2.845

2023影响因子

(CJCR)

  • 中文核心
  • EI
  • 中国科技核心
  • Scopus
  • CSCD
  • 英国科学文摘

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于区间箱粒子多伯努利滤波器的传感器控制策略

陈辉 邓东明 韩崇昭

陈辉, 邓东明, 韩崇昭. 基于区间箱粒子多伯努利滤波器的传感器控制策略. 自动化学报, 2021, 47(6): 1428-1443 doi: 10.16383/j.aas.c180541
引用本文: 陈辉, 邓东明, 韩崇昭. 基于区间箱粒子多伯努利滤波器的传感器控制策略. 自动化学报, 2021, 47(6): 1428-1443 doi: 10.16383/j.aas.c180541
Chen Hui, Deng Dong-Ming, Han Chong-Zhao. Sensor control based on interval box-particle multi-Bernoulli fllter. Acta Automatica Sinica, 2021, 47(6): 1428-1443 doi: 10.16383/j.aas.c180541
Citation: Chen Hui, Deng Dong-Ming, Han Chong-Zhao. Sensor control based on interval box-particle multi-Bernoulli fllter. Acta Automatica Sinica, 2021, 47(6): 1428-1443 doi: 10.16383/j.aas.c180541

基于区间箱粒子多伯努利滤波器的传感器控制策略

doi: 10.16383/j.aas.c180541
基金项目: 

国家自然科学基金 61873116

国家自然科学基金 61763029

国防基础科研项目 JCKY2018427C002

甘肃省科技计划项目 20JR10RA184

详细信息
    作者简介:

    邓东明  兰州理工大学电气工程与信息工程学院硕士研究生. 主要研究方向为传感器管理.E-mail: dengdongming19@163.com

    韩崇昭  西安交通大学电子与信息工程学院教授. 主要研究方向为多源信息融合, 随机控制与自适应控制, 非线性频谱分析. E-mail: czhan@mail.xjtu.edu.cn

    通讯作者:

    陈辉  兰州理工大学电气工程与信息工程学院教授. 主要研究方向为目标跟踪和传感器管理. 本文通信作者.E-mail: huich78@hotmail.com

Sensor Control Based on Interval Box-particle Multi-Bernoulli Filter

Funds: 

National Natural Science Foundation of China 61873116

National Natural Science Foundation of China 61763029

National Defense Basic Research Project of China JCKY2018427C002

Gansu Provincial Science and Technology Planning 20JR10RA184

More Information
    Author Bio:

    DENG Dong-Ming  Master student at the School of Electrical and Information Engineering, Lanzhou University of Technology. His main research interest is sensor management

    HAN Chong-Zhao  Professor at the School of Electronic and Information Engineering, Xi0an Jiaotong University. His research interest covers multi-source information fusion, stochastic control and adaptive control, and nonlinear spectral analysis

    Corresponding author: CHEN Hui  Professor at the School of Electrical and Information Engineering, Lanzhou University of Technology. His research interest covers target tracking and sensor management. Corresponding author of this paper
  • 摘要:

    多目标跟踪中的传感器控制本质上是一个最优非线性控制问题, 其在理论分析和计算上极具挑战性. 本文基于区间不确定性推理, 利用箱粒子多伯努利滤波器提出了一种基于信息测度的传感器控制策略. 首先, 本文利用箱粒子实现多伯努利滤波器, 并通过一组带有权值的箱粒子来表征多目标后验概率密度函数. 其次, 利用箱粒子的高斯分布假设, 将多伯努利密度近似为高斯混合. 随后, 选择柯西施瓦兹(Cauchy-Schwarz, CS) 散度作为评价函数, 并详细推导了两个高斯混合之间的CS散度的求解公式, 以此为基础提出相应的传感器控制策略. 此外, 作为一种对比方案, 利用蒙特卡罗方法, 本文还给出了通过对箱粒子进行混合均匀采样, 进而通过点粒子求解CS散度的递推公式, 并提出了相应的控制策略. 最后, 仿真实验验证了所提算法的有效性.

    Recommended by Associate Editor CAO Xiang-Hui
    1)  本文责任编委 曹向辉
  • 图  1  实际的目标轨迹

    Fig.  1  Actual target trajectories

    图  2  四种控制方案的OSPA距离比较

    Fig.  2  OSPA distances for four control strategies

    图  3  所提方案的传感器控制轨迹

    Fig.  3  Sensor trajectory for the proposed strategy

    图  4  四种控制方案的势估计比较

    Fig.  4  Cardinality estimation for four control strategies

    图  5  多目标势估计标准差

    Fig.  5  Standard deviation of multi-target cardinality estimation

    图  6  多目标平均包含值

    Fig.  6  Mean inclusion values of multi-target

    图  7  所提方案中不同过程噪声强度对估计性能的影响

    Fig.  7  Tracking performance of different process noise intensities for the proposed strategy

    图  8  所提方案中不同量测噪声系数对估计性能的影响

    Fig.  8  Tracking performance of different measure noise factors for the proposed strategy

    图  9  所提方案中不同K值对估计性能的影响

    Fig.  9  Tracking performance of difierent K values for the proposed strategy

    图  10  所提方案中不同的传感器速度对估计性能的影响

    Fig.  10  Tracking performance of different sensor speeds for the proposed strategy

    图  11  所提方案的传感器控制轨迹

    Fig.  11  Sensor control trajectories for the proposed strategy

    表  1  多目标参数

    Table  1  Parameters of multi-target

    新生时刻(s) 消亡时刻(s) 初始位置(m) 速度(m/s)
    目标1 1 50 [-800, -600] [8, 7]
    目标2 5 40 [-900, 800] [10, -12]
    目标3 10 40 [1 000, -400] [-20, -10]
    目标4 15 50 [700, -800] [-7, 16]
    下载: 导出CSV

    表  2  四种控制方案势估计误差均值的绝对值

    Table  2  Absolute value of cardinality error for four control strategies

    方案 势误差Ne
    方案一(箱粒子高斯分布近似) 0.21338
    方案二(箱粒子混合均匀采样) 0.23839
    方案三(随机控制) 0.24979
    方案四(PENT) 0.19987
    下载: 导出CSV

    表  3  四种控制方案单步平均运行时间对比

    Table  3  The average execution time for four control strategies

    方案 单步平均运行时间(s)
    方案一(箱粒子高斯分布近似) 2.54639
    方案二(箱粒子混合均匀采样) 3.71813
    方案三(随机控制) 1.88743
    方案四(PENT) 5.55129
    下载: 导出CSV

    表  4  不同高斯分量个数的性能比较

    Table  4  Tracking performance comparison of different Gaussian components

    wm 0.3 0.2 0.1 0.01
    rm = 0.5 OSPA(m) 18.04 17.62 17.38 16.88
    时间(s) 2.49 2.61 2.87 3.59
    rm = 0.3 OSPA(m) 17.57 17.19 16.95 16.48
    时间(s) 2.62 2.76 3.01 3.83
    rm = 0.1 OSPA(m) 17.27 17.01 16.53 15.98
    时间(s) 2.89 3.12 3.64 4.37
    下载: 导出CSV
  • [1] Wang X Y, Hoseinnezhad R, Gostar A K, Rathnayake T, Xu B L, Babhadiashar A. Multi-sensor control for multi-object Bayes filters. Signal Processing, 2018, 142(1): 260-270 doi: 10.1016/j.sigpro.2017.07.031
    [2] Gostar A K, Hoseinnezhad R, Babhadiashar A, Liu W F. Sensor-management for multi-target filters via minimization of posterior dispersion. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2877-2884 doi: 10.1109/TAES.2017.2718280
    [3] Gostar A K, Hoseinnezhad R, Rathnayake T, Wang X Y, Babhadiashar A. Constrained sensor control for labeled multi-bernoulli filter using Cauchy-Schwarz divergence. IEEE Signal Processing Letters, 2017, 24(9): 1313-1317 doi: 10.1109/LSP.2017.2723924
    [4] Li W, Han C Z. Dual sensor control scheme for multi-target tracking. Sensors, 2018, 18 (5): 1653 doi: 10.3390/s18051653
    [5] Mahler R P S. Statistical Multisource Multitarget Information Fusion. Norwood, MA, USA: Artech House, 2007. http://www.mendeley.com/catalog/statistical-multisourcemultitarget-information-fusion/
    [6] Mahler R P S. Advances in Statistical Multisource Multitarget Information Fusion. Norwood, MA, USA: Artech House, 2014. http://www.abe.pl/pl/offer/7145/ksiazki-artech-house/?deposit=20848432
    [7] Mahler R P S. Multitarget Bayes filtering via first-order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152-1178 doi: 10.1109/TAES.2003.1261119
    [8] Mahler R P S. PHD filters of higher order in target number. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523-1543 doi: 10.1109/TAES.2007.4441756
    [9] Vo B T, Vo B N, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations. IEEE Transactions on Signal Processing, 2009, 57(2): 409-423 doi: 10.1109/TSP.2008.2007924
    [10] Vo B N, Vo B T, Phung D. Labeled random finite sets and the Bayes multi-target tracking filter. IEEE Transactions on Signal Processing, 2014, 62(24): 6554-6567 doi: 10.1109/TSP.2014.2364014
    [11] Vo B N, Vo B T, Hoang H G. An efficient implementation of the generalized labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2017, 65(8): 1975-1987 doi: 10.1109/TSP.2016.2641392
    [12] Vo B N, Vo B T. Multi-sensor multi-object tracking with the generalized labeled multi-Bernoulli filter. IEEE Transactions on Signal Processing, 2019, 67(23): 5952-5967 doi: 10.1109/TSP.2019.2946023
    [13] Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter. IEEE Transactions on Signal Processing, 2006, 54(11): 4091-4104 doi: 10.1109/TSP.2006.881190
    [14] Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with random finite sets. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4): 1224-1245 doi: 10.1109/TAES.2005.1561884
    [15] Ristic B, Vo B N, Clark D. A note on the reward function for PHD filters with sensor control. IEEE Transactions on Aerospace Electronic Systems, 2011, 47(2): 1521-1529 doi: 10.1109/TAES.2011.5751278
    [16] Ristic B, Arulampalam S. Bernoulli particle filter with observer control for bearings-only tracking in clutter. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2405-2415 doi: 10.1109/TAES.2012.6237599
    [17] Hoang H G, Vo B T. Sensor management for multi-target tracking via multi-bernoulli filtering. Automatica, 2014, 50(4): 1135-1142 doi: 10.1016/j.automatica.2014.02.007
    [18] Gostar A K, Hoseinnezhad R, Babhadiashar A, Papi F. OSPA-based sensor control. In: Proceedings of the 2015 International Conference on Control, Automation and Information Sciences. Changshu, China: IEEE, 2015. 214-218 http://ieeexplore.ieee.org/document/7338664/citations
    [19] Gostar A K, Hoseinnezhad R, Babhadiashar A. Multi-Bernoulli sensor control using cauchy-schwarz divergence. In: Proceedings of the 19th International Conference on Information Fusion. Heidelberg, Germany: IEEE, 2016. 651-657
    [20] Milanese M, Vicino A. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview. Automatica, 1991, 27(6): 997-1009 doi: 10.1016/0005-1098(91)90134-N
    [21] Combettes P L. The foundations of set theoretic estimation. Proceedings of the IEEE, 1993, 81(2): 182-208 doi: 10.1109/5.214546
    [22] Abdallah F, Gning A, Bonnifait P. Box particle filtering for nonlinear state estimation using interval analysis. Automatica, 2008, 44(3): 807-815 doi: 10.1016/j.automatica.2007.07.024
    [23] Gning A, Mihaylova L, Abdallah F. Mixture of uniform probability density functions for non linear state estimation using interval analysis. In: Proceedings of the 13th International Conference on Information Fusion. Edinburgh, UK: IEEE, 2010. 1-8
    [24] Schikora M, Gning A, Mihaylova L, Cremers D, Koch W. Box-particle PHD filter for multi-target tracking. In: Proceedings of the 15th International Conference on Information Fusion. Singapore: IEEE, 2012. 106-113
    [25] Gning A, Ristic B, Mihaylova L. Bernoulli particle/box-particle filters for detection and tracking in the presence of triple measurement uncertainty. IEEE Transactions on Signal Processing, 2012, 60(5): 2138-2151 doi: 10.1109/TSP.2012.2184538
    [26] Zhao Xue-Gang, Song Li-Ping. Box-particle cardinality balanced multi-target multi-Bernoulli filter. Radioengineering, 2014, 23(2): 609-617
    [27] Yang Jin-Long, Ji Hong-Bing, Ge Hong-Wei. Multi-model particle cardinality-balanced multi-target multi-Bernoulli algorithm for multiple manoeuvring target tracking. IET Radar Sonar and Navigation, 2013, 7(2): 101-112 doi: 10.1049/iet-rsn.2012.0184
    [28] Li M, Lin Z P, An W, Zhou Y Y. Box-particle labeled multi-Bernoulli filter for multiple extended target tracking. Radioengineering, 2016, 25(3): 527-535 doi: 10.13164/re.2016.0527
    [29] Gostar A K, Hoseinnezhad R, Babhadiashar A. Multi-Bernoulli sensor-selection for multi-target tracking with unknown clutter and detection profiles. Elsevier North-Holland, Inc, 2016, 119(2): 28-42 http://dl.acm.org/citation.cfm?id=2837588
    [30] Mahler R P S. Multitarget sensor management of dispersed mobile sensors. Theory and Algorithms for Cooperative Systems, 2004, 8: 239-310 doi: 10.1142/9789812796592_0012
    [31] Hoang H G, Vo B N, Vo B T. The Cauchy-Schwarz divergence for poisson point processes. In: Proceedings of the 2014 IEEE Workshop on Statistical Signal Processing, Gold Coast, QLD, Australia: IEEE, 2014. 240-243
    [32] Li Xiao-Rong, Jilkov V P. Survey of maneuvering target tracking. part I: Dynamic models. IEEE Transactions on Aerospace and Electronic Systems, 2004, 39(4): 1333-1364 http://ieeexplore.ieee.org/document/1261132
    [33] Schuhmacher D, Vo B T, Vo B N. A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing, 2008, 56(8): 3447-3457 doi: 10.1109/TSP.2008.920469
    [34] Mahler R P S, Zajic T R. Probabilistic objective functions for sensor management. In: Proceedings of the Signal Processing, Sensor Fusion, and Target Recognition XⅢ, Orlando, FL, USA: SPIE, 2004. 233-244
    [35] Hewer G A, Martin R D, Zeh J. Robust preprocessing for Kalman filtering of glint noise. IEEE Transactions on Aerospace and Electronic Systems, 1987, 23(1): 120-128 http://ieeexplore.ieee.org/document/4107518
    [36] 王伟, 余玉揆, 郝燕玲. 一种新型混合并行粒子滤波频率估计方法. 电子学报, 2016, 44(3): 740-746 doi: 10.3969/j.issn.0372-2112.2016.03.036

    Wang Wei, Yu Yu-Kui, Hao Yan-Ling. A novel parallel particle filter for frequency estimation. Acta Electronica Sinica, 2016, 44(3): 740-746 doi: 10.3969/j.issn.0372-2112.2016.03.036
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  747
  • HTML全文浏览量:  464
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-09
  • 录用日期:  2018-12-12
  • 刊出日期:  2021-06-10

目录

    /

    返回文章
    返回