2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多注意力机制的维吾尔语人称代词指代消解

杨启萌 禹龙 田生伟 艾山·吾买尔

杨启萌, 禹龙, 田生伟, 艾山·吾买尔.基于多注意力机制的维吾尔语人称代词指代消解.自动化学报, 2020, 47(6): 1412-1421 doi: 10.16383/j.aas.c180678
引用本文: 杨启萌, 禹龙, 田生伟, 艾山·吾买尔.基于多注意力机制的维吾尔语人称代词指代消解.自动化学报, 2020, 47(6): 1412-1421 doi: 10.16383/j.aas.c180678
Yang Qi-Meng, Yu Long, Tian Sheng-Wei, Aishan Wumaier. Anaphora resolution of Uyghur personal pronouns based on multi-attention mechanism. Acta Automatica Sinica, 2021, 47(6): 1412-1421 doi: 10.16383/j.aas.c180678
Citation: Yang Qi-Meng, Yu Long, Tian Sheng-Wei, Aishan Wumaier. Anaphora resolution of Uyghur personal pronouns based on multi-attention mechanism. Acta Automatica Sinica, 2021, 47(6): 1412-1421 doi: 10.16383/j.aas.c180678

基于多注意力机制的维吾尔语人称代词指代消解

doi: 10.16383/j.aas.c180678
基金项目: 

国家自然科学基金 61563051

国家自然科学基金 61662074

国家自然科学基金 61962057

国家自然科学基金重点项目 U2003208

自治区重大科技项目 2020A03004-4

新疆自治区科技人才培养项目 QN2016YX0051

详细信息
    作者简介:

    杨启萌  新疆大学博士研究生. 主要研究方向为自然语言处理.E-mail: yqm_xju@163.com

    田生伟  新疆大学教授. 主要研究方向为自然语言处理和计算机智能技术.E-mail: tianshengwei@163.com

    艾山·吾买尔  新疆大学副教授. 主要研究方向为自然语言处理及机器翻译.E-mail: Hasan1479@xju.edu.cn

    通讯作者:

    禹龙  新疆大学教授. 主要研究方向为计算机智能技术与计算机网络. 本文通信作者. E-mail: yul_xju@163.com

Anaphora Resolution of Uyghur Personal Pronouns Based on Multi-attention Mechanism

Funds: 

National Natural Science Foundation of China 61563051

National Natural Science Foundation of China 61662074

National Natural Science Foundation of China 61962057

Key Program of National Natural Science Foundation of China U2003208

Major Science and Technology Projects in the Autonomous Region 2020A03004-4

Xinjiang Uygur Autonomous Region Scientiflc and Technological Personnel Training Project QN2016YX0051

More Information
    Author Bio:

    YANG Qi-Meng  Ph. D. candidate at Xinjiang University. His main research interest is natural language processing

    TIAN Sheng-Wei  Professor at Xinjiang University. His research interest covers natural language processing and computer intelligence technology

    AISHAN Wumaier  Associate professor at Xinjiang University. His research interest covers natural language processing and machine translation

    Corresponding author: YU Long  Professor at Xinjiang University. Her research interest covers computer intelligence technology and computer networks. Corresponding author of this paper
  • 摘要:

    针对深度神经网络模型学习照应语和候选先行语的语义信息忽略了每一个词在句中重要程度, 且无法关注词序列连续性关联和依赖关系等问题, 提出一种结合语境多注意力独立循环神经网络(Contextual multi-attention independently recurrent neural network, CMAIR) 的维吾尔语人称代词指代消解方法. 相比于仅依赖照应语和候选先行语语义信息的深度神经网络, 该方法可以分析上下文语境, 挖掘词序列依赖关系, 提高特征表达能力. 同时, 该方法结合多注意力机制, 关注待消解对多层面语义特征, 弥补了仅依赖内容层面特征的不足, 有效识别人称代词与实体指代关系. 该模型在维吾尔语人称代词指代消解任务中的准确率为90.79 %, 召回率为83.25 %, F值为86.86 %. 实验结果表明, CMAIR模型能显著提升维吾尔语指代消解性能.

    Recommended by Associate Editor ZHANG Min
    1)  本文责任编委 张民
  • 图  1  维吾尔语人称代词指代消解例句

    Fig.  1  The example of Uyghur personal pronoun anaphora resolution

    图  2  IndRNN结构图

    Fig.  2  The structure diagram of IndRNN

    图  3  多注意力机制IndRNN模型框架图

    Fig.  3  IndRNN model framework with multiple attention mechanisms

    图  4  距离计算方式举例

    Fig.  4  Example of distance calculation

    图  5  不同维度词向量分类F-score比较

    Fig.  5  Comparison of difierent dimension word vector classiflcation F-score

    表  1  词语句中成分标注

    Table  1  Component labeling of words in sentences

    表  2  词性标注

    Table  2  Part of speech tagger

    表  3  hand-crafted特征

    Table  3  The feature of hand-crafted

    照应语词性 词性一致 单复数一致 性别一致 先行语语义角色 照应语语义角色 存在嵌套
    人称代词 非人称代词 未知 施事者 受事者 施事者 受事者
    1 0 1 0 1 0 1 0 0.5 1 0.5 0 1 0.5 0 0 1
    下载: 导出CSV

    表  4  实验参数设置

    Table  4  Hyper parameters of experiment

    Parameter Parameter description Value
    t Training epochs 50
    b Batch 100
    d Dropout rate 0.5
    l IndRNN layers 3
    k Kernel Size 3
    下载: 导出CSV

    表  5  与以往研究对比(%)

    Table  5  Compared with previous studies (%)

    Model P R F
    Tian 82.33 72.07 76.86
    Li 88 80 83.81
    CMAIR 90.79 83.25 86.86
    下载: 导出CSV

    表  6  不同模型消解性能对比(%)

    Table  6  Comparison of different model anaphora resolution performance (%)

    Model P R F
    CNN 75.47 74.16 74.81
    ATT-CNN-1 80.14 77.46 78.78
    ATT-CNN-2 82.37 78.80 80.55
    ATT-CNN-3 83.02 79.61 81.27
    下载: 导出CSV

    表  7  不同特征类型对指代消解性能影响(%)

    Table  7  The effect of different feature types on the anaphora resolution (%)

    特征类型 P R F
    Vattention + Vcontext 83.29 79.43 81.31
    Vhand-crafted + Vattention 86.81 80.24 83.40
    CMAIR 90.79 83.25 86.86
    下载: 导出CSV
  • [1] Zelenko D, Aone C, Tibbetts J. Coreference resolution for information extraction. In: Proceedings of the 2004 ACL Workshop on Reference Resolution and its Applications. Barcelona, Spain: ACL, 2004. 9-16
    [2] Deemter K V, Kibble R. On coreferring: Coreference in muc and related annotation schemes. Computational Linguistics, 2000, 26(4): 629-637 doi: 10.1162/089120100750105966
    [3] Kim Y. Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: ACL, 2014. 1746-1751
    [4] Irsoy O, Cardie C. Opinion mining with deep recurrent neural networks. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar: ACL, 2014. 720-728
    [5] Tai K S, Socher R, Manning C D. Improved semantic representations from tree-structured long short-term memory networks. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Beijing, China: ACL, 2015. 1556-1566
    [6] Chen C, Ng V. Chinese zero pronoun resolution with deep neural networks. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin, Germany: ACL, 2016. 778-788
    [7] Chen C, Ng V. Deep reinforcement learning for mention-ranking coreference models. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Texas, USA: ACL, 2016. 2256-2262
    [8] Iida R, Torisawa K, Oh J H. Intra-sentential subject zero anaphora resolution using multi-column convolutional neural network. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Texas, USA: ACL, 2016. 1244-1254
    [9] Mnih V, Heess N, Graves A. Recurrent models of visual attention. In: Proceedings of the Advances in Neural Information Processing Systems. Montreal, Canada: NIPS, 2014. 2204-2212
    [10] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[Online], available: https://arxiv.org/pdf/1409.0473v6.pdf, December 27, 2018
    [11] Yin W, Sch\"{u}tze H, Xiang B, Zhou B. Abcnn: Attention-based convolutional neural network for modeling sentence pairs. In: Proceedings of the 2016 Transactions of the Association for Computational Linguistics. Texas, USA: ACL, 2016. 259-272
    [12] Wang Y, Huang M, Zhao L. Attention-based lstm for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Texas, USA: ACL, 2016. 606-615
    [13] Soon W M, Ng H T, Lim D C Y. On coreferring: A machine learning approach to coreference resolution of noun phrases. Computational Linguistics, 2001, 27(4): 521-544 doi: 10.1162/089120101753342653
    [14] Ng V, Cardie C. Improving machine learning approaches to coreference resolution. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Pennsylvania, USA: ACL, 2002. 104-111
    [15] Yang X, Zhou G, Su J, Tan C L. Coreference resolution using competition learning approach. In: Proceedings of the 41th Annual Meeting on Association for Computational Linguistics. Sapporo, Japan: ACL, 2003. 176-183
    [16] Chen C, Ng V. Chinese zero pronoun resolution: an unsupervised approach combining ranking and integer linear programming. Springer Verlag, 2014, 36(5): 823-834 doi: 10.5555/2892753.2892778
    [17] Clark K, Manning C D. Deep reinforcement learning for mention-ranking coreference models[Online], available: https://arxiv.org/pdf/1609.08667.pdf, December 27, 2018
    [18] Yin Q, Zhang Y, Zhang W, Liu T. Chinese zero pronoun resolution with deep memory network. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Texas, USA: ACL, 2016. 606-615
    [19] 李敏, 禹龙, 田生伟, 吐尔根·依布拉音, 赵建国. 基于深度学习的维吾尔语名词短语指代消解. 自动化学报, 2017, 43(11): 1984-1992 doi: 10.16383/j.aas.2017.c160330

    Li Min, Yu Long, Tian Sheng-Wei, Turglm Ibrahim, Zhao Jian-Guo. Coreference resolution of uyghur noun phrases based on deep learning. Acta Automatica Sinica, 2017, 43(11): 1984-1992 doi: 10.16383/j.aas.2017.c160330
    [20] 田生伟, 秦越, 禹龙, 吐尔根·依布拉音, 冯冠军. 基于Bi-LSTM的维吾尔语人称代词指代消解. 电子学报, 2018, 46(7): 1691-1699 doi: 10.3969/j.issn.0372-2112.2018.07.022

    Tian Sheng-Wei, Qin Yue, Yu Long, Turglm Ibrahim, Feng Guan-Jun. Anaphora resolution of uyghur personal pronouns based on Bi-LSTM. Acta Electronica Sinica, 2018, 46(7): 1691-1699 doi: 10.3969/j.issn.0372-2112.2018.07.022
    [21] 李冬白, 田生伟, 禹龙, 吐尔根·依布拉音, 冯冠军. 基于深度学习的维吾尔语人称代词指代消解. 中文信息学报, 2017, 31(4): 80-88 https://www.cnki.com.cn/Article/CJFDTOTAL-MESS201704012.htm

    Li Dong-Bai, Tian Sheng-Wei, Yu Long, Turglm Ibrahim, Feng Guan-Jun. Deep learning for pronominal anaphora resolution in uyghur. Journal of Chinese Information Processing, 2017, 31(4): 80-88 https://www.cnki.com.cn/Article/CJFDTOTAL-MESS201704012.htm
    [22] Li S, Li W, Cook C, Zhu C, Gao Y. Independently recurrent neural network (indrnn): Building A longer and deeper rnn. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Utah, USA: IEEE, 2018. 5457-5466
    [23] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space[Online], available: https://arxiv.org/pdf/1301.3781.pdf, December 27, 2018
    [24] Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 2011, 12(7): 2121-2159 http://web.stanford.edu/~jduchi/projects/DuchiHaSi10.html
    [25] Hinton G E, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R R. Improving neural networks by preventing co-adaptation of feature detectors[Online], available: https://arxiv.org/pdf/1207.0580.pdf, December 27, 2018
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  248
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 录用日期:  2018-12-24
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回