-
摘要: 研究了李雅普诺夫函数的选择对求解系统H∞范数的影响,提出了一种李雅普诺夫函数的直接优化方法,该方法通过优化黎卡提不等式中的李雅普诺夫函数,给出了H∞范数的通用解析表达式,实现了二阶系统H∞范数的精确求解.不同于需要繁琐优化过程的线性矩阵不等式(Linear matrix inequality,LMI)方法,本文提供了一种有效的途径以直接求解系统H∞范数.
-
关键词:
- H∞范数 /
- Lyapunov函数 /
- 线性系统 /
- Riccati不等式 /
- 鲁棒稳定性
Abstract: The paper studies the effect of the Lyapunov function selection on solving the system H∞ norm. A Lyapunov function optimization method is presented. By optimizing the Lyapunov function in the Riccati inequality, the presented method gives the analytical expression for the H∞ norm, such that the H∞ norm of the second-order system can be accurately solved. Different from the linear matrix inequality approaches which need the complex optimization process, the paper provides an alternative way to directly get the H∞ norm.-
Key words:
- H∞ norm /
- Lyapunov function /
- linear system /
- Riccati inequality /
- robust stability
1) 本文责任编委 高会军 -
表 1 $H_{\infty}$范数分析($\alpha = 2$)
Table 1 $H_{\infty}$ norm analysis ($\alpha = 2$)
$\lambda$ $\nu$ MATLAB 定理4 稳态误差$\|A^{-1}\|$ 状态上界 2 6 0.626 0.626 0.307 0.626 2 4 0.626 0.626 0.419 0.626 2 2 0.626 0.626 0.588 0.626 2 1.2 0.626 0.626 0.626 0.626 2 1 0.622 0.622 0.622 0.622 2 0 0.501 0.501 0.501 0.501 -
[1] 黄琳.稳定性与鲁棒性理论基础.北京:科学出版社, 2003. 404- 541Huang Lin. Theoretical Basis of Stability and Robustness. Beijing: Science Press, 2003. 404-541 [2] Doyle J C, Glover K, Khargonekar P, Francis B. State-space solutions to standard $H_{2}$ and H∞ control problems. IEEE Transactions on Automatic Control, 1989, 34(8): 831-847 doi: 10.1109/9.29425 [3] Robel G. On computing the infinity norm. IEEE Transactions on Automatic Control, 1989, 34(8): 882-884 doi: 10.1109/9.29433 [4] Chang B C. A stable state-space realization in the formulation of H∞ norm computation. IEEE Transactions on Automatic Control, 1987, 32(9): 811-815 doi: 10.1109/TAC.1987.1104707 [5] Trentelman H L, Takaba K, Monshizadeh N. Robust synchronization of uncertain linear multi-agent systems. IEEE Transactions on Automatic Control, 2013, 58(6): 1511- 1523 doi: 10.1109/TAC.2013.2239011 [6] Iwasaki T, Skelton R E. All controllers for the general H∞ control problem: LMI existence conditions and state space formulas. Automatica, 1994, 30: 1307-1317 doi: 10.1016/0005-1098(94)90110-4 [7] Wang R, Liu G P, Wang W, Rees D, Zhao Y B. H∞ control for networked predictive control systems based on the switched Lyapunov function method. IEEE Transactions on Industrial Electronics, 2010, 57(10): 3565-3571 doi: 10.1109/TIE.2009.2038341 [8] Dong H L, Wang Z D, Ding S X, Gao H J. On H∞ estimation of randomly occurring faults for a class of nonlinear time-varying systems with fading channels. IEEE Transactions on Automatic Control, 2016, 61(2): 479-484 doi: 10.1109/TAC.2015.2437526 [9] Lee Y S, Moon Y S, Kwon W H, Park P G. Delay-dependent robust H∞ control for uncertain systems with a state-delay Automatica, 2004, 40: 65-72 doi: 10.1016/j.automatica.2003.07.004 [10] 钟佳岐, 梁山, 熊庆宇.德拜媒质微波加热过程的H∞保性能温度跟踪控制.自动化学报, 2018, 44(8): 1518-1527 http://www.aas.net.cn/CN/abstract/abstract19335.shtmlZhong Jia-Qi, Liang Shan, Xiong Qing-Yu. H∞ guaranteed cost temperature tracking control for microwave heating debye media process. Acta Automatica Sinica, 2018, 44(8): 1518-1527 http://www.aas.net.cn/CN/abstract/abstract19335.shtml [11] 周笔锋, 罗毅平.时滞分布参数系统中和控制器设计.自动化学报, 2018, 44(12): 2222-2227 http://www.aas.net.cn/CN/abstract/abstract19401.shtmlZhou Bi-Feng, Luo Yi-Ping. Neutralization control of distributed parameter systems with delay. Acta Automatica Sinica, 2018, 44(12): 2222-2227 http://www.aas.net.cn/CN/abstract/abstract19401.shtml [12] 王丽媛, 郭戈, 庄严.网络控制系统发送功率分配问题研究.自动化学报, 2017, 43(8): 1350-1357 http://www.aas.net.cn/CN/abstract/abstract19109.shtmlWang Li-Yuan, Guo Ge, Zhuang Yan. Transmission power allocation for networked control systems. Acta Automatica Sinica, 2017, 43(8): 1350-1357 http://www.aas.net.cn/CN/abstract/abstract19109.shtml [13] Xu J, Zhang G L, Zeng J, Du B Y, Jia X. Robust H∞ consensus control for high-order discrete-time multi-agent systems with parameter uncertainties and external disturbances. Acta Automatica Sinica, 2017, 43(10): 1850-1857 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdhxb201710015 [14] Zhu K W, Zhao J, Georgi M D. H∞ tracking control for switched LPV systems with an application to aero-engines. IEEE/CAA Journal of Automatica Sinica, 2018, 5(3): 699-705 doi: 10.1109/JAS.2016.7510025 [15] Polański A. On infinity norms as Lyapunov functions for linear systems. IEEE Transactions on Automatic Control, 1995, 40(7): 1270-1274 doi: 10.1109/9.400479 [16] 金辉宇, 刘丽丽, 兰维瑶.二阶系统线性自抗扰控制的稳定性条件.自动化学报, 2018, 44(9): 1725-1728 http://www.aas.net.cn/CN/abstract/abstract19354.shtmlJin Hui-Yu, Liu Li-Li, Lan Wei-Yao. On stability condition of linear active disturbance rejection control for second-order systems. Acta Automatica Sinica, 2018, 44(9): 1725-1728 http://www.aas.net.cn/CN/abstract/abstract19354.shtml