2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于KPLS鲁棒重构误差的高炉燃料比监测与异常识别

周平 刘记平 梁梦圆 张瑞垚

周平,  刘记平,  梁梦圆,  张瑞垚.  基于KPLS鲁棒重构误差的高炉燃料比监测与异常识别.  自动化学报,  2021,  47(7): 1661−1671 doi: 10.16383/j.aas.c180579
引用本文: 周平,  刘记平,  梁梦圆,  张瑞垚.  基于KPLS鲁棒重构误差的高炉燃料比监测与异常识别.  自动化学报,  2021,  47(7): 1661−1671 doi: 10.16383/j.aas.c180579
Zhou Ping,  Liu Ji-Ping,  Liang Meng-Yuan,  Zhang Rui-Yao.  KPLS robust reconstruction error based monitoring and anomaly identification of fuel ratio in blast furnace ironmaking.  Acta Automatica Sinica,  2021,  47(7): 1661−1671 doi: 10.16383/j.aas.c180579
Citation: Zhou Ping,  Liu Ji-Ping,  Liang Meng-Yuan,  Zhang Rui-Yao.  KPLS robust reconstruction error based monitoring and anomaly identification of fuel ratio in blast furnace ironmaking.  Acta Automatica Sinica,  2021,  47(7): 1661−1671 doi: 10.16383/j.aas.c180579

基于KPLS鲁棒重构误差的高炉燃料比监测与异常识别

doi: 10.16383/j.aas.c180579
基金项目: 国家自然科学基金项目(61890934, 61790572), 辽宁省“兴辽英才计划”项目(XLYC1907132), 中央高校基本科研业务费项目(N180802003), 矿冶过程自动控制技术国家(北京市)重点实验室开放课题资助(BGRIMM-KZSKL-2017-04)
详细信息
    作者简介:

    周平:东北大学教授. 分别于2003年、2006年、2013年获得东北大学学士学位、硕士学位和博士学位. 主要研究方向为工业过程运行反馈控制, 数据驱动建模与控制. 本文通信作者.E-mail: zhouping@mail.neu.edu.cn

    刘记平:2017年获得东北大学硕士学位. 主要研究方向为数据驱动质量监测.E-mail: m18842388402@163.com

    梁梦圆:东北大学硕士研究生, 2016年获得东北大学秦皇岛分校大学学士学位. 主要研究方向为数据驱动质量监测.E-mail: liangmy1994@163.com

    张瑞垚:东北大学硕士研究生. 2018年获得东北大学学士学位. 主要研究方向为数据驱动质量监测.E-mail: 1870768@stu.neu.edu.cn

KPLS Robust Reconstruction Error Based Monitoring and Anomaly Identification ofFuel Ratio in Blast Furnace Ironmaking

Funds: Supported by National Natural Science Foundation of China (61890934, 61790572), Liaoning Revitalization Talents Program (XLYC1907132), and Fundamental Research Funds for the Central Universities (N180802003). the State (Beijing) Key Laboratory of Process Automation in Mining & Metallurgy (BGRIMM-KZSKL-2017-04)
More Information
    Author Bio:

    ZHOU Ping Professor at Northeastern University. He received his bachelor degree, master degree and Ph. D. degree from Northeastern University in 2003, 2006 and 2013, respectively. His research interest covers operation feedback control of industrial process, data-driven modeling and control. Corresponding author of this paper

    LIU Ji-Ping She received her master degree from Northeastern University in 2017. Her research interest covers data-driven quality monitoring

    LIANG Meng-Yuan Master student at Northeastern University. She received his bachelor degree from Northeastern University at Qinhuangdao in 2016. Her research interest covers data-driven quality monitoring

    ZHANG Rui-Yao Master student at Northeastern University. He received his bachelor degree from Northeastern University in 2018. His research interest covers data-driven quality monitoring

  • 摘要:

    作为钢铁冶金制造的核心工序, 高炉炼铁是典型的高能耗过程, 其运行能耗约占钢铁总能耗的50%以上, 其中, 80%的能耗是焦炭和煤粉等燃料消耗. 因此, 对表征高炉燃料消耗的燃料比参数进行监测, 并尽可能早地识别影响燃料比异常波动的关键因素, 对于高炉炼铁过程的节能降耗具有重要意义. 本文针对先验故障知识少的高炉燃料比监测与异常识别难题, 提出一种基于核偏最小二乘(Kernel partial least squares, KPLS)鲁棒重构误差的故障识别方法. 该方法首先建立过程变量与监测变量的KPLS监测模型, 然后根据非线性映射空间的协方差矩阵和核空间Gram矩阵之间的关系, 反向估计原始空间变量的正常估值. 为了增强算法的鲁棒性, 采用迭代去噪算法减少异常数据对原始空间正常估值的影响. 通过利用原始空间正常估值和真实值来构造故障识别指标, 并给出故障识别指标的控制限. 基于实际工业数据的高炉数据实验表明所提方法不仅可以监测出正常工况下影响燃料比异常变化的潜在因素, 还可识别出异常工况下影响燃料比异常变化的关键因素, 具有很好的工程应用前景.

    1)  收稿日期 2018-08-31 录用日期 2018-12-03 Manuscript received August 31, 2018; accepted December 3, 2018 国家自然科学基金项目 (61890934, 61790572), 辽宁省“兴辽英才计划”项目 (XLYC1907132), 中央高校基本科研业务费项目 (N180802003), 矿冶过程自动控制技术国家 (北京市) 重点实验室开放课题资助 (BGRIMM-KZSKL-2017-04) Supported by National Natural Science Foundation of China (61890934, 61790572), Liaoning Revitalization Talents Program
    2)  (XLYC1907132), and Fundamental Research Funds for the CentralUniversities (N180802003). the State (Beijing) Key Laboratory of Process Automation in Mining & Metallurgy (BGRIMM-KZSKL-2017-04) 本文责任编委 曾志刚 Recommended by Associate Editor ZENG Zhi-Gang 1. 东北大学流程工业综合自动化国家重点实验室 沈阳 110819 1. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819
  • 图  1  高炉炼铁过程能耗示意图

    Fig.  1  Schematic diagram of energy consumption in blast furnace ironmaking process

    图  2  故障1的KPLS监测图

    Fig.  2  KPLS monitoring chart for fault 1

    图  4  故障2的KPLS监测图

    Fig.  4  KPLS monitoring chart for fault 2

    图  6  故障3的KPLS监测图

    Fig.  6  KPLS monitoring chart for fault 3

    图  3  故障1的故障变量识别图

    Fig.  3  Fault variable identification map of fault 1

    图  5  故障2的故障变量识别图

    Fig.  5  Fault variable identification map of fault 2

    图  7  故障3的故障变量识别图

    Fig.  7  Fault variable identification map of fault 3

    图  8  高炉燃料比监测曲线

    Fig.  8  Blast furnace fuel ratio monitoring curve

    图  9  高炉燃料比休哈顿图及残差图

    Fig.  9  Blast furnace fuel ratio Hughton diagram and residual map

    图  10  鼓风湿度异常时高炉燃料比异常识别曲线

    Fig.  10  Blast furnace fuel ratio anomaly identification curve when blast humidity is abnormal

    图  11  高炉操作调节关联图

    Fig.  11  Association diagram of blast furnace operation adjustment

    图  12  管道行程异常工况时高炉燃料比异常识别曲线

    Fig.  12  Abnormal identification curve of blast furnace fuel ratio in abnormal pipeline condition

    表  1  部分过程变量控制限与故障指标值的差值

    Table  1  The value of the control limit is reduced to the value of the fault index for part process variables.

    过程变量时间 (1h)
    $T$290$T$291$T$292$T$293$T$294$T$295$T$296$T$297$T$298$T$299$T$300
    焦炭负荷0.6180.6920.6920.6920.095−0.394−0.306−0.397−18.397−0.676−5.217
    球团0.8470.8470.8470.880−0.533−0.577−0.581−0.245−0.611−1.366−0.552
    烧结比1.0251.0251.0241.024−1.464−1.545−1.557−1.556−1.599−1.508−1.504
    球团比0.8690.8710.8700.870−0.730−0.793−0.798−0.801−0.837−0.768−0.758
    顶压风量比0.372−0.744−0.744−0.744−1.818−2.467−1.816−0.286−0.722−3.198−0.731
    标准风速0.027−0.654−0.502−0.6540.8610.7900.8610.9090.9090.1840.068
    鼓风动能0.087−0.5690.156−0.2170.9060.9010.9060.9020.9060.6380.673
    炉腹煤气指数0.080−0.771−0.309−0.7710.9330.9290.9330.8640.9320.6940.690
    下载: 导出CSV
  • [1] Zhou Ping, Song He-Da, Wang Hong, Chai Tian-You. Data-driven nonlinear subspace modeling for prediction and control of molten iron quality indices in blast furnace ironmaking. IEEE Trans. Control Systems Technology, 2017, 25(5): 1761−1774 doi: 10.1109/TCST.2016.2631124
    [2] 蒋朝辉, 董梦林, 桂卫华, 阳春华, 谢永芳. 基于Bootstrap的高炉铁水硅含量二维预报. 自动化学报, 2016, 42(5): 715−723

    Jiang Zhao-Hui, Dong Meng-Lin, Gui Wei-Hua, Yang Chun-Hua, Xie Yong-Fang. Two-dimensional prediction for silicon content of hot metal of blast furnace based on bootstrap. Acta Automatica Sinica, 2016, 42(5): 715−723
    [3] Jian Ling, Li Jun-dong, Luo Shi-Hua. Exploiting expertise rules for statistical data-driven modelling. IEEE Trans. Ind. Electron., 2017, 64(11): 8647−8656 doi: 10.1109/TIE.2017.2703659
    [4] 周平, 刘记平. 基于数据驱动多输出ARMAX建模的高炉十字测温中心温度在线估计. 自动化学报, 2018, 44(3): 552−561

    Zhou Ping, Liu Ji-Ping. Data-driven multi-output ARMAX modeling for online estimation of central temperatures for cross temperature measuring in blast furnace ironmaking. Acta Automatica Sinica, 2018, 44(3): 552−561
    [5] Xu Wan-Ren, Zhu Ren-Liang, Zhang Long-Lai, Zhang Yong-Zhong. Reason and control practice of hearth sidewall erosion of No.2 BF at Baosteel. Iron and Steel, 2007, 42(1): 8−12
    [6] Gao Jian-Jun, Zhang Ying-Yi, Qi Yuan-Hong, Xu Hai-Chuan, Shi Xue-Feng. Energy consumption analysis on blast furnace ironmaking process using pre-reduced burden. Iron and Steel, 2014, 49(7): 61−65
    [7] Liu Xiong, Chen Lin-Gen, Qin Xiao-Yong, Sun Feng-Rui. Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows. Energy, 2015, 93: 10−19 doi: 10.1016/j.energy.2015.09.008
    [8] Zhang Yan-Yan, Zhang Xiao-Lei, Tang Li-Xin. Energy consumption prediction in ironmaking process using hybrid algorithm of SVM and PSO. In: Proceedings of the International Conference on Advances in Neural Networks, IEEE, 2012. 1(4): 594−600
    [9] Wei Na, Li Li, Zhu Jun, Li Na. Iron and steel process energy consumption prediction model based on selective ensemble. In: Proceedings of the International Conference on Advanced Mechatronic Systems. Luoyang, China: IEEE, 2013. 203−207
    [10] Naito M, Takeda K, Matsui Y. Ironmaking technology for the last 100 years: deployment to advanced technologies from introduction of technological know-how, and evolution to next-generation process. ISIJ International, 2015, 55(1): 7−35 doi: 10.2355/isijinternational.55.7
    [11] Lin Zhi-Ling, Yue You-Jun, Zhao Hui, Li Hong-Ru. Judging the states of blast furnace by ART2 neural network. International Symposium on Neural Networks, 2009, 56: 857−864
    [12] Rajakarunakaran S, Venkumar P, Devaraj D, Rao K S P. Artificial neural network approach for fault detection in rotary system. Applied Soft Computing, 2008, 8(1): 740−748 doi: 10.1016/j.asoc.2007.06.002
    [13] Dong Li-Xin, Xiao Deng-Ming, Liang Yi-Shan, Liu Yi-Lu. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129−136 doi: 10.1016/j.jpgr.2006.12.013
    [14] Zhao Chun-Hui, Wang Fu-Li, Zhang Ying-Wei. Nonlinear process monitoring based on kernel dissimilarity analysis. Control Engineering Practice, 2009, 17(1): 221−230 doi: 10.1016/j.conengprac.2008.07.001
    [15] Zhao Chun-Hui, Gao Fu-Rong. Fault-relevant principal component analysis (FPCA) method for multivariate statistical modeling and process monitoring. Chemometrics and Intelligent Laboratory Systems, 2014, 133: 1−16 doi: 10.1016/j.chemolab.2014.01.009
    [16] Zhao Chun-Hui, Sun You-Xian. Multispace total projection to latent structures and its application to online process monitoring. IEEE Trans. Control Systems Technology, 2014, 22(3), 868−883
    [17] Yao Li-Na, Qin Ji-Feng, Wang Hong, Jiang Bin. Design of new fault diagnosis and fault tolerant control scheme for non-Gaussian singular stochastic distribution systems. Automatica, 2012, 48(9): 2305−2313 doi: 10.1016/j.automatica.2012.06.036
    [18] Qin S J. Statistical process monitoring: basics and beyond. Journal of Chemometrics, 2003, 17(8-9): 480−502 doi: 10.1002/cem.800
    [19] Lee J M, Yoo C K, Choi S, Vanrolleghem P A, Lee I B. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59(1): 223−234 doi: 10.1016/j.ces.2003.09.012
    [20] Cho J H, Lee J M, Choi S W, Lee D, Lee I B. Fault identification for process monitoring using kernel principal component analysis. Chemical Engineering Science, 2005, 60(1): 279−288 doi: 10.1016/j.ces.2004.08.007
    [21] Rosipal R, Trejo L J. Kernel partial least squares regression in reproducing kernel Hilbert space. Journal of Machine Learning Research, 2002, 2(2): 97−123
    [22] Wold S, Kettaneh-Wold N, Skagerberg B. Nonlinear PLS modeling. Chemometrics and Intelligent Laboratory Systems, 1989, 7(1-2): 53−65 doi: 10.1016/0169-7439(89)80111-X
    [23] Qin S J, Mcavoy T J. Nonlinear PLS modeling using neural networks. Computers and Chemical Engineering, 1992, 16(4): 379−391 doi: 10.1016/0098-1354(92)80055-E
    [24] Baffi G, Martin E B, Morris A J. Non-linear projection to latent structures revisited (the neural network PLS algorithm). Computers and Chemical Engineering, 1999, 23(9): 1293−1307 doi: 10.1016/S0098-1354(99)00291-4
    [25] Peng Kai-Xing, Zhang Kai, You Bo, Dong Jie, Wang Z D. A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes. IEEE Transactions on Industrial Electronics, 2016, 63(4): 2615−2624
    [26] Shao R, Jia F, Martin E B, Morris A J. Wavelets and non-linear principal components analysis for process monitoring. Control Engineering Practice, 1997, 7(7): 865−879
    [27] Dunia R, Qin S J, Edgar T F, McAvoy T J. Identification of faulty sensors using principal component analysis. AIChE Journal, 2010, 42(10): 2797−2812
    [28] Sang W C, Lee C, Lee J M, Lee I B. Fault detection and identification of nonlinear processes based on kernel PCA. Chemometrics and Intelligent Laboratory Systems, 2005, 75(1): 55−67 doi: 10.1016/j.chemolab.2004.05.001
    [29] Kim K, Lee J M, Lee I B. A novel multivariate regression approach based on kernel partial least squares with orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems, 2005, 79(1-2): 22−30 doi: 10.1016/j.chemolab.2005.03.003
    [30] Miller P, Swanson R E, Heckler C E. Contribution plots: a missing link in multivariate quality control. Applied Mathematics and Computer Science, 1998, 8(4): 775−792
    [31] Struc V, Pavesic N. Gabor-based kernel partial-least-squares discrimination features for face recognition. Informatica, 2009, 20(1): 115−138 doi: 10.15388/Informatica.2009.240
    [32] Mika S, Scholkopf B, Smola A, Muller K R, Scholz M, Ratsch G. Kernel PCA and de-noising in feature spaces. Advances in Neural Information Processing Systems, 1999, 11: 536−542
    [33] Takahashi T, Kurita T. Robust de-noising by kernel PCA. International Conference on Artificial Neural Networks, 2002, 2415: 739−744
    [34] Koc E K, Bozdogan H. Model selection in multivariate adaptive regression spines (MARS) using information complexity as the fitness function. Machine Learning, 2015, 101(1-3): 35−58 doi: 10.1007/s10994-014-5440-5
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  1200
  • HTML全文浏览量:  271
  • PDF下载量:  192
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-31
  • 修回日期:  2018-12-03
  • 网络出版日期:  2021-07-27
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回