Wang C. Joint 3D object and layout inference from a single RGB-D image. In: Proceedings of the 2015 German Conference on Pattern Recognition. Aachen, Germany: Springer, 2015. 183-195 http://www.mendeley.com/research/joint-3d-object-layout-inference-single-rgbd-image/
|
[10]
|
Gadde R, Jampani V, Kiefel M, Kappler D, Gehler P V. Superpixel convolutional networks using bilateral inceptions. In: Proceedings of the 2016 European Conference on Computer Vision. Amsterdam, The Netherlands: Springer, 2016. 597-613 doi: 10.1007/978-3-319-46448-0_36.pdf
|
[11]
|
Shi J, Malik J. Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905 doi: 10.1109/34.868688
|
[12]
|
Moore A P, Prince S J D, Warrell J, Mohammed U, Jones G. Superpixel lattices. In: Proceedings of the 2008 Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4587471
|
[13]
|
Veksler O, Boykov Y, Mehrani P. Superpixels and supervoxels in an energy optimization framework. In: Proceedings of the 2010 European Conference on Computer Vision. Heraklion, Greece: Springer, 2010. 211-224 http://www.springerlink.com/content/cx875711vq5p7234
|
[14]
|
Liu M Y, Tuzel O, Ramalingam S, Chellappa R. Entropy rate superpixel segmentation. In: Proceedings of the 2011 Computer Vision and Pattern Recognition. Colorado Springs, USA: IEEE, 2011. 2097-2104
|
[15]
|
Bergh M V D, Boix X, Roig G, Capitani B D, Gool L V. SEEDS: superpixels extracted via energy-driven sampling. In: Proceedings of the 2012 European Conference on Computer Vision. Florence, Italy: Springer, 2012. 13-26
|
[16]
|
Shen J B, Du Y F, Wang W G, Li X L. Lazy random walks for superpixel segmentation. IEEE Transactions on Image Processing, 2014, 23(4):1451-1462 doi: 10.1109/TIP.2014.2302892
|
[17]
|
Yin S, Qian Y, Gong M. Unsupervised hierarchical image segmentation through fuzzy entropy maximization. Pattern Recognition, 2017, 68(1):245-259 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3035ea132e2e906d04bb353c5431a9ef
|
[18]
|
Yin S, Zhao X, Wang W, Gong M. Efficient multilevel image segmentation through fuzzy entropy maximization and graph cut optimization. Pattern Recognition, 2014, 47(9):2894-2907 doi: 10.1016/j.patcog.2014.03.009
|
[19]
|
Wei X, Yang Q, Gong Y, Ahuja N, Yang M H. Superpixel hierarchy. IEEE Transactions on Image Processing, 2018, 27(10):4838-4849 doi: 10.1109/TIP.2018.2836300
|
[20]
|
Levinshtein A, Stere A, Kutulakos K N, Fleet D J, Dickinson S J, Siddiqi K. TurboPixels:fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(12):2290-2297 doi: 10.1109/TPAMI.2009.96
|
[21]
|
Wang J, Wang X. VCells:simple and efficient superpixels using edge-weighted centroidal voronoi tessellations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(6):1241-1247 doi: 10.1109/TPAMI.2012.47
|
[22]
|
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 31(11):2274-2282 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=218e2dd693ea07f7be3f296ed4e6aaba
|
[23]
|
Achanta R, Susstrunk S. Superpixels and polygons using simple non-iterative clustering. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017. 4895-4904 http://ieeexplore.ieee.org/document/8100003/
|
[24]
|
Shen J B, Hao X P, Liang Z Y, Liu Y, Wang W G, Shao L. Real-time superpixel segmentation by DBSCAN clustering algorithm. IEEE Transactions on Image Processing, 2016, 25(12):5933-5942 doi: 10.1109/TIP.2016.2616302
|
[25]
|
Chen J, Li Z, Bo H. Linear spectral clustering superpixel. IEEE Transactions on Image Processing, 2017, 26(7):3317-3330 doi: 10.1109/TIP.2017.2651389
|
[26]
|
Hu Z, Qin Z, Li Q. Watershed superpixel. In: Proceedings of the 2015 IEEE International Conference on Image Processing. Quebec City, Canada, 2015. 349-353
|
[27]
|
Boemer F, Ratner E, Lendasse A. Parameter-free image segmentation with SLIC. Neurocomputing, 2018, 277(1):228-236 http://www.sciencedirect.com/science/article/pii/S0925231217313978
|
[28]
|
张亚亚, 刘小伟, 刘福太, 张建廷.基于改进SLIC方法的彩色图像分割.计算机工程, 2015, 41(4):205-209 http://d.old.wanfangdata.com.cn/Periodical/jsjgc201504039Zhang Ya-Ya, Liu Xiao-Wei, Liu Fu-Tai, Zhang Jian-Ting. Color image segmentation based on improved SLIC method. Computer Engineering, 2015, 41(4):205-209 http://d.old.wanfangdata.com.cn/Periodical/jsjgc201504039
|
[29]
|
Liu Y J, Yu C C, Yu M J, He Y. Manifold SLIC: a fast method to compute content-sensitive superpixels. In: Proceedings of the 2016 Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016. 651-659 http://ieeexplore.ieee.org/document/7780446/
|
[30]
|
Liu Y J, Yu M, Li B J, He Y. Intrinsic manifold SLIC:a simple and efficient method for computing content-sensitive superpixels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3):653-666 doi: 10.1109/TPAMI.2017.2686857
|
[31]
|
南柄飞, 穆志纯.基于SLIC0融合纹理信息的超像素分割方法.仪器仪表学报, 2014, 35(3):527-534 http://d.old.wanfangdata.com.cn/Periodical/yqyb201403006Nan Bing-Fei, Mu Zhi-Chun. SLIC0-based superpixel segmentation method with texture fusion. Chinese Journal of Scientific Instrument, 2014, 35(3):527-534 http://d.old.wanfangdata.com.cn/Periodical/yqyb201403006
|
[32]
|
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 24(7):971-987 doi: 10.1007%2F3-540-45054-8_27
|
[33]
|
Hafiane A, Seetharaman G, Palaniappan K, Zavidovique B. Rotationally invariant hashing of median binary patterns for texture classification. In: Proceedings of the 2008 International Conference Image Analysis and Recognition. Póvoa de Varzim, Portugal: Springer, 2008. 619-629 doi: 10.1007%2F978-3-540-69812-8_61
|
[34]
|
Guo Z, Zhang L, Zhang D. Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognition, 2010, 43(3):706-719 doi: 10.1016/j.patcog.2009.08.017
|
[35]
|
Andreopoulos A, Tsotsos J K. Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Medical Image Analysis, 2008, 12(3):335-357 doi: 10.1016/j.media.2007.12.003
|
[36]
|
Ojala T, Harwood I. A comparative study of texture measures with classification based on feature distributions. Pattern Recognition, 1996, 29(1):51-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0f64e305eee42b19af98e65e3d28e3c
|
[37]
|
Ojala T, Maenpaa T, Pietikainen M, et al. Outex——new framework for empirical evaluation of texture analysis algorithms. In: Proceedings of the 2002 Pattern Recognition. Quebec City, Canada: IEEE, 2002. 701-706 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1044854
|
[38]
|
Otsu N. A Thresholding selection method from gray-level histogram. IEEE Transactions on Systems Man and Cybernetics, 1979, 9(1):62-66 doi: 10.1109/TSMC.1979.4310076
|